1
|
Maeda R, Seki N, Uwamino Y, Wakui M, Nakagama Y, Kido Y, Sasai M, Taira S, Toriu N, Yamamoto M, Matsuura Y, Uchiyama J, Yamaguchi G, Hirakawa M, Kim YG, Mishima M, Yanagita M, Suematsu M, Sugiura Y. Amino acid catabolite markers for early prognostication of pneumonia in patients with COVID-19. Nat Commun 2023; 14:8469. [PMID: 38123556 PMCID: PMC10733290 DOI: 10.1038/s41467-023-44266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Effective early-stage markers for predicting which patients are at risk of developing SARS-CoV-2 infection have not been fully investigated. Here, we performed comprehensive serum metabolome analysis of a total of 83 patients from two cohorts to determine that the acceleration of amino acid catabolism within 5 days from disease onset correlated with future disease severity. Increased levels of de-aminated amino acid catabolites involved in the de novo nucleotide synthesis pathway were identified as early prognostic markers that correlated with the initial viral load. We further employed mice models of SARS-CoV2-MA10 and influenza infection to demonstrate that such de-amination of amino acids and de novo synthesis of nucleotides were associated with the abnormal proliferation of airway and vascular tissue cells in the lungs during the early stages of infection. Consequently, it can be concluded that lung parenchymal tissue remodeling in the early stages of respiratory viral infections induces systemic metabolic remodeling and that the associated key amino acid catabolites are valid predictors for excessive inflammatory response in later disease stages.
Collapse
Affiliation(s)
- Rae Maeda
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Natsumi Seki
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yu Nakagama
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutoshi Kido
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Miwa Sasai
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Masahiro Yamamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Genki Yamaguchi
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Makoto Hirakawa
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masayo Mishima
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- WPI-Bio2Q Research Center, Keio University, and Central Institute for Experimental Medicine and Life Science, Kanagawa, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Luu MN, Alhady STM, Nguyen Tran MD, Truong LV, Qarawi A, Venkatesh U, Tiwari R, Rocha ICN, Minh LHN, Ravikulan R, Dumre SP, Giang HTN, Pavlenko D, Ali FY, Le BTD, Karimzadeh S, Bhandari P, Shah J, Abdul Aziz JM, Huy NT. Evaluation of risk factors associated with SARS-CoV-2 transmission. Curr Med Res Opin 2022; 38:2021-2028. [PMID: 36106710 DOI: 10.1080/03007995.2022.2125258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) has caused high morbidity and mortality worldwide. Since there is not enough evidence of risk factors of SARS-CoV-2 transmission, this study aimed to evaluate them. METHODS This survey-based study was conducted across 66 countries from May to November 2020 among suspected and confirmed individuals with COVID-19. The stepwise AIC method was utilized to determine the optimal multivariable logistic regression to explore predictive factors of SARS-CoV-2 transmission. RESULTS Among 2372 respondents who participated in the study, there were 1172 valid responses. The profession of non-healthcare-worker (OR: 1.77, 95%CI: 1.04-3.00, p = .032), history of SARS-CoV or MERS-CoV infection (OR: 4.78, 95%CI: 2.34-9.63, p < .001), higher frequency of contact with colleagues (OR: 1.17, 95%CI: 1.01-1.37, p = .041), and habit of hugging when greeting (OR: 1.25, 95%CI: 1.00-1.56, p = .049) were associated with an increased risk of contracting COVID-19. Current smokers had a lower likelihood of having COVID-19 compared to former smokers (OR: 5.41, 95%CI: 1.93-17.49, p = .002) or non-smokers (OR: 3.69, 95%CI: 1.48-11.11, p = .01). CONCLUSIONS Our study suggests several risk factors for SARS-CoV-2 transmission including the profession of non-healthcare workers, history of other coronavirus infections, frequent close contact with colleagues, the habit of hugging when greeting, and smoking status.
