1
|
Jaskulak M, Zimowska M, Rolbiecka M, Zorena K. Understanding the role of endocrine disrupting chemicals as environmental obesogens in the obesity epidemic: A comprehensive overview of epidemiological studies between 2014 and 2024. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118401. [PMID: 40412253 DOI: 10.1016/j.ecoenv.2025.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
The prevalence of obesity has reached epidemic proportions worldwide, posing a significant public health concern due to its association with various chronic diseases and healthcare costs. In addition to traditional risk factors such as diet and physical activity, emerging evidence suggests that environmental pollutants, termed obesogens, may contribute to the obesity epidemic. Obesogens are endocrine-disrupting chemicals (EDCs) that can alter lipid homeostasis, promote adipogenesis, and disrupt metabolic regulation, leading to increased adiposity and obesity risk. This review explores available data from human studies published in the last decade, along with the mechanisms underlying obesogenic action, including their effects on adipocyte differentiation, adipose tissue development, and metabolic regulation. Overall, 75 studies were analyzed. Early-life exposure during critical developmental windows has been shown to increase obesity risk later in life, potentially through epigenetic modifications and transgenerational effects. Epidemiological studies provide evidence of associations between prenatal or early-life exposure and increased obesity risk in offspring. Additionally, study found more consistent associations between exposure to some EDCs (including phthalates, parabens, and bisphenols) and obesity or metabolic outcomes in children and women, while results for other chemicals (i.e. PFAS and organochlorine pesticides) were more heterogeneous, especially in adolescents and adults. Key findings indicate consistent associations between phthalate exposure and obesity in children, with mixed results for adults. Future research should focus on elucidating the full spectrum of obesogens, their mechanisms of action, and their implications for obesity risk across generations. This knowledge will inform preventive strategies and public health interventions aimed at addressing the obesity epidemic and its associated health burden.
Collapse
Affiliation(s)
- Marta Jaskulak
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland.
| | - Malwina Zimowska
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland
| | - Marta Rolbiecka
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland
| |
Collapse
|
2
|
Gu C, Yao T, Dong C, Chen Z, Wei W, Li X, Niu Q, Yan Y, Hu Y. Inflammation mediates the adverse effects of urinary phthalate exposure on metabolic disease risk: Results from NHANES 2005-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117577. [PMID: 39729938 DOI: 10.1016/j.ecoenv.2024.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Phthalates are a category of chemicals commonly utilized in various industrial applications and everyday products. Their associations with health issues remains a significant concern. Although some studies have suggested associations between phthalates and metabolic diseases, the current understanding of the associations is still limited, especially the lack of effects of mixed exposure. METHODS This cross-sectional study included information from 9217 participants in National Health and Nutrition Examination Survey (NHANES) from 2005 to 2016. Multivariate logistic regression was used to explore the associations between single phthalate exposure and obesity and its complications. Weighted quantile sum (WQS) regression and Quantile G-Computation (Qgcomp) models were used to further analyze the associations between mixed phthalate exposure and obesity and its complications. Mediated analysis was used to explore the mediating role of immune cells in the relationship between phthalate exposure and obesity and its complications. RESULTS MiBP, MCOP and MBzP were associated with an increased risk of obesity. MiBP and MCOP were associated with an increased risk of abdominal obesity. MCNP, MCOP, MEHHP, MEOHP and MECPP were positively associated with T2DM. Mixed phthalate exposure was positively associated with obesity and T2DM. Monocytes mediated the effects of MiBP, MEHP and MBzP on obesity, explaining 7.94 %, -2.32 % and 6.69% of the total effect, respectively. CONCLUSIONS This study revealed a significant association between mixed phthalate exposure and obesity and its complications, underlining the importance of considering the interactions of these compounds. The synergistic effects of multiple phthalates may exacerbate health risks.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Teng Yao
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Chenxian Dong
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zuhai Chen
