1
|
Shahmohammadi A, Dalvand S, Molaei A, Mousavi-Khoshdel SM, Yazdanfar N, Hasanzadeh M. Transition metal phosphide/ molybdenum disulfide heterostructures towards advanced electrochemical energy storage: recent progress and challenges. RSC Adv 2025; 15:13397-13430. [PMID: 40297000 PMCID: PMC12035537 DOI: 10.1039/d5ra01184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Transition metal phosphide @ molybdenum disulfide (TMP@MoS2) heterostructures, consisting of TMP as the core main catalytic body and MoS2 as the outer shell, can solve the three major problems in the field of renewable energy storage and catalysis, such as lack of resources, cost factors, and low cycling stability. The heterostructures synergistically combine the excellent conductivity and electrochemical performance of transition metal phosphides with the structural robustness and catalytic activity of molybdenum disulfide, which holds great promise for clean energy. This review addresses the advantages of TMP@MoS2 materials and their synthesis methods-e.g., hydrothermal routes and chemical vapor deposition regarding scalability and cost. Their electrochemical energy storage and catalytic functions e.g., hydrogen and oxygen evolution reactions (HER and OER) are also extensively explored. Their potential within battery and supercapacitor technologies is also assessed against leading performance metrics. Challenges toward industry-scale scalability, longevity, and environmental sustainability are also addressed, as are optimization and large-scale deployment strategies.
Collapse
Affiliation(s)
- Ali Shahmohammadi
- Faculty of Chemistry, Kharazmi University 43 South Mofatteh Avenue Tehran Iran
| | - Samad Dalvand
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Amirhossein Molaei
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology Tabriz Iran
| | | | - Najmeh Yazdanfar
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Kaliyaperumal S, Sarigamala KK, Moorthy P, Ramachandran B, Chandrasekar N, Albrecht T. Bifunctional electrocatalytic hybrid heterostructures for polysulfide anchoring/conversion for a stable lithium-sulfur battery. NANOSCALE 2024; 16:22240-22251. [PMID: 39530759 DOI: 10.1039/d4nr03190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In situ phase engineering of transition metal dichalcogenides (TMDs) with controlled sulfur vacancies offers a promising strategy for superior-performance lithium-sulfur (Li-S) batteries. Herein, we demonstrate a bifunctional approach by designing a sulfur host material using 1T-MoS2/MoO3 heterostructures grown directly on carbon nanopot-resembling designer structures (CMS). The metallic phase (1T-MoS2) with MoO3 synergistically contributes to exceptional electronic transport, increased interlayer spacing, and more electrochemically active sites across its basal plane. Carbon nanopot structures and sulfur vacancies within the TMDs act as anchoring sites for lithium polysulfides (LiPSs). Additionally, the specifically phase-engineered 2D heterostructure promotes their efficient conversion into the electrochemically favorable Li2S phase. This dual functionality is expected to significantly improve the rate capability and cycle life stability of Li-S batteries. This translates to a high reversible rate capacity of 1205 mA h g-1 at a current density of 0.2 A g-1. The sulfur-loaded CMS nanostructure shows an excellent cycling life with a decay rate of only 0.078% over 1100 cycles at 1 A g-1, underscoring the effectiveness of the in situ phase engineering approach for creating a stable Li-S battery.
Collapse
Affiliation(s)
- Sakthivel Kaliyaperumal
- CO2 Research and Green Technologies Centre, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Karthik Kiran Sarigamala
- CO2 Research and Green Technologies Centre, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Padmini Moorthy
- Department of Green Energy Technology, Pondicherry University, 605014, India
| | - Balaji Ramachandran
- Department of Electronics and Communication Engineering, Centre of Excellence for Nanotechnology, Koneru Lakshmaiah Education Foundation, Andhra Pradesh - 522302, India
| | | | - Tim Albrecht
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Li L, Wu Y, Hu C, Li J, Guo X. Improving the cycling stability of lithium metal anodes through separator modification with nano-molybdenum powder. RSC Adv 2024; 14:27066-27073. [PMID: 39193297 PMCID: PMC11348848 DOI: 10.1039/d4ra05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
The deposition of lithium ions in an uneven manner can lead to the formation of lithium dendrites, which can puncture the battery separator and cause a short circuit. Additionally, intermediate polysulfides can shuttle between the separator, resulting in damage to the capacity of lithium-sulfur batteries and corrosion of the negative electrode. It is crucial to address these issues promptly. Hence, we developed a modified separator using nano-molybdenum powder, which effectively inhibits the growth of lithium dendrites and suppresses the shuttle effect of polysulfides. The modified separator extends the lifetime of the lithium metal anode, and the uniform pore distribution of the molybdenum powder facilitates the uniform diffusion of Li+ ions, thereby slowing down the detrimental effects. As a result, Li-S cells equipped with the nano-molybdenum powder modified separator achieve a remarkable capacity of 802 mA h g-1 at a current density of 0.5C and maintain a capacity of up to 614 mA h g-1 after 200 cycles.
