1
|
Babokhov M, Mosaheb MM, Baker RW, Fuchs SM. Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast. G3 (BETHESDA, MD.) 2018; 8:1593-1601. [PMID: 29523636 PMCID: PMC5940151 DOI: 10.1534/g3.118.200086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII) is required to regulate transcription and to integrate it with other essential cellular processes. In the budding yeast Saccharomyces cerevisiae, the CTD of Rpb1p consists of 26 conserved heptad repeats that are post-translationally modified to orchestrate protein factor binding at different stages of the transcription cycle. A long-standing question in the study of the CTD is if there are any functional differences between the 26 repeats. In this study, we present evidence that repeats of identical sequence have different functions based on their position within the CTD. We assembled plasmids expressing Rpb1p with serine to alanine substitutions in three defined regions of the CTD and measured a range of phenotypes for yeast expressing these constructs. Mutations in the beginning and middle regions of the CTD had drastic, and region-specific effects, while mutating the distal region had no observable phenotype. Further mutational analysis determined that Ser5 within the first region of repeats was solely responsible for the observed growth differences and sequencing fast-growing suppressors allowed us to further define the functional regions of the CTD. This mutational analysis is consistent with current structural models for how the RNAPII holoenzyme and the CTD specifically would reside in complex with Mediator and establishes a foundation for studying regioselective binding along the repetitive RNAPII CTD.
Collapse
Affiliation(s)
| | | | - Richard W Baker
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | | |
Collapse
|
2
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
3
|
Yonezawa Y. Molecular dynamics study of the phosphorylation effect on the conformational states of the C-terminal domain of RNA polymerase II. J Phys Chem B 2014; 118:4471-8. [PMID: 24611769 DOI: 10.1021/jp4101976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase II in eukaryotes regulates mRNA processing processes by recruiting various regulation factors. A main function of the CTD relies on the heptad consensus sequence (YSPTSPS). The CTD dynamically changes its conformational state to recognize and bind different regulation factors. The dynamical conformation changes are caused by modifications, mainly phosphorylation and dephosphorylation, to the serine residues. In this study, we investigate the conformational states of the unit consensus CTD peptide with various phosphorylation patterns of the serine residues by extended ensemble simulations. The results show that the CTD without phosphorylation has a flexible disordered structure distributed between twisted and extended states, but phosphorylation tends to reduce the conformational space. It was found that phosphorylation induces a β-turn around the phosphorylated serine residue and the cis conformation of the proline residue significantly inhibits the β-turn formation. The β-turn should contribute to specific CTD binding of the different regulation factors by changing the conformation propensity combined with induced fit.
Collapse
Affiliation(s)
- Yasushige Yonezawa
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University , 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| |
Collapse
|
4
|
Zhang M, Yogesha SD, Mayfield JE, Gill GN, Zhang Y. Viewing serine/threonine protein phosphatases through the eyes of drug designers. FEBS J 2013; 280:4739-60. [PMID: 23937612 DOI: 10.1111/febs.12481] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/03/2013] [Accepted: 08/02/2013] [Indexed: 01/04/2023]
Abstract
Protein phosphatases, as the counterpart to protein kinases, are essential for homeostatic balance of cell signaling. Small chemical compounds that modulate the specific activity of phosphatases can be powerful tools to elucidate the biological functions of these enzymes. More importantly, many phosphatases are central players in the development of pathological pathways where inactivation can reverse or delay the onset of human diseases. Therefore, potent inhibitors for such phosphatases can be of great therapeutic benefit. In contrast to the seemingly identical enzymatic mechanism and structural characterization of eukaryotic protein kinases, protein phosphatases evolved from diverse ancestors, resulting in different domain architectures, reaction mechanisms and active site properties. In this review, we discuss for each family of serine/threonine protein phosphatases their involvement in biological processes and corresponding strategies for small chemical intervention. Recent advances in modern drug discovery technologies have markedly facilitated the identification of selective inhibitors for some members of the phosphatase family. Furthermore, the rapid growth in knowledge about structure-activity relationships related to possible new drug targets has aided the discovery of natural product inhibitors for the phosphatase family. This review summarizes the current state of investigation of the small molecules that regulate the function of serine/threonine phosphatases, the challenges presented and also strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry and Biochemistry, University of Texas at Austin, TX, USA
| | | | | | | | | |
Collapse
|
5
|
