1
|
Zhang C, Guo J. Cell cycle disorders in podocytes: an emerging and increasingly recognized phenomenon. Cell Death Discov 2025; 11:182. [PMID: 40246828 PMCID: PMC12006314 DOI: 10.1038/s41420-025-02486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Proteinuria is observed in various kidney diseases and is frequently associated with a compromised glomerular filtration barrier. Podocytes, as a crucial component of this barrier, play an essential role in preserving the kidney's normal filtration function. Podocytes are terminally differentiated cells that typically do not proliferate. However, certain harmful stimuli can trigger podocytes to re-enter the cell cycle. Due to its unique cytoskeletal structure, podocytes are unable to maintain the structure of the foot process and complete cell division at the same time, eventually form binucleated or multinucleated podocytes. Studies have found that podocytes re-entering the cell cycle are more susceptible to injury, and are prone to detachment from the basement membrane or apoptosis, which are accompanied by the widening of foot processes. This eventually leads to podocyte mitotic catastrophe and the development of proteinuria. Podocyte cell cycle disorders have previously been found mainly in focal segmental glomerulosclerosis and IgA nephropathy. In recent years, this phenomenon has been frequently identified in diabetic kidney disease and lupus nephritis. An expanding body of research has begun to investigate the mechanisms underlying podocyte cell cycle disorders, including cell cycle re-entry, cell cycle arrest, and mitotic catastrophe. This review consolidates the existing literature on podocyte cell cycle disorders in renal diseases and summarizes the molecules that trigger podocyte re-entry into the cell cycle, thereby providing new drug targets for mitigating podocyte damage. This is essential for alleviating podocyte injury, reducing proteinuria, and delaying the progression of kidney diseases.
Collapse
Affiliation(s)
- Chaojie Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
3
|
Kajio Y, Suzuki T, Kobayashi K, Kanazawa N, Iyoda M, Honda H, Honda K. Activation of the inflammasome and pyroptosis cascade in podocytes of patients with minimal change disease. Clin Kidney J 2024; 17:sfae216. [PMID: 39114498 PMCID: PMC11304592 DOI: 10.1093/ckj/sfae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Indexed: 08/10/2024] Open
Abstract
Background In contrast to childhood minimal change disease (MCD), adult-onset MCD frequently recurs and requires prolonged immunosuppressive therapy. Accordingly, an investigation of the pathogenesis of adult MCD is required. MCD is usually accompanied by severe dyslipidaemia. Oxidized low-density lipoprotein (ox-LDL) is known to function in a damage-associated molecular pattern (DAMP) through CD36, triggering the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome and programmed cell death called pyroptosis. However, the relationship between MCD pathogenesis and NLRP3 inflammasome/pyroptosis activation via CD36 is not fully understood. Methods We conducted comprehensive histological and clinical evaluations by analysing renal biopsy (RBx) specimens and urine samples obtained from 26 patients with MCD. These samples were compared with control kidneys from 15 transplant donors and urine samples from 15 healthy volunteers. Results The number of podocytes was lower in the MCD group than in the control group. Urinary ox-LDL levels were higher in the MCD group than in the control group. Immunofluorescence staining revealed that NLRP3 and CD36 were upregulated in MCD podocytes. Urinary interleukin (IL)-18 levels increased in patients with MCD. Steroid therapy performed before RBx appeared to maintain the podocyte number and reduce urinary ox-LDL and IL-18 levels. Conclusion In MCD, the NLRP3 inflammasome and pyroptosis cascade seem to be activated via upregulation of CD36 in podocytes, associated with increased urinary ox-LDL. Elevated urinary IL-18 levels suggest that pyroptosis may occur in MCD. Further research is required to confirm the significance of the podocyte NLRP3 inflammasome/pyroptosis in MCD.
Collapse
Affiliation(s)
- Yuki Kajio
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kazuki Kobayashi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
5
|
Tian X, Pedigo CE, Li K, Ma X, Bunda P, Pell J, Lek A, Gu J, Zhang Y, Medina Rangel PX, Li W, Schwartze E, Nagata S, Lerner G, Perincheri S, Priyadarshini A, Zhao H, Lek M, Menon MC, Fu R, Ishibe S. Profilin1 is required for prevention of mitotic catastrophe in murine and human glomerular diseases. J Clin Invest 2023; 133:e171237. [PMID: 37847555 PMCID: PMC10721156 DOI: 10.1172/jci171237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
The progression of proteinuric kidney diseases is associated with podocyte loss, but the mechanisms underlying this process remain unclear. Podocytes reenter the cell cycle to repair double-stranded DNA breaks. However, unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity - its tissue-specific loss in mouse podocytes resulted in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle reentry was identified using FUCCI2aR mice, and we observed altered expression of cell-cycle associated proteins, such as p21, p53, cyclin B1, and cyclin D1. Podocyte-specific translating ribosome affinity purification and RNA-Seq revealed the downregulation of ribosomal RNA-processing 8 (Rrp8). Overexpression of Rrp8 in Pfn1-KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.
Collapse
Affiliation(s)
- Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher E. Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Patricia Bunda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - John Pell
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yan Zhang
- Bioinformation Department, Suzhou SITRI Institute of Immunology Co. Ltd., Suzhou, Jiangsu, China
| | - Paulina X. Medina Rangel
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eike Schwartze
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Soichiro Nagata
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Lerner
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anupama Priyadarshini
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Madhav C. Menon
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|