1
|
Nan K, Wong K, Li D, Ying B, McRae JC, Feig VR, Wang S, Du N, Liang Y, Mao Q, Zhou E, Chen Y, Sang L, Yao K, Zhou J, Li J, Jenkins J, Ishida K, Kuosmanen J, Mohammed Madani WA, Hayward A, Ramadi KB, Yu X, Traverso G. An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut. Nat Commun 2024; 15:6749. [PMID: 39117667 PMCID: PMC11310346 DOI: 10.1038/s41467-024-51102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Ingestible electronics have the capacity to transform our ability to effectively diagnose and potentially treat a broad set of conditions. Current applications could be significantly enhanced by addressing poor electrode-tissue contact, lack of navigation, short dwell time, and limited battery life. Here we report the development of an ingestible, battery-free, and tissue-adhering robotic interface (IngRI) for non-invasive and chronic electrostimulation of the gut, which addresses challenges associated with contact, navigation, retention, and powering (C-N-R-P) faced by existing ingestibles. We show that near-field inductive coupling operating near 13.56 MHz was sufficient to power and modulate the IngRI to deliver therapeutically relevant electrostimulation, which can be further enhanced by a bio-inspired, hydrogel-enabled adhesive interface. In swine models, we demonstrated the electrical interaction of IngRI with the gastric mucosa by recording conductive signaling from the subcutaneous space. We further observed changes in plasma ghrelin levels, the "hunger hormone," while IngRI was activated in vivo, demonstrating its clinical potential in regulating appetite and treating other endocrine conditions. The results of this study suggest that concepts inspired by soft and wireless skin-interfacing electronic devices can be applied to ingestible electronics with potential clinical applications for evaluating and treating gastrointestinal conditions.
Collapse
Affiliation(s)
- Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kiwan Wong
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James C McRae
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivian R Feig
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubing Wang
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ningjie Du
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enjie Zhou
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonglin Chen
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Sang
- School of Microelectronics, Hefei University of Technology, Hefei, 230601, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Joshua Jenkins
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keiko Ishida
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wiam Abdalla Mohammed Madani
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alison Hayward
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khalil B Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China.
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, USA.
| |
Collapse
|
2
|
Park B, Jeong C, Ok J, Kim TI. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem Rev 2024; 124:6148-6197. [PMID: 38690686 DOI: 10.1021/acs.chemrev.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Tettey F, Parupelli SK, Desai S. A Review of Biomedical Devices: Classification, Regulatory Guidelines, Human Factors, Software as a Medical Device, and Cybersecurity. BIOMEDICAL MATERIALS & DEVICES 2024; 2:316-341. [DOI: 10.1007/s44174-023-00113-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/29/2023] [Indexed: 01/05/2025]
|
4
|
Demirhan A, Chianella I, Patil SB, Khalid A. A low-cost miniature immunosensor for haemoglobin as a device for the future detection of gastrointestinal bleeding. Analyst 2024; 149:1081-1089. [PMID: 38204338 DOI: 10.1039/d3an02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Gastrointestinal bleeding (GIB) is a serious medical condition, which requires immediate attention to establish the cause of the bleeding. Here, we present the development of a miniaturised electrochemical impedance spectroscopy (EIS) device for the detection of GIB. The device performs EIS measurements up to 100 kHz. Following the development of an immunosensor for haemoglobin (Hb) on screen printed electrodes, the EIS device was used for detecting Hb as an early indication of bleeding. The sensor was able to detect Hb in a redox solution in a linear range between 5 μg mL-1 and 60 μg mL-1, with a limit of detection of 13.3 μg mL-1. It was also possible to detect Hb in simulated intestinal fluid, without the need for a redox solution, within a range of 10 μg mL-1 to 10 mg mL-1 with a limit of detection of 2.31 mg mL-1. The miniature EIS device developed in this work is inexpensive, with an estimated cost per unit of £30, and has shown a comparable performance to existing commercial tools, demonstrating its potential to be used in the future as an ingestible sensor to detect GIB. All these measurements were carried out in a purpose built flow cell with supporting hardware electronics outside the cell. Integration of the hardware and the sensing electrodes was demonstrated in pill form. This pill after integration sampling fluidics has potential to be used in detecting gastrointestinal bleeding.