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wanting Wei
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaoju Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| | - Yizhong Yan
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
3
|
Yang Y, Zhang C, Gao H. Potential mechanisms and modifications of dietary antioxidants on the associations between co-exposure to plastic additives and diabetes. Nutr Diabetes 2024; 14:72. [PMID: 39227562 PMCID: PMC11372220 DOI: 10.1038/s41387-024-00330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The association of plastic additive mixture exposure with diabetes and the modifying effects of dietary antioxidants are unclear. METHODS The data from the NHANES 2011-2018 were retrieved, and phthalates and organophosphate esters (OPEs) were selected as exposures. The coexposure effect was analyzed by the environmental risk score (ERS) and quantile g-computation. To mitigate any potential bias caused by using the internal weights, another version of ERS was constructed using the cross-validation approach. The level of dietary antioxidant intake was measured by the composite dietary antioxidant index (CDAI). The biological mechanism underlying the association was studied by the adverse outcome pathway (AOP) framework. RESULTS Fifteen chemicals (ten phthalates and five OPEs) were measured in 2824 adult participants. A higher ERS was significantly associated with an increased risk of diabetes (OR per 1-SD increment of ERS: 1.25, 95% CI: 1.13-1.39). This association apparently interacted with the CDAI level (ORlow: 1.83, 95% CI: 1.37-2.55; ORhigh: 1.28, 95% CI: 1.15-1.45; Pinteraction = 0.038). Moreover, quantile g-computation also revealed higher level of combined exposure was positively associated with diabetes (OR: 1.27, 95% CI: 1.05-2.87), and the addition of dietary antioxidants showed a null association (OR: 1.09, 95% CI: 0.85-2.34). The AOP study identified TCPP and TCEP as key chemicals that cause aberrant glucose metabolism and insulin signaling pathways and result in diabetes. CONCLUSIONS Coexposure to phthalates and OPEs is positively associated with diabetes, where an antioxidative diet plays a modifying role. Several potential mechanisms have been proposed by AOP framework.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prevention and Health Care, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Cheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Biostatistics, Anhui Provincial Cancer Institute, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
5
|
Brennan E, Butler AE, Nandakumar M, Thompson K, Sathyapalan T, Atkin SL. Relationship between endocrine disrupting chemicals (phthalate metabolites, triclosan and bisphenols) and vitamin D in female subjects: An exploratory pilot study. CHEMOSPHERE 2024; 349:140894. [PMID: 38070612 DOI: 10.1016/j.chemosphere.2023.140894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Evidence suggests that endocrine disrupting chemicals (EDCs), commonly used in plastics and personal care products, may be associated with reduced levels of vitamin D. Therefore, this study examined the relationship between phthalate metabolites, 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan; TCS) and bisphenols (BPs) with vitamin D3 (25(OH)D3) and active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and their relationship to calcium homeostasis. METHODS 57 female participants (age 31.8 ± 4.6 years; BMI 25.6 ± 3.7 kg/m2) were analyzed for urinary levels of phthalate metabolites, TCS and BPs, and serum levels of 25(OH)D3 and 1,25(OH)2D3, determined by isotope-dilution liquid chromatography tandem mass spectrometry. Serum calcium/calmodulin-dependent (CaM) associated proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan. RESULTS In the study cohort, 25(OH)D3 and 1,25(OH)2D3 levels were 22.9 ± 11.2 ng/mL and 0.05 ± 0.02 ng/mL, respectively: mono-3-carboxypropyl-phthalate (MCPP) correlated negatively with 25(OH)D3 (ρ = -0.53, p = 0.01). 28 of the 57 women recruited were 25(OH)D3 deficient, <20 ng/mL (50 nmol/L): in this group, mono-iso-butylphthalate (MiBP) and mono-butylphthalate (MBP) negatively correlated with 25(OH)D3; (ρ = -0.47, p = 0.049) and (ρ = -0.64, p = 0.005), respectively. EDCs did not correlate with 1,25(OH)2D3, measures of renal function or CaM proteins. CONCLUSION These putative data indicate that MCPP is related to 25(OH)D3, while MiBP and MBP were related to vitamin D deficiency; however, no correlations were observed with TCS and BPs. No phthalate metabolites correlated with 1,25(OH)2D3, CaM associated proteins or renal function, suggesting that effects occur earlier in the vitamin D pathway and not through modulation of cellular calcium flux. The observed correlations are surprisingly strong compared to other predictors of 25(OH)D3, and larger studies adjusting for potential confounders are warranted.