Collapse
Affiliation(s)
- Lei Li
- Air Force Aviation University No. 2222, Nanhu Da Road Changchun 130022 Jilin China
| | - Yu Wu
- Strategic Assessments and Consultation Institute, Academy of Military Science Beijing 100091 China
| | - Chunhong Hu
- Air Force Aviation University No. 2222, Nanhu Da Road Changchun 130022 Jilin China
| | - Juanjuan Li
- Air Force Aviation University No. 2222, Nanhu Da Road Changchun 130022 Jilin China
| | - Xin Guo
- Air Force Aviation University No. 2222, Nanhu Da Road Changchun 130022 Jilin China
| |
Collapse
|
4
|
Sun Z, Wang Y, Xu J, Wang X. Mo 3P/Mo heterojunction for efficient conversion of lithium polysulfides in high-performance lithium-sulfur batteries. Front Chem 2024; 12:1459324. [PMID: 39189020 PMCID: PMC11345131 DOI: 10.3389/fchem.2024.1459324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Realizing efficient immobilization of lithium polysulfides (LiPSs) as well as reversible catalytic conversion between LiPSs and the insoluble Li2S is vital to restrain the shuttle effect, which requires highly reactive catalysts for high-performance Li-S batteries. Here, three-dimensional ordered porous Mo-based metal phosphides (3DOP Mo3P/Mo) with heterogeneous structures were fabricated and utilized as separator-modified coatings for Li-S batteries to catalyze the conversion of LiPSs. The adsorption, catalytic and electrochemical performance of the corresponding cells were compared among 3DOP Mo3P/Mo and 3DOP Mo, by kinetic and electrochemical performance measurements. It was found that the cell with 3DOP Mo3P/Mo modified separator deliver better electrochemical performance, with a high specific capacity of 469.66 mAh g-1 after 500 cycles at a high current density of 1°C. This work provides an idea and a guideline for the design of the separator modification for high-performance Li-S batteries.
Collapse
Affiliation(s)
| | | | | | - Xia Wang
- College of Physics, Qingdao University, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao, China
| |
Collapse
|
5
|
Alomari RA, Athinarayanan J, Periasamy VS, Alshatwi AA. Mucilage-assisted fabrication of molybdenum trioxide nanostructures for photothermal ablation of breast cancer cells. Biotechnol Appl Biochem 2024; 71:326-335. [PMID: 38112040 DOI: 10.1002/bab.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Nanostructures have been used for various biomedical applications due to their optical, antibacterial, magnetic, antioxidant, and biocompatible properties. Cancer is a prevalent disease that severely threatens human life and health. Thus, innovative and effective therapeutic approaches are urgently required for cancer. Photothermal therapy (PTT) is a promising approach to killing cancer cells. In this investigation, we developed a low-cost, simple, green technique to fabricate molybdenum trioxide nanostructures (MNs) using Opuntia ficus-indica mucilage as a template. Moreover, the MNs were functionalized with folic acid (FA) for cancer PTT. The X-ray diffractometer results revealed that the prepared MNs have an orthorhombic crystal phase. The transmission electron microscope image of MNs shows a flake shape with 20-150 nm diameter. The cytotoxicity of MNs and FA-conjugated MNs was studied in vitro. These cell viability assay results suggested that fabricated MoO3 nanostructures reduced 25% of cell viability in MCF-7 cells, even at high doses. However, even with high-dose treatment, FA/MNs do not cause significant cell death. Acridine orange/ethidium bromide (AO/EB) staining revealed DNA and chromatin condensation in MCF-7 cells exposed to MNs. Overall, the in vitro study results suggested that FA/MNs have excellent biocompatibility, which applies to biomedical applications. MNs dispersion temperature gradually increases from 26 to 58°C under 808 nm laser irradiation. We found significant mortality rates after NIR irradiation in MNs- or FA/MNs-treated MCF-7 cells. These findings suggest that FA/MNs can be used as an effective photothermal agent to treat breast cancer.
