1
|
Emelianov AV, Pettersson M, Bobrinetskiy II. Ultrafast Laser Processing of 2D Materials: Novel Routes to Advanced Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402907. [PMID: 38757602 DOI: 10.1002/adma.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Ultrafast laser processing has emerged as a versatile technique for modifying materials and introducing novel functionalities. Over the past decade, this method has demonstrated remarkable advantages in the manipulation of 2D layered materials, including synthesis, structuring, functionalization, and local patterning. Unlike continuous-wave and long-pulsed optical methods, ultrafast lasers offer a solution for thermal heating issues. Nonlinear interactions between ultrafast laser pulses and the atomic lattice of 2D materials substantially influence their chemical and physical properties. This paper highlights the transformative role of ultrafast laser pulses in maskless green technology, enabling subtractive, and additive processes that unveil ways for advanced devices. Utilizing the synergetic effect between the energy states within the atomic layers and ultrafast laser irradiation, it is feasible to achieve unprecedented resolutions down to several nanometers. Recent advancements are discussed in functionalization, doping, atomic reconstruction, phase transformation, and 2D and 3D micro- and nanopatterning. A forward-looking perspective on a wide array of applications of 2D materials, along with device fabrication featuring novel physical and chemical properties through direct ultrafast laser writing, is also provided.
Collapse
Affiliation(s)
- Aleksei V Emelianov
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ivan I Bobrinetskiy
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| |
Collapse
|
2
|
Xiao M, Wu Z, Liu G, Liao X, Yuan J, Zhou Y. Spatially Controlled Phase Transition in MoTe 2 Driven by Focused Ion Beam Irradiations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31747-31755. [PMID: 38839057 DOI: 10.1021/acsami.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Phase transitions play an important role in tuning the physical properties of two-dimensional (2D) materials as well as developing their high-performance device applications. Here, we reported the observation of a phase transition in few-layered MoTe2 flakes by the irradiation of gallium (Ga+) ions using a focused ion beam (FIB) system. The semiconducting 2H phase of MoTe2 can be controllably converted to the metallic 1T'-like phase via Te defect engineering during irradiations. By taking advantage of the nanometer-sized Ga+ ion probe proved by FIB, in-plane 1T'-2H homojunctions of MoTe2 at submicrometer scale can be fabricated. Furthermore, we demonstrate the improvement of device performance (on-state current over 2 orders of magnitude higher) in MoTe2 transistors using the patterned 1T'-like phase regions as contact electrodes. Our study provides a new strategy to drive the phase transitions in MoTe2, tune their properties, and develop high-performance devices, which also extends the applications of FIB technology in 2D materials and their devices.
Collapse
Affiliation(s)
- Meiling Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Ziyu Wu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Guangjian Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Xiaxia Liao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Jiaren Yuan
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yangbo Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
3
|
Carr Delgado H, Moradifar P, Chinn G, Levin CS, Dionne JA. Toward "super-scintillation" with nanomaterials and nanophotonics. NANOPHOTONICS 2024; 13:1953-1962. [PMID: 38745841 PMCID: PMC11090085 DOI: 10.1515/nanoph-2023-0946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
Following the discovery of X-rays, scintillators are commonly used as high-energy radiation sensors in diagnostic medical imaging, high-energy physics, astrophysics, environmental radiation monitoring, and security inspections. Conventional scintillators face intrinsic limitations including a low extraction efficiency of scintillated light and a low emission rate, leading to efficiencies that are less than 10 % for commercial scintillators. Overcoming these limitations will require new materials including scintillating nanomaterials ("nanoscintillators"), as well as new photonic approaches that increase the efficiency of the scintillation process, increase the emission rate of materials, and control the directivity of the scintillated light. In this perspective, we describe emerging nanoscintillating materials and three nanophotonic platforms: (i) plasmonic nanoresonators, (ii) photonic crystals, and (iii) high-Q metasurfaces that could enable high performance scintillators. We further discuss how a combination of nanoscintillators and photonic structures can yield a "super scintillator" enabling ultimate spatio-temporal resolution while enabling a significant boost in the extracted scintillation emission.