Collapse
Affiliation(s)
- Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| | - Alexandra E Butler
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| | - Manjula Nandakumar
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, QLD, Australia.
| | | | - Stephen L Atkin
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain.
| |
Collapse
|
6
|
Tao HW, Han WW, Liu YJ, Du HZ, Li ZN, Qin LQ, Chen GC, Chen JS. Association of phthalate exposure with all-cause mortality across renal function status: The U.S. National Health and Nutrition Examination Survey, 2005-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115881. [PMID: 38147775 DOI: 10.1016/j.ecoenv.2023.115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Wide phthalate exposure has been associated with both declines in renal function and an elevated risk of mortality. Whether phthalate-associated risk of premature mortality differs by renal function status remains unclear. METHODS This study included 9605 adults from the U.S. National Health and Nutrition Examination Survey. Urinary concentrations of 11 phthalate metabolites were assessed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. According to estimated glomerular filtration rate (eGFR), participants were grouped as having normal or modestly declined renal functions, or chronic kidney disease (CKD). Multivariable Cox regression models estimated all-cause mortality associated with phthalate exposure, overall and by renal function status. RESULTS Overall, Mono-n-butyl phthalate (MnBP), Mono-benzyl phthalate (MBzP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and Mono-(2-ethyl-5-carbox-ypentyl) phthalate (MECPP) were associated with an elevated risk of mortality (P-trend across tertile <0.05). Moreover, significant interactions were observed between eGFR and MEHHP, MEOHP, MECPP, DEHP in the whole population (P for interactions <0.05). After stratification by renal function, total Di (2-ethylhexyl) phthalate (DEHP) was additionally found to be associated with mortality risk in the CKD group (HR = 1.12; 95% CI: 1.01, 1.25). Co-exposure to the 11 phthalate metabolites was associated with a higher risk of all-cause mortality in the CKD (HR = 1.47; 95% CI: 1.18, 1.84) and modestly declined renal function group (HR = 1.25; 95% CI: 1.09, 1.44). CONCLUSIONS The associations between phthalate exposure and risk of all-cause mortality were primarily observed in CKD patients, reinforcing the need for monitoring phthalate exposure in this patient population.
Collapse
Affiliation(s)
- Hao-Wei Tao
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen-Wen Han
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu-Jie Liu
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong-Zhen Du
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China
| | - Zeng-Ning Li
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Nutrition and Health, Shijiazhuang, Hebei, China; Hospital of Stomatology of Hebei Medical University Shijiazhuang, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jing-Si Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Yöntem FD, Ayaz S, Bulut Ş, Aldoğan EH, Ahbab MA. Endoplasmic reticulum stress and pro-inflammatory responses induced by phthalate metabolites monoethylhexyl phthalate and monobutyl phthalate in 1.1B4 pancreatic beta cells. Toxicology 2024; 501:153695. [PMID: 38048874 DOI: 10.1016/j.tox.2023.153695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
In recent years, phthalates and their metabolites have been associated with metabolic diseases such as diabetes mellitus. To investigate the effects of phthalate metabolites exposure on insulin production and release, 1.1B4 pancreatic beta cells were treated with different concentrations (0.001-1000 µM) of monoethylhexyl phthalate (MEHP) and monobutyl phthalate (MBP). For such purpose, the 1.1B4 cells were evaluated for their viability, apoptosis rate, lysosomal membrane permeabilization (LMP), mitochondrial membrane potential (ΔΨm), oxidative stress, ER stress status, in addition to their secretory functions. MEHP, not MBP, exhibited a notable reduction in metabolic viability, particularly at higher concentrations (500 and 1000 µM) following 24-hour exposure. Similarly, both MEHP and MBP induced decreased metabolic viability at high concentrations after 48- and 72-hour exposure. Notably, neither MEHP nor MBP demonstrated a significant impact on apoptosis rates after 24-hour exposure, and MBP induced mild necrosis at 1000 µM concentration. Cell proliferation rates, indicated by PCNA expression, decreased with 10 and 1000 µM MEHP and 0.1 and 10 µM MBP exposures. LMP analysis revealed an increase in 1000 µM MBP group. Exposure to 0.001 µM of both MEHP and MBP significantly reduced cellular glutathione (GSH) levels. No significant change in intracellular reactive oxygen species (ROS) levels and ΔΨm was observed, but MBP-exposed cells exhibited elevated levels of lipid peroxidation. Functional assessments of pancreatic beta cells unveiled reduced insulin secretion at low glucose concentrations following exposure to both MEHP and MBP, with concurrent alterations in the expression levels of key proteins associated with beta cell function, including GLUT1, GCK, PDX1, and MafA. Moreover, MEHP and MBP exposures were associated with alterations in ER stress-related pathways, including JNK, GADD153, and NF-κB expression, as well as PPARα and PPARγ levels. In conclusion, this study provides comprehensive insights into the diverse impacts of MEHP and MBP on 1.1B4 pancreatic beta cells, emphasizing their potential role in modulating cell survival, metabolic function, and stress response pathways.