Collapse
Affiliation(s)
- Reem A Alomari
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Wu M, Xing Z, Zhu R, Liu X, Feng Y, Shao W, Yan R, Yin B, Li S. 2D Nano-Channeled Molybdenum Compounds for Accelerating Interfacial Polysulfides Catalysis in Li-S Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306991. [PMID: 37939298 DOI: 10.1002/smll.202306991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The shuttle effect, which causes the loss of active sulfur, passivation of lithium anode, and leads to severe capacity attenuation, is currently the main bottleneck for lithium-sulfur batteries. Recent studies have disclosed that molybdenum compounds possess exceptional advantages as a polar substrate to immobilize and catalyze lithium polysulfide such as high conductivity and strong sulfiphilicity. However, these materials show incomplete contact with sulfur/polysulfides, which causes uneven redox conversion of sulfur and results in poor rate performance. Herein, a new type of 2D nano-channeled molybdenum compounds (2D-MoNx) via the 2D organic-polyoxometalate superstructure for accelerating interfacial polysulfide catalysis toward high-performance lithium-sulfur batteries is reported. The 2D-MoNx shows well-interlinked nano-channels, which increase the reactive interface and contact surface with polysulfides. Therefore, the battery equipped with 2D-MoNx displays a high discharge capacity of 912.7 mAh g-1 at 1 C and the highest capacity retention of 523.7 mAh g-1 after 300 cycles. Even at the rate of 2 C, the capacity retention can be maintained at 526.6 mAh g-1 after 300 cycles. This innovative nano-channel and interfacial design of 2D-MoNx provides new nanostructures to optimize the sulfur redox chemistry and eliminate the shuttle effect of polysulfides.
Collapse
Affiliation(s)
- Min Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ran Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Liu X, Wang J, Wang W, Liu Y, Sun J, Wang H, Zhao Q, Liu W, Huang Q, Wang S, An Q, Wang Q, Shen L, Wang J. Interfacial Synergy in Mo 2C/MoC Heterostructure Promoting Sequential Polysulfide Conversion in High-Performance Lithium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307902. [PMID: 37950404 DOI: 10.1002/smll.202307902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 11/12/2023]
Abstract
A rational design of sulfur host is the key to conquering the"polysulfide shuttle effects" by accelerating the polysulfide conversion. Since the process involves solid-liquid-solid multistep phase transitions, purposely-engineered heterostructure catalysts with various active regions for catalyzing conversion steps correspondingly are beneficial to promote the overall conversion process. However, the functionalities of the materials surface and interface in heterostructure catalysts remain unclear. In this work, an Mo2C/MoC catalyst with abundant Mo2C surface-interface-MoC surface tri-active-region is developed by in situ converting the MoZn-metal organic framework. The experimental and simulation studies demonstrate the interface can catch long-chain polysulfides and promote their conversion. Instead, the Mo2C and MoC tend to accommodate the short-chain polysulfide and accelerate their conversion and the Li2S dissociation. Benefitting from the high catalytic ability, the Li-S battery assembled with the Mo2C/MoC-S cathode shows more discrete redox reactions and delivers a high initial capacity of 1603.6 mAh g-1 at 1 C charging-discharging rate, which is over twofolds of the one assembled using individual hosts, and 80.4% capacity can be maintained after 1000 cycles at 3 C rate. This work has demonstrated a novel synergy between the interface and material surface, which will help the future design of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Junhui Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Wanwan Wang
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Yu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Haimei Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Qi Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Weihao Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Qilin Huang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China
| |
Collapse
|
8
|
Wen K, Huang L, Qu L, Deng T, Men X, Chen L, Wang J. g-C 3N 4/MoO 3 composite with optimized crystal face: A synergistic adsorption-catalysis for boosting cathode performance of lithium-sulfur batteries. J Colloid Interface Sci 2023; 649:890-899. [PMID: 37390536 DOI: 10.1016/j.jcis.2023.06.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
The commercial application of lithium-sulfur batteries (LSBs) has been seriously hindered by the shuttle effect of lithium polysulfides (LiPSs) and their slow redox kinetics. In this work, g-C3N4/MoO3 composed of graphite carbon nitride (g-C3N4) nanoflake and MoO3 nanosheet is designed and applied to modify the separator. The polar MoO3 can form chemical bond with LiPSs, effectively slowing down the dissolution of LiPSs. And based on the principle of "Goldilocks", LiPSs will be oxidized by MoO3 to thiosulfate, which will promote the rapid conversion from long-chain LiPSs to Li2S. Moreover, g-C3N4 can promote the electron transportation, and its high specific surface area can facilitate the deposition and decomposition of Li2S. What's more, the g-C3N4 promotes the preferential orientation on the MoO3(021) and MoO3(040) crystal planes, which optimizes the adsorption capacity of g-C3N4/MoO3 for LiPSs. As a result, the LSBs with g-C3N4/MoO3 modified separator with a synergistic adsorption-catalysis, can achieve an initial capacity of 542 mAh g-1 at 4C with capacity decay rate of 0.0053% per cycle for 700 cycles. This work achieves the synergy of adsorption and catalysis of LiPSs through the combination of two materials, providing a material design strategy for advanced LSBs.