Collapse
Affiliation(s)
- Mai Ngoc Luu
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Minh Duc Nguyen Tran
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Van Truong
- Ministry of the Public Security, Traditional Medicine Hospital, Hanoi, Vietnam
| | | | - U Venkatesh
- Department of Community Medicine & Family Medicine, All India Institute of Medical Sciences, Gorakhpur, India
| | - Ranjit Tiwari
- B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Le Huu Nhat Minh
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Dmytro Pavlenko
- Department of Ophthalmology, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Bao-Tran Do Le
- Faculty of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Sedighe Karimzadeh
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Online Research Club, Nagasaki University, Nagasaki, Japan
| | - Parshal Bhandari
- Department of Anesthesia and Intensive Care, PGMI/Lahore General Hospital, Lahore, Pakistan
| | - Jaffer Shah
- New York State Department of Health, New York, NY, USA
| | - Jeza Muhamad Abdul Aziz
- Baxshin research center, Baxshin Hospital, Sulaymaniyah, Kurdistan Region, Iraq
- Medical Laboratory Science, College of Health Sciences, University of Human Development, Sulaymaniyah, Kurdistan Region, Iraq
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Clinical Protocol for Early Treatment of COVID-19 in a real-world scenario: results of a series of patients. MEDICINA CLÍNICA PRÁCTICA 2022. [PMCID: PMC9492515 DOI: 10.1016/j.mcpsp.2022.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction Despite the advance in vaccination, the SARS-CoV-2 infection remains a challenge for the medical community. Outpatient and hospital therapy for COVID-19 are still improving. Our study aimed to report the results of a series of patients with COVID-19 who participated in an outpatient treatment protocol since the first clinical manifestation. Methods A case series report of individuals aged ≥ 18 years with clinical symptoms and a confirmed test for COVID-19 submitted to a treatment protocol. Patients were enrolled between May and September 2020 and followed for at least 15 days. The assessed clinical outcomes were the need for hospitalization, admission to the intensive care unit, orotracheal intubation, and death. Results We studied a 116 patients. The mean age was 48 ± 14 years. Females formed 53%. The main comorbidities wereobesity (15.5%), systemic arterial hypertension (10.3%) ,type II diabetes (6%), and lung diseases (6.0%). Temperature > 37.7 °C (51.7%), cough (55.2%), myalgia (37.1%), headache (37.9%), and fatigue (34.5%) were the most frequent signs and symptoms. According to different disease staging, the most administered drugs were: azithromycin, ivermectin, corticosteroid, antibiotics, and anticoagulants. There was no death, and hospitalization accounted for only 8.6% of the patients (1 in ICU); none required orotracheal intubation. The mean length of hospital stay was 5.8 days.
Collapse
|
4
|
Kutsuna S, Saito S, Takamatsu Y, Terada M, Togano T, Kinoshita N, Maeda K, Matsunaga A, Satake M, Matsubayashi K, Tsuno NH, Kojima M, Kuramitsu M, Tezuka K, Ikebe E, Okuma K, Hamaguchi I, Shimanishi Y, Hangaishi A, Ishizaka Y, Ohmagari N, Mitsuya H. Safety of convalescent plasma therapy for COVID-19 patients and analysis of viral kinetics: A single-center, open-label, single-arm, interventional study in Japan. GHM OPEN 2022; 2:38-43. [PMID: 40144708 PMCID: PMC11933975 DOI: 10.35772/ghmo.2022.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 03/28/2025]
Abstract
Convalescent plasma therapy is an important treatment method for patients with severe coronavirus disease (COVID-19). This study was conducted to confirm the safety of this therapy. We conducted an open-label clinical trial to administer convalescent plasma transfusion in a small Japanese cohort. Blood was collected from the recovered COVID-19 patients with high anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) spike IgG titer and high neutralizing activity and stored in the National Center for Global Health and Medicine Hospital until use. Convalescent plasma was administered to COVID-19 patients who required supplemental oxygen within 3 days of hospitalization. Convalescent plasma was administered to 11 patients with moderate to severe COVID-19. One patient experienced an adverse event, such as redness of the skin around the intravenous injection site within 3 hours after transfusion. Ten patients (91%) showed clinical improvement within 28 days, and one patient died of causes unrelated to plasma therapy. The data suggest that patients with COVID-19 examined in the present study received convalescent plasma without having any significant adverse effects. We plan to conduct a randomized controlled trial to examine the clinical effectiveness of convalescent plasma transfusion in a large Japanese COVID-19 cohort.