Collapse
Affiliation(s)
- Fulya Dal Yöntem
- Koç University, Faculty of Medicine, Department of Biophysics, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Sinem Ayaz
- Istanbul University, Cerrahpasa, Institute of Graduate Studies, Department of Clinical Microbiology, Istanbul, Turkey; Haliç University, Faculty of Medicine, Department of Clinical Microbiology, Istanbul, Turkey
| | - Şeyma Bulut
- Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey; Bezmialem Vakıf University, Institute of Health Sciences, Department of Biotechnology, Istanbul, Turkey
| | | | - Müfide Aydoğan Ahbab
- University of Health Sciences Türkiye, Hamidiye Vocational School of Health Services, Istanbul, Turkey.
| |
Collapse
|
8
|
Dagar M, Kumari P, Mirza AMW, Singh S, Ain NU, Munir Z, Javed T, Virk MFI, Javed S, Qizilbash FH, Kc A, Ekhator C, Bellegarde SB. The Hidden Threat: Endocrine Disruptors and Their Impact on Insulin Resistance. Cureus 2023; 15:e47282. [PMID: 38021644 PMCID: PMC10656111 DOI: 10.7759/cureus.47282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The association between Insulin resistance, a global health issue, and endocrine disruptors (EDCs), chemicals interfering with the endocrine system, has sparked concern in the scientific community. This article provides a comprehensive review of the existing literature regarding the intricate relationship between EDCs and insulin resistance. Phthalates, commonly found in consumer products, are well-established EDCs with documented effects on insulin-signaling pathways and metabolic processes. Epidemiological studies have connected phthalate exposure to an increased risk of type 2 diabetes mellitus (T2DM). Perfluoroalkyl substances (PFAS), persistent synthetic compounds, have shown inconsistent associations with T2DM in epidemiological research. However, studies suggest that PFAS may influence insulin resistance and overall metabolic health, with varying effects depending on specific PFAS molecules and study populations. Bisphenol A (BPA), found in plastics and resins, has emerged as a concern for glucose regulation and insulin resistance. Research has linked BPA exposure to T2DM, altered insulin release, obesity, and changes in the mass and function of insulin-secreting β-cells. Triclosan, an antibacterial agent in personal care products, exhibits gender-specific associations with T2DM risk. It may impact gut microbiota, thyroid hormones, obesity, and inflammation, raising concerns about its effects on metabolic health. Furthermore, environmental EDCs like polycyclic aromatic hydrocarbons, pesticides, and heavy metals have demonstrated associations with T2DM, insulin resistance, hypertension, and obesity. Occupational exposure to specific pesticides and heavy metals has been linked to metabolic abnormalities.
Collapse
Affiliation(s)
- Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Shivani Singh
- Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | - Noor U Ain
- Medicine, Mayo Hospital, Lahore, PAK
- Medicine, King Edward Medical University, Lahore, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | - Anil Kc
- Medicine and Surgery, Patan Academy of Health Sciences, Kathmandu, NPL
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, Coolidge, ATG
| |
Collapse
|
9
|
Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14:705-723. [PMID: 37383596 PMCID: PMC10294057 DOI: 10.4239/wjd.v14.i6.705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2023] Open
Abstract
The number of people diagnosed with diabetes continues to increase, especially among younger populations. Apart from genetic predisposition and lifestyle, there is increasing scientific and public concern that environmental agents may also contribute to diabetes. Food contamination by chemical substances that originate from packaging materials, or are the result of chemical reactions during food processing, is generally recognized as a worldwide problem with potential health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the focus of attention in recent years, due to the numerous adverse health effects associated with their exposure. This paper summarizes the available data about the association between phthalates, BPA and AA exposure and diabetes. Although their mechanism of action has not been fully clarified, in vitro, in vivo and epidemiological studies have made significant progress toward identifying the potential roles of phthalates, BPA and AA in diabetes development and progression. These chemicals interfere with multiple signaling pathways involved in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. Especially concerning are the effects of exposure during early stages and the gestational period. Well-designed prospective studies are needed in order to better establish prevention strategies against the harmful effects of these food contaminants.