Collapse
Affiliation(s)
- Kaining Wen
- Xi'an Key Laboratory of Clean Energy, Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Lin Huang
- Xi'an Key Laboratory of Clean Energy, Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Laitao Qu
- Xi'an Key Laboratory of Clean Energy, Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Teng Deng
- Xi'an Key Laboratory of Clean Energy, Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Xinliang Men
- Xi'an Key Laboratory of Clean Energy, Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Liping Chen
- Xi'an Key Laboratory of Clean Energy, Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Juan Wang
- Xi'an Key Laboratory of Clean Energy, Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| |
Collapse
|
9
|
Tian F, Pang Z, Hu S, Zhang X, Wang F, Nie W, Xia X, Li G, Hsu HY, Xu Q, Zou X, Ji L, Lu X. Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission. RESEARCH (WASHINGTON, D.C.) 2023; 6:0142. [PMID: 37214200 PMCID: PMC10194053 DOI: 10.34133/research.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Sustainable and low-carbon-emission silicon production is currently one of the main focuses for the metallurgical and materials science communities. Electrochemistry, considered a promising strategy, has been explored to produce silicon due to prominent advantages: (a) high electricity utilization efficiency; (b) low-cost silica as a raw material; and (c) tunable morphologies and structures, including films, nanowires, and nanotubes. This review begins with a summary of early research on the extraction of silicon by electrochemistry. Emphasis has been placed on the electro-deoxidation and dissolution-electrodeposition of silica in chloride molten salts since the 21st century, including the basic reaction mechanisms, the fabrication of photoactive Si films for solar cells, the design and production of nano-Si and various silicon components for energy conversion, as well as storage applications. Besides, the feasibility of silicon electrodeposition in room-temperature ionic liquids and its unique opportunities are evaluated. On this basis, the challenges and future research directions for silicon electrochemical production strategies are proposed and discussed, which are essential to achieve large-scale sustainable production of silicon by electrochemistry.
Collapse
Affiliation(s)
- Feng Tian
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Zhongya Pang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Shen Hu
- State Key Laboratory of ASIC and System,
School of Microelectronics,Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xueqiang Zhang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Fei Wang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Wei Nie
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Xuewen Xia
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Guangshi Li
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering,
City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Qian Xu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| | - Li Ji
- State Key Laboratory of ASIC and System,
School of Microelectronics,Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,
Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Center for Hydrogen Metallurgy Technology,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Cheng Z, Pan H, Wu Z, Wübbenhorst M, Zhang Z. Cu-Mo Bimetal Modulated Multifunctional Carbon Nanofibers Promoting the Polysulfides Conversion for High-Sulfur-Loading Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45688-45696. [PMID: 36191265 DOI: 10.1021/acsami.2c13012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High sulfur loading is essential for achieving high energy density lithium-sulfur (Li-S) batteries. However, serious issues such as low sulfur utilization, poor cycling stability, and sluggish rate performance have been exposed when increasing the sulfur loading for freestanding cathodes. To solve these problems, the adsorption/catalytic ability of high-sulfur-loading cathode toward polysulfides must be improved. Herein, based on excellent properties of cationic MOFs, we proposed that Cu-Mo bimetallic nanoparticles embedded in multifunctional freestanding nitrogen-doped porous carbon nanofibers (Cu-Mo@NPCN) with efficient catalytic sites could be prepared by facile MoO42- anion exchange of cationic MOFs. And, the sulfur embedded in Cu-Mo@NPCN was directly used as self-supporting electrodes, enabling a high areal capacity, good rate performance, and decent cycling stability even under high sulfur loading. The freestanding Cu-Mo@NPCN/10.3S cathode achieves a high volumetric capacity of 1163 mA h cm-3 and a decent areal capacity of 9.3 mA h cm-2 at 0.2 C with a sulfur loading of 10.3 mg cm-2. This work provides an innovative approach for engineering a freestanding sulfur cathode and would forward the development of cationic MOF-derived bimetallic catalysts in various energy storage systems.