Collapse
Affiliation(s)
- Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Infection Control, Graduate School of Medicine Faculty of Medicine, Osaka University, Osaka, Japan
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Mari Terada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomiteru Togano
- Department of Hematology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Kinoshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenji Maeda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Akihiro Matsunaga
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | - Makiko Kojima
- Japanese Red Cross Central Blood Institute, Tokyo, Japan
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Emi Ikebe
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumiko Shimanishi
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akira Hangaishi
- Department of Hematology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
5
|
Sirijatuphat R, Manosuthi W, Niyomnaitham S, Owen A, Copeland KK, Charoenpong L, Rattanasompattikul M, Mahasirimongkol S, Wichukchinda N, Chokephaibulkit K. Early Treatment of Favipiravir in COVID-19 Patients Without Pneumonia: A Multicentre, Open-Labelled, Randomized Control Study. Emerg Microbes Infect 2022; 11:2197-2206. [PMID: 35997325 PMCID: PMC9518247 DOI: 10.1080/22221751.2022.2117092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated Favipiravir (FPV) efficacy in mild cases of COVID-19 without pneumonia and its effects towards viral clearance, clinical condition, and risk of COVID-19 pneumonia development. PCR-confirmed SARS-CoV-2-infected patients without pneumonia were enrolled (2:1) within 10 days of symptomatic onset into FPV and control arms. The former received 1800 mg FPV twice-daily (BID) on Day 1 and 800 mg BID 5-14 days thereafter until negative viral detection, while the latter received only supportive care. The primary endpoint was time to clinical improvement, defined by a National Early Warning Score (NEWS) of ≤1. 62 patients (41 female) comprised the FPV arm (median age: 32 years, median BMI: 22 kg/m²) and 31 patients (19 female) comprised the control arm (median age: 28 years, median BMI: 22 kg/m²). The median time to sustained clinical improvement, by NEWS, was 2 and 14 days for FPV and control arms respectively (adjusted hazard ratio (aHR) of 2.77, 95% CI 1.57-4.88, P < 0.001). The FPV arm also had significantly higher likelihoods of clinical improvement within 14 days after enrolment by NEWS (79% vs 32% respectively, P < 0.001), particularly female patients (aOR 6.35, 95% CI 1.49-27.07, P < 0.001). 8 (12.9%) and 7 (22.6%) patients in FPV and control arms developed mild pneumonia at a median (range) of 6.5 (1-13) and 7 (1-13) days after treatment, respectively (P = 0.316). All recovered well without complications. We can conclude that early treatment of FPV in symptomatic COVID-19 patients without pneumonia was associated with faster clinical improvement.Trial registration: Thai Clinical Trials Registry identifier: TCTR20200514001..
Collapse
Affiliation(s)
- Rujipas Sirijatuphat
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Weerawat Manosuthi
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Suvimol Niyomnaitham
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand.,Siriraj Institute of Clinical Research (SICRES), Mahidol University, Thailand
| | - Andrew Owen
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | | | - Lantharita Charoenpong
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Manoch Rattanasompattikul
- Medical Department, Golden Jubilee Medical Centre, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Surakameth Mahasirimongkol
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nuanjun Wichukchinda
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research (SICRES), Mahidol University, Thailand.,Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| |
Collapse
|
6
|
Isolation of human monoclonal antibodies with neutralizing activity to a broad spectrum of SARS-CoV-2 viruses including the Omicron variants. Antiviral Res 2022; 201:105297. [PMID: 35341809 PMCID: PMC8944172 DOI: 10.1016/j.antiviral.2022.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Monoclonal antibody therapy is a promising option for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and a cocktail of antibodies (REGN-COV) has been administered to infected patients with a favorable outcome. However, it is necessary to continue generating novel sets of monoclonal antibodies with neutralizing activity because viral variants can emerge that show resistance to the currently utilized antibodies. Here, we isolated a new cocktail of antibodies, EV053273 and EV053286, from peripheral blood mononuclear cells derived from convalescent patients infected with wild-type SARS-CoV-2. EV053273 exerted potent antiviral activity against the Wuhan wild-type virus as well as the Alpha and Delta variants in vitro, whereas the antiviral activity of EV053286 was moderate, but it had a wide-range of suppressive activity on the wild-type virus as well as the Alpha, Beta, Delta, Kappa, Omicron BA.1, and BA.2 variants. With the combined use of EV053273 and EV053286, we observed similar inhibitory effects on viral replication as with REGN-COV in vitro. We further assessed their activity in vivo by using a mouse model infected with a recently established viral strain with adopted infectious activity in mice. Independent experiments revealed that the combined use of EV053273 and EV053286 or the single use of each monoclonal antibody efficiently blocked infection in vivo. Together with data showing that these two monoclonal antibodies could neutralize REGN-COV escape variants and the Omicron variant, our findings suggest that the EV053273 and EV053286 monoclonal antibody cocktail is a novel clinically applicable therapeutic candidate for SARS-CoV-2 infection.