Collapse
Affiliation(s)
- Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Vojvodina, University of Novi Sad, Novi Sad 21000, Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
10
|
Mariana M, Cairrao E. The Relationship between Phthalates and Diabetes: A Review. Metabolites 2023; 13:746. [PMID: 37367903 DOI: 10.3390/metabo13060746] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Since the beginning of their production, in the 1930s, phthalates have been widely used in the plastics industry to provide durability and elasticity to polymers that would otherwise be rigid, or as solvents in hygiene and cosmetic products. Taking into account their wide range of applications, it is easy to understand why their use has been increasing over the years, making them ubiquitous in the environment. This way, all living organisms are easily exposed to these compounds, which have already been classified as endocrine disruptor compounds (EDC), affecting hormone homeostasis. Along with this increase in phthalate-containing products, the incidence of several metabolic diseases has also been rising, namely diabetes. That said, and considering that factors such as obesity and genetics are not enough to explain this substantial increase, it has been proposed that the exposure to environmental contaminants may also be a risk factor for diabetes. Thus, the aim of this work is to review whether there is an association between the exposure to phthalates and the development of the several forms of diabetes mellitus, during pregnancy, childhood, and adulthood.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique s/n, 6200-506 Covilhã, Portugal
- FCS-UBI-Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
11
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates' exposure leads to an increasing concern on cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131680. [PMID: 37269565 DOI: 10.1016/j.jhazmat.2023.131680] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Being an essential component in the plastics industry, phthalates are ubiquitous in the environment and in everyday life. They are considered environmental contaminants that have been classified as endocrine-disrupting compounds. Despite di-2-ethylhexyl phthalate (DEHP) being the most common plasticizer and the most studied to date, there are many others that, in addition to being widely used in the plastic, are also applied in the medical and pharmaceutical industries and cosmetics. Due to their wide use, phthalates are easily absorbed by the human body where they can disrupt the endocrine system by binding to molecular targets and interfering with hormonal homeostasis. Thus, phthalates exposure has been implicated in the development of several diseases in different age groups. Collecting information from the most recent available literature, this review aims to relate human phthalates' exposure with the development of cardiovascular diseases throughout all ages. Overall, most of the studies presented demonstrated an association between phthalates and several cardiovascular diseases, either from prenatal or postnatal exposure, affecting foetuses, infants, children, young and older adults. However, the mechanisms underlying these effects remain poorly explored. Thus, considering the cardiovascular diseases incidence worldwide and the constant human exposure to phthalates, this topic should be extensively studied to understand the mechanisms involved.
Collapse
Affiliation(s)
- Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Miguel Castelo-Branco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Amadeu M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisa Cairrao
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; FCS-UBI - Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
13
|
Beyer A, Schorgg P, Karavasiloglou N, Sarwar S, Rohrmann S, Bärnighausen T, Cassidy A, Connolly L, Kühn T. Urinary phthalate concentrations and mortality risk: A population-based study. ENVIRONMENTAL RESEARCH 2022; 214:113927. [PMID: 35868575 DOI: 10.1016/j.envres.2022.113927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are widely used as plasticizers. Laboratory-based mechanistic and epidemiological studies suggest that phthalates are detrimental to human health. Here, we present prospective analyses on phthalate exposure and all-cause, as well as cause-specific, mortality from the National Health and Nutrition Examination Survey (NHANES), a population-based cohort. Between 1999 and 2018, urinary concentrations of 12 phthalate metabolites were measured by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry in spot urine samples of 10,881 adults aged 40-85 years, of which 2382 died over a median duration of 8.9 years after sample provision. Multivariable Cox regression analyses adjusted for a wide range of lifestyle factors and comorbidities showed that higher concentrations of mono-benzyl phthalate (MBzP) and Mono-n-butyl phthalate (MnBP) were associated with increased mortality. The hazard ratios for participants in the highest quartiles of MBzP and MnBP concentrations were at 1.27 [95% confidence interval: 1.08, 1.49; p linear trend = 0.002] and 1.35 [1.13, 1.62; p linear trend = 0.005). These findings reinforce the need for monitoring of phthalate exposure in relation to health outcomes.