Collapse
Affiliation(s)
- Alper Demirhan
- Center for Electronic Warfare, Information and Cyber, Cranfield University, Defence Academy of the UK, Shrivenham SN6 8LA, UK.
| | - Iva Chianella
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK
| | - Samadhan B Patil
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute (YBRI), University of York, York YO10 5DD, UK
| | - Ata Khalid
- Center for Electronic Warfare, Information and Cyber, Cranfield University, Defence Academy of the UK, Shrivenham SN6 8LA, UK.
| |
Collapse
|
5
|
Backhaus J, Frickmann H, Hagen RM, Concha G, Molitor E, Hoerauf A, Kann S. Gastrointestinal Pathogens in Multi-Infected Individuals: A Cluster Analysis of Interaction. Microorganisms 2023; 11:2642. [PMID: 38004654 PMCID: PMC10673554 DOI: 10.3390/microorganisms11112642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Indigenous people live in remote areas of Colombia. Multiple infections with bacteria, protozoa and/or helminths are common, as well as colonization in various forms. This study focused on the question of whether and to what extent various pathogens interact with each other. Therefore, a mathematical approach was retrospectively applied to PCR-based data of 244 stool samples, collected in two datasets. A stable cluster solution of the pathogens assessed was determined, and a unique configuration between Blastocystis hominis/Campylobacter spp./Giardia lamblia forming cluster 1 and Dientaemoeba fragilis was verified. A pathogen density-dependent interplay appeared between the B. hominis/Campylobacter spp./G. lamblia cluster, D. fragilis and Ascaris lumbricoides. The applied mathematical approach demonstrated that co-infections with parasites of questionable pathological relevance such as B. hominis and D. fragilis can be of diagnostic relevance due to their ability to promote or repress other pathogens. With the increasing availability of highly sensitive multiplexed molecular diagnostic approaches even in resource-limited settings, where multiple colonization of infection events with enteric pathogens in parallel are common, the importance of interpreting whole pathogen patterns rather than just individual pathogen detection may become more and more relevant.
Collapse
Affiliation(s)
- Joy Backhaus
- Statistical Consulting, 97074 Wuerzburg, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Department of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
| | - Gustavo Concha
- Organization Wiwa Yugumaiun Bunkauanarrua Tayrona (OWYBT), Department Health Advocacy, Valledupar 2000001, Colombia;
| | - Ernst Molitor
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| | - Simone Kann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany;
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, 53127 Bonn, Germany; (E.M.); (A.H.)
| |
Collapse
|
6
|
Yi L, Hou B, Liu X. Optical Integration in Wearable, Implantable and Swallowable Healthcare Devices. ACS NANO 2023; 17:19491-19501. [PMID: 37807286 DOI: 10.1021/acsnano.3c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Recent advances in materials and semiconductor technologies have led to extensive research on optical integration in wearable, implantable, and swallowable health devices. These optical systems utilize the properties of light─intensity, wavelength, polarization, and phase─to monitor and potentially intervene in various biological events. The potential of these devices is greatly enhanced through the use of multifunctional optical materials, adaptable integration processes, advanced optical sensing principles, and optimized artificial intelligence algorithms. This synergy creates many possibilities for clinical applications. This Perspective discusses key opportunities, challenges, and future directions, particularly with respect to sensing modalities, multifunctionality, and the integration of miniaturized optoelectronic devices. We present fundamental insights and illustrative examples of such devices in wearable, implantable, and swallowable forms. The constant pursuit of innovation and the dedicated approach to critical challenges are poised to influence diverse fields.
Collapse
Affiliation(s)
- Luying Yi
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Bo Hou
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
7
|
Biamonte P, D’Amico F, Fasulo E, Barà R, Bernardi F, Allocca M, Zilli A, Danese S, Furfaro F. New Technologies in Digestive Endoscopy for Ulcerative Colitis Patients. Biomedicines 2023; 11:2139. [PMID: 37626636 PMCID: PMC10452412 DOI: 10.3390/biomedicines11082139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the colon and rectum. Endoscopy plays a crucial role in the diagnosis and management of UC. Recent advancements in endoscopic technology, including chromoendoscopy, confocal laser endomicroscopy, endocytoscopy and the use of artificial intelligence, have revolutionized the assessment and treatment of UC patients. These innovative techniques enable early detection of dysplasia and cancer, more precise characterization of disease extent and severity and more targeted biopsies, leading to improved diagnosis and disease monitoring. Furthermore, these advancements have significant implications for therapeutic decision making, empowering clinicians to carefully consider a range of treatment options, including pharmacological therapies, endoscopic interventions and surgical approaches. In this review, we provide an overview of the latest endoscopic technologies and their applications for diagnosing and monitoring UC. We also discuss their impact on treatment decision making, highlighting the potential benefits and limitations of each technique.