Zhang M, Wang XJ, Chen X, Bowman ME, Luo Y, Noel JP, Ellington AD, Etzkorn FA, Zhang Y. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. ACS Chem Biol 2012; 7:1462-70. [PMID: 22670809 DOI: 10.1021/cb3000887] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Xiaodong J. Wang
- Department of Chemistry, Virginia Tech, MC 0212, Blacksburg, Virginia 24061,
United States
| | - Xi Chen
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Marianne E. Bowman
- Jack Skirball Chemical Biology
and Protein Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Yonghua Luo
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Joseph P. Noel
- Jack Skirball Chemical Biology
and Protein Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Andrew D. Ellington
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Felicia A. Etzkorn
- Department of Chemistry, Virginia Tech, MC 0212, Blacksburg, Virginia 24061,
United States
| | - Yan Zhang
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Zhang M, Cho EJ, Burstein G, Siegel D, Zhang Y. Selective inactivation of a human neuronal silencing phosphatase by a small molecule inhibitor. ACS Chem Biol 2011; 6:511-9. [PMID: 21348431 DOI: 10.1021/cb100357t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unstructured C-terminal domain (CTD) of eukaryotic RNA polymerase II dynamically regulates the process of transcription by recruiting different factors to nascent mRNA through its multiple phosphorylation patterns. A newly discovered class of phosphatases, the human small C-terminal domain phosphatases (Scp's), specifically dephosphorylates phosphorylated Ser(5) (phospho.Ser5) of the tandem heptad repeats of the CTD of RNA polymerase II. Scp's also function as transcription regulators that epigenetically silence the expression of specific neuronal genes, whose inactivation leads to neuronal stem cell differentiation. Small molecule inhibitors of Scp's will be valuable for elucidating their mechanism in nervous system development and can possibly offer new strategies to treat diseases related to neurodegeneration. Despite the difficulty in developing selective inhibitors of protein phosphatases, we have recognized a characteristic hydrophobic binding pocket adjacent to the active site in Scp's that may facilitate selective inhibition. In the present study, we successfully identified the first selective lead compound, rabeprazole, for the Scp/TFIIF-interacting CTD phosphatase (Fcp) family. The high-resolution crystal structure of rabeprazole-bound Scp1 showed that the compound indeed binds to the hydrophobic binding pocket. We further confirmed that rabeprazole only targets Scp's but not its close family members Fcp1 and Dullard or bacteriophage λ Ser/Thr phosphatase. Such specificity may prove important for In Vivo studies since accidental inhibition of Fcp1 or Dullard would result in cell malfunctions and even cell death.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry and Biochemistry and ‡The Texas Institute for Drug and Diagnostic Development, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Department of Chemistry and Biochemistry and ‡The Texas Institute for Drug and Diagnostic Development, University of Texas at Austin, Austin, Texas 78712, United States
| | - Gayle Burstein
- Department of Chemistry and Biochemistry and ‡The Texas Institute for Drug and Diagnostic Development, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dionicio Siegel
- Department of Chemistry and Biochemistry and ‡The Texas Institute for Drug and Diagnostic Development, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yan Zhang
- Department of Chemistry and Biochemistry and ‡The Texas Institute for Drug and Diagnostic Development, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue. Biochem J 2011; 434:435-44. [DOI: 10.1042/bj20101471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reversible phosphorylation of the CTD (C-terminal domain) of the eukaryotic RNA polymerase II largest subunit represents a critical regulatory mechanism during the transcription cycle and mRNA processing. Ssu72 is an essential phosphatase conserved in eukaryotes that dephosphorylates phosphorylated Ser5 of the CTD heptapeptide. Its function is implicated in transcription initiation, elongation and termination, as well as RNA processing. In the present paper we report the high resolution X-ray crystal structures of Drosophila melanogaster Ssu72 phosphatase in the apo form and in complex with an inhibitor mimicking the transition state of phosphoryl transfer. Ssu72 facilitates dephosphorylation of the substrate through a phosphoryl-enzyme intermediate, as visualized in the complex structure of Ssu72 with the oxo-anion compound inhibitor vanadate at a 2.35 Å (1 Å=0.1 nm) resolution. The structure resembles the transition state of the phosphoryl transfer with vanadate exhibiting a trigonal bi-pyramidal geometry covalently bonded to the nucleophilic cysteine residue. Interestingly, the incorporation of oxo-anion compounds greatly stabilizes a flexible loop containing the general acid, as detected by an increase of melting temperature of Ssu72 detected by differential scanning fluorimetry. The Ssu72 structure exhibits a core fold with a similar topology to that of LMWPTPs [low-molecular-mass PTPs (protein tyrosine phosphatases)], but with an insertion of a unique ‘cap’ domain to shelter the active site from the solvent with a deep groove in between where the CTD substrates bind. Mutagenesis studies in this groove established the functional roles of five residues (Met17, Pro46, Asp51, Tyr77 and Met85) that are essential specifically for substrate recognition.
Collapse
|