Collapse
Affiliation(s)
- Anika Beyer
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; Medical Faculty of the University of Heidelberg, Heidelberg, Germany
| | - Paula Schorgg
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; Medical Faculty of the University of Heidelberg, Heidelberg, Germany
| | - Nena Karavasiloglou
- Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Switzerland
| | - Sneha Sarwar
- Institute of Nutrition and Food Science, University of Dhaka, Bangladesh
| | - Sabine Rohrmann
- Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Switzerland
| | - Till Bärnighausen
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; Harvard Center for Population and Development Studies, Cambridge, MA, USA; Africa Health Research Institute, Somkhele and Durban, South Africa
| | - Aedin Cassidy
- The Institute for Global Food Security, Queen's University Belfast, UK
| | - Lisa Connolly
- The Institute for Global Food Security, Queen's University Belfast, UK
| | - Tilman Kühn
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg, Germany; The Institute for Global Food Security, Queen's University Belfast, UK.
| |
Collapse
|
14
|
Li C, Jin Y, Xu S, He H. A Pilot Study: Nails as a Non-invasive Biospecimen of Human Exposure to Phthalate Esters. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:963-968. [PMID: 35039885 DOI: 10.1007/s00128-021-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Human biomonitoring provides a scientific approach that systematically reveals exposure to phthalates through all possible routes. In this pilot study, fingernail was chosen as a non-destructive biospecimen to assess human exposure to nine phthalates. Concentrations of total phthalates ranged from 17.8 to 176 µg/g (median: 65.4 µg/g). Di(2-ethylhexyl) phthalate, dibutyl phthalate (DBP), and di-isobutyl phthalate were the major compounds found in fingernails, accounting for 64.3%, 19.4%, and 12.9% of the total phthalates, respectively. No significant difference in phthalates concentrations was found among genders and age-related distribution (p > 0.05). The concentration of DBP was positively correlated with participant's body mass index (r = 0.83). Our results suggested that fingernail can be used as a non-invasive biospecimen for the biomonitoring of human exposure to phthalates. Further studies are needed to investigate the relationship between phthalates or their metabolites in fingernail and other biological samples, such as urine and blood.
Collapse
Affiliation(s)
- Chao Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yucheng Jin
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Shen Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Nguyen HD, Oh H, Jo WH, Hoang NHM, Kim MS. Mixtures modeling identifies heavy metals and pyrethroid insecticide metabolites associated with obesity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20379-20397. [PMID: 34738213 DOI: 10.1007/s11356-021-16936-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
We aim to examine the association between chemical mixtures and obesity. Blood and urinary levels of tween-six chemicals were measured in adults who participated in the KoNEHS. We identified the associations of chemicals with obesity using linear regression models. Weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) were conducted as secondary analyses. Of the 3,692 participants included in the analysis, 18.0% had obesity. In the logistic regression model, mercury (Hg), lead (Pb), and 3PBA levels were associated with obesity, and significant trends were observed for these chemical tertiles (p < 0.001). Hg, Pb, and 3PBA levels were also associated with BMI. The WQS index was significantly associated with both obesity (OR = 2.15, 95% CI: 2.11-2.20) and BMI (β = 0.39, 95% CI: 0.37-0.51). The qgcomp index also found a significant association between chemicals and both obesity (OR = 1.70, 95% CI: 1.56-1.85) and BMI (β = 0.40, 95% CI: 0.39-0.41). Hg, Pb, and 3PBA were the most heavily weighed chemicals in these models. In BKMR analysis, the overall effect of the mixture was significantly associated with obesity. Hg, Pb, and 3PBA showed positive trends and were observed as the most important factors associated with obesity. Given increasing exposure to chemicals, there is a need to investigate the associations between chemical exposures, either separately or together, and incident obesity risk factors in well-characterized cohorts of different populations, and to identify potential approaches to chemical exposure prevention.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Hojin Oh
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea.