Collapse
Affiliation(s)
- Hamish Carr Delgado
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Garry Chinn
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Craig S. Levin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Zhang H, Tu X, Wu Z, Guo J, Fei L, Liao X, Yuan J, Wan S, Bie YQ, Zhou Y. Laser irradiation induced structural transformation in layered transition metal trichalcogenide nanoflakes. iScience 2023; 26:107895. [PMID: 37766970 PMCID: PMC10520514 DOI: 10.1016/j.isci.2023.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Laser irradiation is a powerful tool in inducing changes in lattice structures and properties of two-dimensional (2D) materials through processes such as heating, bleaching, catalysis, etc. However, the underlying mechanisms of such transformations vary dramatically in different 2D materials. Here, we report the structural transformation of layered titanium trisulfide (TiS3) to titanium disulfide (TiS2) after irradiation. We systematically characterized the dependence of the transformation on laser power, flake thickness, irradiation time, and vacuum conditions using microscopic and spectroscopic methods. The underlying mechanism is confirmed as the heat-induced materials decomposition, a process that also occurs in many other transition metal trichalcogenide materials. Furthermore, we demonstrate that this spatial-resolved method also enables the creation of in-plane TiS3-TiS2 heterostructures. Our study identifies a new family of 2D materials that undergo a structural transformation after laser irradiation and enriches the methods available for developing new prototypes of low-dimensional devices in the future.
Collapse
Affiliation(s)
- Huifeng Zhang
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Xiong Tu
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ziyu Wu
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Junqing Guo
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Linfeng Fei
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Xiaxia Liao
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Jiaren Yuan
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Siyuan Wan
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ya-Qing Bie
- State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yangbo Zhou
- Department of Materials Science, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
- Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
5
|
Mahmud MT, Zhai D, Sandler N. Topological Flat Bands in Strained Graphene: Substrate Engineering and Optical Control. NANO LETTERS 2023; 23:7725-7732. [PMID: 37578461 DOI: 10.1021/acs.nanolett.3c02513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The discovery of correlated phases in twisted moiré superlattices accelerated the search for low-dimensional materials with exotic properties. A promising approach uses engineered substrates to strain the material. However, designing substrates for tailored properties is hindered by the incomplete understanding of the relationship between the substrate's shapes and the electronic properties of the deposited materials. By analyzing effective models of graphene under periodic deformations with generic crystalline profiles, we identify strong C2z symmetry breaking as the critical substrate geometric feature for emerging energy gaps and quasi-flat bands. We find continuous strain profiles producing connected pseudomagnetic field landscapes are important for band topology. We show that the resultant electronic and topological properties from a substrate can be controlled with circularly polarized light, which also offers unique signatures for identifying the band topology imprinted by strain. Our results can guide experiments on strain engineering for exploring interesting transport and topological phenomena.
Collapse
Affiliation(s)
- Md Tareq Mahmud
- Physics and Astronomy Department and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979, United States
| | - Dawei Zhai
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Nancy Sandler
- Physics and Astronomy Department and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979, United States
| |
Collapse
|
6
|
Gong H, Lin J, Sun H. Nanocrystal Array Engineering and Optoelectronic Applications of Organic Small-Molecule Semiconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2087. [PMID: 37513098 PMCID: PMC10386679 DOI: 10.3390/nano13142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Organic small-molecule semiconductor materials have attracted extensive attention because of their excellent properties. Due to the randomness of crystal orientation and growth location, however, the preparation of continuous and highly ordered organic small-molecule semiconductor nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance. The formation of organic small-molecule crystals relies heavily on weak interactions such as hydrogen bonds, van der Waals forces, and π-π interactions, which are very sensitive to external stimuli such as mechanical forces, high temperatures, and organic solvents. Therefore, nanocrystal array engineering is more flexible than that of the inorganic materials. In addition, nanocrystal array engineering is a key step towards practical application. To resolve this problem, many conventional nanocrystal array preparation methods have been developed, such as spin coating, etc. In this review, the typical and recent progress of nanocrystal array engineering are summarized. It is the typical and recent innovations that the array of nanocrystal array engineering can be patterned on the substrate through top-down, bottom-up, self-assembly, and crystallization methods, and it can also be patterned by constructing a series of microscopic structures. Finally, various multifunctional and emerging applications based on organic small-molecule semiconductor nanocrystal arrays are introduced.