Collapse
|
7
|
The inflammatory biomarkers profile of hospitalized patients with COVID-19 and its association with patient's outcome: A single centered study. PLoS One 2021; 16:e0260537. [PMID: 34855832 PMCID: PMC8638892 DOI: 10.1371/journal.pone.0260537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Several reports highlighted the central role of inflammation in the pathogenesis of corona virus disease-19 (COVID-19) disease. Also, the hyper-inflammatory response that is triggered by severe acute respiratory syndrom-Covid-2 (SARS-CoV-2) infection was believed to play an essential role in disease severity and adverse clinical course. For that reason, the classical inflammatory markers were proposed as a possible indicator for COVID-19 severity. However, an extensive analysis of the predictive value of inflammatory biomarkers in large patients' cohorts is still limited and critically needed. In this study we investigated the predictive value of the classical inflammatory biomarkers in a patient cohort consists of 541 COVID-19 patients admitted to Al Kuwait Hospital, Dubai, UAE. A detailed analysis of the association between the essential inflammatory markers and clinical characteristics as well as clinical outcome of the patients were made. In addition, the correlation between those markers and a wide range of laboratory biomarkers and incidence of acute organs injury were investigated. Our results showed a significant elevation of many inflammatory markers including white cell count (WBC) count, neutrophils count, C-reactive protein (CRP), D-Dimer, ferritin, procalcitonin (PCT), and lactate dehydrogenase (LDH) levels in patients with more severe illness. Also, our results highlighted that higher levels of those markers can predict worse patient outcome including the need of ventilation, intensive care unit (ICU) admission, multiple organs dysfunction as well as death. In addition, Our results showed that the presence of lymphopenia and lower absolute lymphocyte count (ALC) at the time of admission were associated with severe to critical COVID-19 illness (P<0.0001), presence of acute respiratory distress syndrome (ARDS) (P<0.0001) and the need for ventilation and ICU admission., Moreover, our results showed a strong association between lower ALC count and multiple organs dysfunction and patient's death (P<0.0001). In conclusion, our results highlighted the possible use of classical inflammatory biomarkers at time of admission as a potential predictive marker for more severe clinical course in COVID-19 patients that might need more aggressive therapeutic approach including the need of ventilators and ICU admission. The presence of such predictive markers might improve patient's stratification and help in the direction of the available resources to patients in need, which in turn help in improving our response to the disease pandemic.