Collapse
Affiliation(s)
- Zhibin Cheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Hui Pan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Ziyuan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Michael Wübbenhorst
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
11
|
Dai H, Zhao Y, Zhang Z, Yang J, Liu S, Zhou J, Sun G. Ostwald ripening and sulfur escaping enabled chrysanthemum-like architectures composed of NiS2/NiS@C heterostructured petals with enhanced charge storage capacity and rate capability. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Hao H, Wang Y, Katyal N, Yang G, Dong H, Liu P, Hwang S, Mantha J, Henkelman G, Xu Y, Boscoboinik JA, Nanda J, Mitlin D. Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogen-Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium-Metal-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106572. [PMID: 35451133 DOI: 10.1002/adma.202106572] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This is the first report of molybdenum carbide-based electrocatalyst for sulfur-based sodium-metal batteries. MoC/Mo2 C is in situ grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide-porous carbon nanotubes host (MoC/Mo2 C@PCNT-S). Quasi-solid-state phase transformation to Na2 S is promoted in carbonate electrolyte, with in situ time-resolved Raman, X-ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2 C@PCNT-S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g-1 at 1 A g-1 , 818 mAh g-1 at 3 A g-1 , and 621 mAh g-1 at 5 A g-1 . The cells deliver superior cycling stability, retaining 650 mAh g-1 after 1000 cycles at 1.5 A g-1 , corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm-2 ) also show cycling stability. Density functional theory demonstrates that formation energy of Na2 Sx (1 ≤ x ≤ 4) on surface of MoC/Mo2 C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2 Sx (1 ≤ x ≤ 4) on MoC/Mo2 C surfaces results from charge transfer between the sulfur and Mo sites on carbides' surface.
Collapse
Affiliation(s)
- Hongchang Hao
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Yixian Wang
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guang Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Hui Dong
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Pengcheng Liu
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jagannath Mantha
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yixin Xu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Jagjit Nanda
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - David Mitlin
- Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| |
Collapse
|
13
|
Wang YP, Li ZS, Cao XR, Wu SQ, Zhu ZZ. Monolayer MSi 2P 4 (M = V, Nb, and Ta) as Highly Efficient Sulfur Host Materials for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27833-27841. [PMID: 35671171 DOI: 10.1021/acsami.2c04482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the high capacity and low cost of lithium-sulfur (Li-S) batteries, their commercialization is greatly blocked by multiple bottlenecks including the shuttle effect of lithium polysulfides (LiPSs), poor conductivity of sulfur, and sluggish reaction kinetics. Herein, we propose novel two-dimensional MSi2P4 (M = V, Nb, and Ta) monolayers as promising sulfur hosts to improve the Li-S battery performance. Our calculations show that MSi2P4 monolayers offer moderate binding strengths to the polysulfides, which are expected to effectively inhibit the LiPS shuttling and dissolution. Moreover, the conductive properties of the MSi2P4 systems are well maintained after LiPS adsorption, eliminating the insulating nature of sulfur species. Remarkably, MSi2P4 monolayers exhibit superior electrocatalytic activity for the sulfur reduction reaction and the Li2S decomposition reaction, which considerably lowers the energy barriers of LiPS conversions during discharge and charge, thus ensuring the fast redox kinetics and high sulfur utilization of Li-S batteries. This study pioneers the application of MSi2P4 monolayers as highly efficient sulfur host materials for Li-S batteries and affords insights for further development of advanced Li-S batteries.