Collapse
Affiliation(s)
- Haoyu Gong
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huibin Sun
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
7
|
Lomeli-Martin A, Ahamed N, Abhyankar VV, Lapizco-Encinas BH. Electropatterning-Contemporary developments for selective particle arrangements employing electrokinetics. Electrophoresis 2023; 44:884-909. [PMID: 37002779 PMCID: PMC10330388 DOI: 10.1002/elps.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The selective positioning and arrangement of distinct types of multiscale particles can be used in numerous applications in microfluidics, including integrated circuits, sensors and biochips. Electrokinetic (EK) techniques offer an extensive range of options for label-free manipulation and patterning of colloidal particles by exploiting the intrinsic electrical properties of the target of interest. EK-based techniques have been widely implemented in many recent studies, and various methodologies and microfluidic device designs have been developed to achieve patterning two- and three-dimensional (3D) patterned structures. This review provides an overview of the progress in electropatterning research during the last 5 years in the microfluidics arena. This article discusses the advances in the electropatterning of colloids, droplets, synthetic particles, cells, and gels. Each subsection analyzes the manipulation of the particles of interest via EK techniques such as electrophoresis and dielectrophoresis. The conclusions summarize recent advances and provide an outlook on the future of electropatterning in various fields of application, especially those with 3D arrangements as their end goal.
Collapse
Affiliation(s)
- Adrian Lomeli-Martin
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Nuzhet Ahamed
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Vinay V. Abhyankar
- Biological Microsystems Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
8
|
Wang G, Guan Y, Wang Y, Ding Y, Yang L. Direct Laser Irradiation and Modification of 2D Te for Development of Volatile Memristor. MATERIALS (BASEL, SWITZERLAND) 2023; 16:738. [PMID: 36676475 PMCID: PMC9862747 DOI: 10.3390/ma16020738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Laser irradiation, as a kind of post-fabrication method for two-dimensional (2D) materials, is a promising way to tune the properties of materials and the performance of corresponding nano-devices. As the memristor has been regarded as an excellent candidate for in-memory devices in next-generation computing system, the application of laser irradiation in developing excellent memristor based on 2D materials should be explored deeply. Here, tellurene (Te) flakes are exposed to a 532 nm laser in the air atmosphere to investigate the evolutions of the surface morphology and atom structures under different irradiation parameters. Laser is capable of thinning the flakes, inducing amorphous structures, oxides and defects, and forming nanostructures by controlling the irradiation power and time. Furthermore, the laser-induced oxides and defects promote the migration of metal ions in Te, resulting in the formation of the conductive filaments, which provides the switching behavers of volatile memristor, opening a route to the development of next-generation nano-devices.
Collapse
Affiliation(s)
- Genwang Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanchao Guan
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Ding
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lijun Yang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Nanocavity-induced trion emission from atomically thin WSe 2. Sci Rep 2022; 12:15861. [PMID: 36151265 PMCID: PMC9508186 DOI: 10.1038/s41598-022-20226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Exciton is a bosonic quasiparticle consisting of a pair of electron and hole, with promising potentials for optoelectronic device applications, such as exciton transistors, photodetectors and light emitting devices. However, the charge-neutral nature of excitons renders them challenging to manipulate using electronics. Here we present the generation of trions, a form of charged excitons, together with enhanced exciton resonance in monolayer WSe2. The excitation of the trion quasiparticles is achieved by the hot carrier transport from the integrated gold plasmonic nanocavity, formed by embedding monolayer WSe2 between gold nanoparticles and a gold film. The nanocavity-induced negatively charged trions provide a promising route for the manipulation of excitons, essential for the construction of all-exciton information processing circuits.