Collapse
Affiliation(s)
- Paolo Biamonte
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Ernesto Fasulo
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Rukaia Barà
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| |
Collapse
|
8
|
Sun H, Liu J, Wang Q. Magnetic Actuation Systems and Magnetic Robots for Gastrointestinal Examination and Treatment. CHINESE JOURNAL OF ELECTRICAL ENGINEERING 2023; 9:3-28. [DOI: 10.23919/cjee.2023.000009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Hongbo Sun
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| | - Jianhua Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| | - Qiuliang Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| |
Collapse
|
9
|
Leung T, Cavallero S, Mondot S, Parnot C, Yssaad H, Becherirat S, Guitard N, Thery H, Schernberg A, Breitwiller H, Chargari C, Francois S. Correlation Between Serum and Urine Biomarkers and the Intensity of Acute Radiation Cystitis in Patients Treated With Radiation Therapy for Localized Prostate Cancer: Protocol for the Radiotoxicity Bladder Biomarkers (RABBIO) Study. JMIR Res Protoc 2023; 12:e38362. [PMID: 36626198 PMCID: PMC9874987 DOI: 10.2196/38362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Despite improvements in radiation techniques, pelvic radiotherapy is responsible for acute and delayed bladder adverse events, defined as radiation cystitis. The initial symptoms of bladder injury secondary to pelvic irradiation are likely to occur during treatment or within 3 months of radiotherapy in approximately 50% of irradiated patients, and have a significant impact on their quality of life. The pathophysiology of radiation cystitis is not well understood, particularly because of the risk of complications associated with access to bladder tissue after irradiation, which limits our ability to study this process and develop treatments. OBJECTIVE It is an original study combining digital data collection to monitor patients' symptoms and biological markers during irradiation. The main objective of our study is to evaluate the correlation of biological biomarkers with the intensity of acute radiation cystitis and the quality of life of patients, assessed with the digital telemonitoring platform Cureety. METHODS Patients with intermediate-risk localized prostate cancer who are eligible for localized radiotherapy will be included. Inflammatory biomarkers will be analyzed in urine and blood samples before the start of radiotherapy and at weeks 4, 12, and 48 of irradiation, through quantitative methods such as a multiplex Luminex assay, flow cytometry, and enzyme-linked immunosorbent assay. We will also characterize the patients' gut and urine microbiota composition using 16S ribosomal RNA sequencing technology. Between sample collection visits, patients will complete various questionnaires related to radiation cystitis symptoms (using the International Prostate Symptom Score), adverse events, and quality of life (using the Functional Assessment of Cancer Therapy-Prostate questionnaire), using the Cureety digital remote monitoring platform. Upon receipt of the questionnaires, an algorithm will process the information and classify patients in accordance with the severity of symptoms and adverse events reported on the basis of Common Terminology Criteria for Adverse Events and International Prostate Symptom Score standards. This will allow us to correlate levels of urinary, blood, and fecal biomarkers with the severity of acute radiation cystitis symptoms and patient-reported quality of life. RESULTS The study started in March 2022. We estimate a recruitment period of approximately 18 months, and the final results are expected in 2024. CONCLUSIONS This prospective study is the first to explore the overexpression of inflammatory proteins in fluid biopsies from patients with symptoms of acute radiation cystitis. In addition, the 1-year follow-up after treatment will allow us to predict which patients are at risk of late radiation cystitis and to refer them for radioprotective treatment. The results of this study will allow us to develop strategies to limit radiation damage to the bladder and improve the quality of life of patients. TRIAL REGISTRATION ClinicalTrials.gov NCT05246774; https://clinicaltrials.gov/ct2/show/NCT05246774?term=NCT05246774. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/38362.
Collapse
Affiliation(s)
| | - Sophie Cavallero
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | - Stanislas Mondot
- Paris-Saclay university, Institut National de Recherche pour l'Agriculture, Jouy-en-Josas, France
| | | | | | | | - Nathalie Guitard
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | - Hélène Thery
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | | | | | - Cyrus Chargari
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | - Sabine Francois
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| |
Collapse
|