Collapse
Affiliation(s)
- Y P Wang
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Z S Li
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - X R Cao
- Department of Physics, Xiamen University, Xiamen 361005, China
- Department of Physics, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - S Q Wu
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Z Z Zhu
- Department of Physics, Xiamen University, Xiamen 361005, China
- Department of Physics, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Dai H, Zhao X, Xu H, Yang J, Zhou J, Chen Q, Sun G. Design of Vertically Aligned Two-Dimensional Heterostructures of Rigid Ti 3C 2T X MXene and Pliable Vanadium Pentoxide for Efficient Lithium Ion Storage. ACS NANO 2022; 16:5556-5565. [PMID: 35426659 DOI: 10.1021/acsnano.1c10212] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing a thick electrode with appropriate mass loading is a prerequisite toward practical applications for lithium ion batteries (LIBs) yet suffers severe limitations of slow electron/ion transport, unavoidable volume expansion, and the involvement of inactive additives, which lead to compromised output capacity, poor rate perforamnce, and cycling instability. Herein, self-supported thick electrode composed of vertically aligned two-dimensional (2D) heterostructures (V-MXene/V2O5) of rigid Ti3C2TX MXene and pliable vanadium pentoxide are assembled via an ice crystallization-induced strategy. The vertical channels prompt fast electron/ion transport within the entire electrode; in the meantime, the 3D MXene scaffold provides mechanical robustness during lithiation/delithiation. The optimized electrodes with 1 and 5 mg cm-2 of V-MXene/V2O5 respectively deliver 472 and 300 mAh g-1 at a current density of 0.2 A g-1, rate performance with 380 and 222 mAh g-1 retained at 5 A g-1, and reliability over 800 charge/discharge cycles.
Collapse
Affiliation(s)
- Henghan Dai
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xi Zhao
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Hai Xu
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
- Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Oujiang Laboratory, Wenzhou 325000, China
| | - Gengzhi Sun
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. 2D material-based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Anal Bioanal Chem 2022; 414:2971-2989. [PMID: 35234980 DOI: 10.1007/s00216-022-03985-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023]
Abstract
The boom in nanotechnology brings new insights into the development of artificial enzymes (nanozymes) with ease of modification, lower manufacturing cost, and higher catalytic stability than natural enzymes. Among various nanomaterials, two-dimensional (2D) nanomaterials exhibit promising enzyme-like properties for a plethora of bioapplications owing to their unique physicochemical characteristics of tuneable composition, ultrathin thickness, and huge specific surface area. Herein, we review the recent advances in several 2D material-based nanozymes, such as carbonaceous nanosheets, metal-organic frameworks (MOFs), transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and transition metal oxides (TMOs), clarify the mechanisms of peroxidase (POD)-mimicking catalytic behaviors, and overview the potential bioapplications of 2D nanozymes.
Collapse
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Henghan Dai
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Sun
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Lumin Wang
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| | - Gengzhi Sun
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. .,Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
16
|
Dai H, Zhou J, Qin G, Sun G. Enhanced Jahn-Teller distortion boosts molybdenum trioxide's superior lithium ion storage capability. Dalton Trans 2021; 51:524-531. [PMID: 34874035 DOI: 10.1039/d1dt03580k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Upgrading the energy density and cycling life of current lithium ion batteries is urgently needed for developing advanced portable electronics and electric vehicles. Amorphous transition metal oxides (TMO) with inherent lattice disorders exhibit enormous potential as electrode materials owing to their high specific capacity, fast ion diffusion, and excellent cyclic stability. Yet, challenges remain in their controllable synthesis. In this study, the amorphous phase is induced into α-MoO3 crystal nanobelts at room temperature with the aid of Jahn-Teller effect via enhanced lattice distortion triggered by the accumulation of low-valent molybdenum centers. The optimized HI-MoO3-36 h exhibits high reversible capacities of 886.0 at 0.1 A g-1 and 491.1 mA h g-1 at 1.0 A g-1, respectively, along with outstanding stability retaining 83.4% initial capacity after 100 cycles at 0.1 A g-1. The crystal engineering strategy proposed in this work is believed to be a salutary reference towards the synthesis of high-performance TMO anodes for energy storage applications.
Collapse
Affiliation(s)
- Henghan Dai
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China. .,Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Gengzhi Sun
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China. .,Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|