| |
Collapse
|
16
|
Zhang H, Ben Y, Han Y, Zhang Y, Li Y, Chen X. Phthalate exposure and risk of diabetes mellitus: Implications from a systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 204:112109. [PMID: 34562484 DOI: 10.1016/j.envres.2021.112109] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiologic studies indicated that phthalate exposure might be associated with diabetes mellitus (DM). However, discrepancies existed. The link between phthalate exposure and risk of DM remained unclarified. METHODS We conducted a meta-analysis to explore the association between phthalate exposure and risk of DM. Effects of phthalate exposure on insulin resistance were also evaluated by systematic review. RESULTS Seven studies involving 12,139 participants were included in this meta-analysis. Our results showed that urinary concentrations of phthalates were positively associated with risk of DM. The pooled ORs were 3.11 (95% CI: 1.16-8.37) for monomethyl phthalate (MMP), 1.27 (95% CI: 1.03-1.56) for mono-n-butyl phthalate (MnBP), 2.59 (95% CI: 1.10-6.10) for mono-isobutyl phthalate (MiBP), 1.99 (95% CI: 1.52-2.61) for mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), 1.90 (95% CI: 1.40-2.57) for mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), 1.55 (95% CI: 1.10-2.20) for mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), and 2.39 (95% CI: 1.18-4.85) for mono-(3-carboxypropyl) phthalate (MCPP), respectively. Molar summation of di-2-ethylhexyl phthalate metabolites (∑DEHP) was also found to be correlated with risk of DM (OR 2.15, 95% CI: 1.48-3.13). No significant association with risk of DM was found regarding monoethyl phthalate (MEP), monobenzyl phthalate (MBzP) and mono(2-ethylhexyl) phthalate (MEHP). In literature review, most studies showed positive correlations of phthalates, especially ∑DEHP, with homeostasis model assessment of insulin resistance and fasting glucose. CONCLUSION Exposure to phthalates, especially MMP, MnBP, MiBP, MCPP and DEHP metabolites, might be a risk factor of DM. Our results should be interpreted with caution due to heterogeneous design of enrolled studies.
Collapse
Affiliation(s)
- Hong Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yujie Ben
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yonghe Han
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou, 350007, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinwang Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
17
|
Choi JY, Lee J, Huh DA, Moon KW. Urinary bisphenol concentrations and its association with metabolic disorders in the US and Korean populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118679. [PMID: 34915096 DOI: 10.1016/j.envpol.2021.118679] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a representative endocrine disrupting compound used in a vast array of consumer products, and are being frequently substituted by its analogues, bisphenol S (BPS) and bisphenol F (BPF). We aimed to examine the association between urinary bisphenol levels with obesity and lipid profiles in the general population to comprehensively evaluate its potential of metabolic disturbance. A representative sample of 1046 US adults from the National Health and Nutrition Examination Survey (2013-2016) and 3268 Korean adults from the Korean National Environmental Health Survey (2015-2017) was analyzed. We examined the exposure levels of bisphenols and determined their associations with obesity, high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels, and hypercholesterolemia prevalence through multiple linear, and binary/ordinal logistic regression models. In both populations, high BPA levels (lowest tertile vs. 2nd, 3rd tertiles) showed corresponding associations with lipid profile and obesity. BPA levels were associated with decreased HDL-C levels (Q3: β = -0.053, p = 0.08 (US); Q2: β = -0.030, p-0.03), increased TG levels (Q3: β = 0.121, p = 0.029 (US); Q3: β = 0.089, p = 0.021, and higher odds for obesity (Q3: OR = 1.58, 95% CI: 1.06, 2.35 (US); Q3: OR = 1.41, 95% CI: 1.11, 1.78). Higher BPS levels were positively associated with obesity status, especially in US men (Q2: OR = 1.84, 95% CI: 1.15, 2.96) and Korean women (Q3: OR = 1.27, 95% CI: 0.99, 1.64). A significant decrease in HDL-C (Q3: β = -0.088, p = 0.01) and elevated odds for obesity at higher BPF levels (Q3: OR = 1.60, 95% CI: 1.00, 2.56) was observed in US women. The findings of our study indicate that BPA and its analogues, BPS and BPF, are associated with lipid metabolism disorders in addition to obesity in adults. Given the increase in exposure to BPA alternatives, continuous biomonitoring, and further investigation of their health effects through prospective cohort studies are warranted.