Collapse
|
10
|
Zheng F, Guo D, Huang L, Wong LW, Chen X, Wang C, Cai Y, Wang N, Lee C, Lau SP, Ly TH, Ji W, Zhao J. Sub-Nanometer Electron Beam Phase Patterning in 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200702. [PMID: 35723437 PMCID: PMC9376820 DOI: 10.1002/advs.202200702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/18/2022] [Indexed: 05/17/2023]
Abstract
Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T'' phase to metallic T' and T phases in 2D rhenium disulfide (ReS2 ) and rhenium diselenide (ReSe2 ) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices.
Collapse
Affiliation(s)
- Fangyuan Zheng
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Deping Guo
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐nano DevicesDepartment of PhysicsRenmin University of ChinaBeijing100872China
| | - Lingli Huang
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Lok Wing Wong
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Xin Chen
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Cong Wang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐nano DevicesDepartment of PhysicsRenmin University of ChinaBeijing100872China
| | - Yuan Cai
- Department of PhysicsHong Kong University of Science and TechnologyClear water bayHong Kong999077China
| | - Ning Wang
- Department of PhysicsHong Kong University of Science and TechnologyClear water bayHong Kong999077China
| | - Chun‐Sing Lee
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Shu Ping Lau
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077Hong Kong
- China & City University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐nano DevicesDepartment of PhysicsRenmin University of ChinaBeijing100872China
| | - Jiong Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon999077Hong Kong
- China & Polytechnic University of Hong Kong Shenzhen Research InstituteShenzhen518000China
| |
Collapse
|
11
|
Xiao K, Geohegan DB. Laser synthesis and processing of atomically thin 2D materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Akkanen STM, Fernandez HA, Sun Z. Optical Modification of 2D Materials: Methods and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110152. [PMID: 35139583 DOI: 10.1002/adma.202110152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
2D materials are under extensive research due to their remarkable properties suitable for various optoelectronic, photonic, and biological applications, yet their conventional fabrication methods are typically harsh and cost-ineffective. Optical modification is demonstrated as an effective and scalable method for accurate and local in situ engineering and patterning of 2D materials in ambient conditions. This review focuses on the state of the art of optical modification of 2D materials and their applications. Perspectives for future developments in this field are also discussed, including novel laser tools, new optical modification strategies, and their emerging applications in quantum technologies and biotechnologies.
Collapse
Affiliation(s)
| | - Henry Alexander Fernandez
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
13
|
Ultrafast laser ablation, intrinsic threshold, and nanopatterning of monolayer molybdenum disulfide. Sci Rep 2022; 12:6910. [PMID: 35484187 PMCID: PMC9050692 DOI: 10.1038/s41598-022-10820-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Laser direct writing is an attractive method for patterning 2D materials without contamination. Literature shows that the ultrafast ablation threshold of graphene across substrates varies by an order of magnitude. Some attribute it to the thermal coupling to the substrates, but it remains by and large an open question. For the first time the effect of substrates on the femtosecond ablation of 2D materials is studied using MoS2 as an example. We show unambiguously that femtosecond ablation of MoS2 is an adiabatic process with negligible heat transfer to the substrates. The observed threshold variation is due to the etalon effect which was not identified before for the laser ablation of 2D materials. Subsequently, an intrinsic ablation threshold is proposed as a true threshold parameter for 2D materials. Additionally, we demonstrate for the first time femtosecond laser patterning of monolayer MoS2 with sub-micron resolution and mm/s speed. Moreover, engineered substrates are shown to enhance the ablation efficiency, enabling patterning with low-power ultrafast oscillators. Finally, a zero-thickness approximation is introduced to predict the field enhancement with simple analytical expressions. Our work clarifies the role of substrates on ablation and firmly establishes ultrafast laser ablation as a viable route to pattern 2D materials.