Collapse
Affiliation(s)
- Ji Yoon Choi
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiyun Lee
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyong Whan Moon
- Department of Health and Safety Convergence Science, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Duc Nguyen H, Oh H, Kim MS. Association between exposure to chemical mixtures in relation to serum total IgE among adults 19-86 years old. Int Immunopharmacol 2021; 102:108428. [PMID: 34911030 DOI: 10.1016/j.intimp.2021.108428] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 02/02/2023]
Abstract
There is a scarcity of studies on the effects of mixed chemicals on total IgE. We aim to assess whether there is a link between chemical mixtures (blood and urine of 26 chemicals including lead, mercury, cadmium, t,t-muconic acid, benzylmercapturic acid , 1-hydroxypyrene, 2-naphthol, 2-hydroxyfluorene, 1-hydroxyphenanthrene, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-n-butyl phthalate, mono-benzyl phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-carboxyoctyl phthalate, mono-carboxy-isononly phthalate, mono (3-carboxypropyl) phthalate, bisphenol A, bisphenol F, bisphenol S, triclosan, methylparaben, ethylparaben, propylparaben, 3-phenoxybenzoic acid, and cotinine), and total IgE in 3,642 Korean adults aged ≥ 19. The effects of mixed chemical exposure on total IgE were identified using linear regression models, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR). The most relevant factors linked with IgE, according to the linear regression models, were blood or urine mercury and urine bisphenol A levels, with significant trends detected for these chemical tertiles (p < 0.01). The WQS index was significantly linked with ln2-transformed levels of serum total IgE (β = 0.30, 95 %CI 0.25-0.32). The qgcomp index also found a significant link between chemicals and ln2-transformed levels of serum total IgE (β = 0.52, 95 %CI 0.21-0.82), and elevated serum total IgE levels (OR = 2.55, 95 %CI 1.14-5.71). In BKMR analysis, the overall effect of the mixture was significantly associated with ln2-transformed levels of serum total IgE. The cutoff levels for exposure levels related to serum total IgE levels/elevated serum total IgE levels were reported. We discovered that whole-body exposure to 26 chemicals was associated with serum total IgE levels after assessing the findings of these four models. More research is needed in the future to gain a better understanding of the impact of mixed chemical exposure on allergic disorders and how to minimize chemical exposure, especially for people under the age of 18.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Hojin Oh
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea.
| |
Collapse
|
19
|
Yang EH, Nam DJ, Lee HC, Shin SS, Ryoo JH. Association between urinary trans,trans-muconic acid and diabetes: a cross-sectional analysis of data from Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017). Ann Occup Environ Med 2021; 33:e35. [PMID: 35096399 PMCID: PMC8770538 DOI: 10.35371/aoem.2021.33.e35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Benzene is a ubiquitous air pollutant that is well known to cause hematopoietic effects in humans including leukemia. Recently, several studies have discussed its non-carcinogenic effects such as diabetes. This study aimed to investigate the association between diabetes and urinary trans,trans-muconic acid (t,t-MA), one of benzene metabolite, using adult data from Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017). METHODS This study analyzed 3,777 adults (1,645 men and 2,132 women) from the KoNEHS cycle 3 (2015-2017). The distribution and fraction of each independent variable were presented separately according to the urinary benzene metabolite levels (t,t-MA quartiles) and diabetes to determine the general characteristics of the subjects. Odds ratios (ORs) were calculated using logistic regression after stratification by gender and smoking status to identify the association between urinary t,t-MA and diabetes. RESULTS Compared with the first quartile (reference), the risk of diabetes significantly increased above the 4th (1.834 [1.107-3.039]) quartile in men and above the 3rd (1.826 [1.095-3.044]) and 4th (2.243 [1.332-3.776]) quartiles in women after adjustment. Stratified analysis based on smoking revealed that the ORs for the 3rd (1.847 [1.146-2.976]) and 4th (1.862 [1.136-3.052]) quartiles in non-smokers and those for the 2nd (1.721 [1.046-2.832]), 3rd (1.797 [1.059-3.050]), and 4th (2.546 [1.509-4.293]) quartiles in smokers were significantly higher. CONCLUSIONS We confirmed that urinary t,t-MA is significantly associated with diabetes regardless of gender and smoking status. And further studies are necessary to access the clinical impacts of this findings.
Collapse
Affiliation(s)
- Eun Hye Yang
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Do Jin Nam
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hyo Choon Lee
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Soon Su Shin
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Jae-Hong Ryoo
- Department of Occupational & Environmental Medicine, Kyung Hee University Hospital, Seoul, Korea
- Department of Occupational & Environmental Medicine, College of Medicine Kyung Hee University, Seoul, Korea
| |
Collapse
|