Collapse
|
14
|
Zhu Y, Sun L, Wang Y, Cai L, Zhang Z, Shang Y, Zhao Y. A Biomimetic Human Lung-on-a-Chip with Colorful Display of Microphysiological Breath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108972. [PMID: 35065539 DOI: 10.1002/adma.202108972] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Lung-on-a-chip models hold great promise for disease modeling and drug screening. Herein, inspired by the iridescence phenomenon of soap bubbles, a novel biomimetic 3D microphysiological lung-on-a-chip system with breathing visualization is presented. The system, with an array of pulmonary alveoli at the physiological scale, is constructed and coated with structural color materials. Cyclic deformation is induced by regular airflow, resembling the expansion and contraction of the alveoli during rhythmic breathing. As the deformation is accompanied with corresponding synchronous shifts in the structural color, the constructed system offers self-reporting of the cell mechanics and enables real-time monitoring of the cultivation process. Using this system, the dynamic relationships between the color atlas and disease symptoms, showing the essential role of mechanical stretching in the phenotypes of idiopathic pulmonary fibrosis, are investigated. These features make this human lung system ideal in biological study, disease monitoring, and drug discovery.
Collapse
Affiliation(s)
- Yujuan Zhu
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuohao Zhang
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yixuan Shang
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
15
|
Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z, Moss DJ. Fabrication Technologies for the On-Chip Integration of 2D Materials. SMALL METHODS 2022; 6:e2101435. [PMID: 34994111 DOI: 10.1002/smtd.202101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
With compact footprint, low energy consumption, high scalability, and mass producibility, chip-scale integrated devices are an indispensable part of modern technological change and development. Recent advances in 2D layered materials with their unique structures and distinctive properties have motivated their on-chip integration, yielding a variety of functional devices with superior performance and new features. To realize integrated devices incorporating 2D materials, it requires a diverse range of device fabrication techniques, which are of fundamental importance to achieve good performance and high reproducibility. This paper reviews the state-of-art fabrication techniques for the on-chip integration of 2D materials. First, an overview of the material properties and on-chip applications of 2D materials is provided. Second, different approaches used for integrating 2D materials on chips are comprehensively reviewed, which are categorized into material synthesis, on-chip transfer, film patterning, and property tuning/modification. Third, the methods for integrating 2D van der Waals heterostructures are also discussed and summarized. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Linnan Jia
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yang Qu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Zhigang Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457, China
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA, 94132, USA
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
16
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Chen X, Kohring M, Assebban M, Tywoniuk B, Bartlam C, Moses Badlyan N, Maultzsch J, Duesberg GS, Weber HB, Knirsch KC, Hirsch A. Covalent Patterning of 2D MoS 2. Chemistry 2021; 27:13117-13122. [PMID: 34357651 PMCID: PMC8518675 DOI: 10.1002/chem.202102021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/15/2022]
Abstract
The development of an efficient method to patterning 2D MoS2 into a desired topographic structure is of particular importance to bridge the way towards the ultimate device. Herein, we demonstrate a patterning strategy by combining the electron beam lithography with the surface covalent functionalization. This strategy allows us to generate delicate MoS2 ribbon patterns with a minimum feature size of 2 μm in a high throughput rate. The patterned monolayer MoS2 domain consists of a spatially well‐defined heterophase homojunction and alternately distributed surface characteristics, which holds great interest for further exploration of MoS2 based devices.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Malte Kohring
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr.7, 91058, Erlangen, Germany
| | - M'hamed Assebban
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Bartłomiej Tywoniuk
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr, 85579, Neubiberg, Germany
| | - Cian Bartlam
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr, 85579, Neubiberg, Germany
| | - Narine Moses Badlyan
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr.7, 91058, Erlangen, Germany
| | - Janina Maultzsch
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr.7, 91058, Erlangen, Germany
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr, 85579, Neubiberg, Germany
| | - Heiko B Weber
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr.7, 91058, Erlangen, Germany
| | - Kathrin C Knirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| |
Collapse
|
18
|
Faraone G, Sipala R, Mariani M, Martella C, Grazianetti C, Molle A, Bonera E. Probing the Laser Ablation of Black Phosphorus by Raman Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:8704-8711. [PMID: 34276854 PMCID: PMC8282126 DOI: 10.1021/acs.jpcc.1c01443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Laser ablation in conjunction with Raman spectroscopy can be used to attain a controllable reduction of the thickness of exfoliated black phosphorus flakes and simultaneous measurement of the local temperature. However, this approach can be affected by several parameters, such as the thickness-dependent heat dissipation. Optical, thermal, and mechanical effects in the flakes and the substrate can influence the laser ablation and may become a source of artifacts on the measurement of the local temperature. In this work, we carry out a systematic investigation of the laser thinning of black phosphorus flakes on SiO2/Si substrates. The counterintuitive results from Raman thermometry are analyzed and elucidated with the help of numerical solutions of the problem, laying the groundwork for a controlled thinning process of this material.
Collapse
Affiliation(s)
- Gabriele Faraone
- LNESS
and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi-55, I-20125 Milano, Italy
- CNR-IMM, Unità di Agrate Brianza, via C. Olivetti 2, I-20864 Agrate Brianza, Italy
| | - Roberta Sipala
- LNESS
and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi-55, I-20125 Milano, Italy
| | - Massimiliano Mariani
- LNESS
and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi-55, I-20125 Milano, Italy
| | - Christian Martella
- CNR-IMM, Unità di Agrate Brianza, via C. Olivetti 2, I-20864 Agrate Brianza, Italy
| | - Carlo Grazianetti
- CNR-IMM, Unità di Agrate Brianza, via C. Olivetti 2, I-20864 Agrate Brianza, Italy
| | - Alessandro Molle
- CNR-IMM, Unità di Agrate Brianza, via C. Olivetti 2, I-20864 Agrate Brianza, Italy
| | - Emiliano Bonera
- LNESS
and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi-55, I-20125 Milano, Italy
| |
Collapse
|
19
|
Yao G, Zhao D, Hong Y, Wu S, Liu D, Qiu M. Direct electron-beam patterning of monolayer MoS 2 with ice. NANOSCALE 2020; 12:22473-22477. [PMID: 33165481 DOI: 10.1039/d0nr05948j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDCs) are considered strong competitors for next generation semiconductor materials. In this paper, we propose direct electron-beam patterning of monolayer MoS2 inspired by an emerging ice lithography technique. Compared to conventional resist-based nanofabrication, ice-assisted patterning is free of contaminations from polymer resist and allows in situ processing of MoS2. The effects of electron beam dose and energy are investigated and nanoribbons with width below 30 nm are attainable. This method is expected to be applicable also to other TMDCs, providing a promising alternative for nanofabrication of 2D material devices.
Collapse
Affiliation(s)
- Guangnan Yao
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
20
|
Wang M, Li D, Liu K, Guo Q, Wang S, Li X. Nonlinear Optical Imaging, Precise Layer Thinning, and Phase Engineering in MoTe 2 with Femtosecond Laser. ACS NANO 2020; 14:11169-11177. [PMID: 32816458 DOI: 10.1021/acsnano.0c02649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of layer thickness and phase structure in two-dimensional transition metal dichalcogenides (2D TMDCs) like MoTe2 has recently gained much attention due to their broad applications in nanoelectronics and nanophotonics. Continuous-wave laser-based thermal treatment has been demonstrated to realize layer thinning and phase engineering in MoTe2, but requires long heating time and is largely influenced by the thermal dissipation of the substrate. The ultrafast laser produces a different response but is yet to be explored. In this work, we report the nonlinear optical interactions between MoTe2 crystals and femtosecond (fs) laser, where we have realized the nonlinear optical characterization, precise layer thinning, and phase transition in MoTe2 using a single fs laser platform. By using the fs laser with a low fluence as an excitation light source, we observe the strong nonlinear optical signals of second-harmonic generation and four-wave mixing in MoTe2, which can be used to identify the odd-even layers and layer numbers, respectively. With increasing the laser fluence to the ablation threshold (Fth), we achieve layer-by-layer removal of MoTe2, while 2H-to-1T' phase transition occurs with a higher laser fluence (2Fth to 3Fth). Moreover, we obtain highly ordered subwavelength nanoripples on both the thick and few-layer MoTe2 with a controlled fluence, which can be attributed to the fs laser-induced reorganization of the molten plasma. Our study provides a simple and efficient ultrafast laser-based approach capable of characterizing the structures and modifying the physical properties of 2D TMDCs.
Collapse
Affiliation(s)
- Mengmeng Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dawei Li
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States
| | - Kun Liu
- School of Optoelectronic Engineering and Instrument Science, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qitong Guo
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sumei Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xin Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|