Collapse
|
8
|
Suzuki T, Asai Y, Ide S, Fukuda S, Tanaka A, Shimanishi Y, Takahashi K, Terada M, Sato L, Sato M, Inada M, Yamada G, Miyazato Y, Akiyama Y, Nomoto H, Nakamoto T, Nakamura K, Togano T, Morioka S, Kinoshita-Iwamoto N, Saito S, Kutsuna S, Ohmagari N. Factors associated with high antibody titer following coronavirus disease among 581 convalescent plasma donors: A single-center cross-sectional study in Japan. J Infect Chemother 2021; 28:206-210. [PMID: 34756573 PMCID: PMC8526427 DOI: 10.1016/j.jiac.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/23/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
Introduction The ability to predict which patients with a history of coronavirus disease (COVID-19) will exhibit a high antibody titer is necessary for more efficient screening of potential convalescent plasma donors. We aimed to identify factors associated with a high immunoglobulin G (IgG) titer in Japanese convalescent plasma donors after COVID-19. Methods This cross-sectional study included volunteers undergoing screening for convalescent plasma donation after COVID-19. Serum anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S-protein IgG antibodies were measured using a high-sensitivity chemiluminescence enzyme immunoassay. Results IgG antibodies were measured in 581 patients, 534 of whom had full information of selected independent variables. Multiple linear regression analysis revealed that increasing age (1.037 [1,025, 1.048]), days from symptom onset to sampling (0.997 [0.995, 0.998]), fever (1.664 [1.226, 2.259]), systemic corticosteroid use during SARS-CoV-2 infection (2.382 [1.576, 3.601]), and blood type AB (1.478 [1.032, 2.117]) predict antibody titer. Conclusion Older participants, those who experienced fever during infection, those treated with systemic corticosteroids during infection, those from whom samples were obtained earlier after symptom onset, and those with blood type AB are the best candidates for convalescent plasma donation. Therefore, these factors should be incorporated into the screening criteria for convalescent plasma donation after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yusuke Asai
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Ide
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Saori Fukuda
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akihito Tanaka
- Clinical Laboratory Department, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yumiko Shimanishi
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kozue Takahashi
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mari Terada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Lubna Sato
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuhiro Sato
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Inada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Gen Yamada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusuke Miyazato
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yutaro Akiyama
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hidetoshi Nomoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takato Nakamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiji Nakamura
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomiteru Togano
- Department of Hematology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichiro Morioka
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Noriko Kinoshita-Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Department of Infection Control, Graduate School of Medicine, Osaka University, Japan.
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan; AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Clinical course of alopecia after COVID-19. Int J Infect Dis 2021; 107:255-256. [PMID: 33962081 PMCID: PMC9613849 DOI: 10.1016/j.ijid.2021.04.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022] Open
|
10
|
Abstract
Coronavirus disease 2019 is an infection caused by severe acute respiratory syndrome coronavirus 2. Many symptomatic patients have influenza-like symptoms such as fever, respiratory symptoms (cough, sore throat, and nasal discharge), headache, and malaise. In some cases, oxygen is required within a week of onset, and in more severe cases, the patient is admitted to the intensive care unit after around 10 days of onset. In the COVIREGI-JP registry of hospitalized patients with coronavirus disease 2019, patients with renal dysfunction, liver disease, obesity, hyperlipidemia, hypertension, and diabetes tended to be more severely ill after hospitalization than patients without comorbidities. It has also become clear that symptoms can persist even after the acute phase has passed.
Collapse
Affiliation(s)
- Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Sugiyama M, Kinoshita N, Ide S, Nomoto H, Nakamoto T, Saito S, Ishikane M, Kutsuna S, Hayakawa K, Hashimoto M, Suzuki M, Izumi S, Hojo M, Tsuchiya K, Gatanaga H, Takasaki J, Usami M, Kano T, Yanai H, Nishida N, Kanto T, Sugiyama H, Ohmagari N, Mizokami M. Serum CCL17 level becomes a predictive marker to distinguish between mild/moderate and severe/critical disease in patients with COVID-19. Gene 2021; 766:145145. [PMID: 32941953 PMCID: PMC7489253 DOI: 10.1016/j.gene.2020.145145] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, a novel coronavirus-related illness, has spread worldwide. Patients with apparently mild/moderate symptoms can suddenly develop severe pneumonia. Therefore, almost all COVID-19 patients require hospitalization, which can reduce limited medical resources in addition to overwhelming medical facilities. To identify predictive markers for the development of severe pneumonia, a comprehensive analysis of serum chemokines and cytokines was conducted using serial serum samples from COVID-19 patients. The expression profiles were analyzed along the time axis. Serum samples of common diseases were enrolled from a BioBank to confirm the usefulness of predictive markers. Five factors, IFN-λ3, IL-6, IP-10, CXCL9, and CCL17, were identified as predicting the onset of severe/critical symptoms. The factors were classified into two categories. Category A included IFN-λ3, IL-6, IP-10, and CXCL9, and their values surged and decreased rapidly before the onset of severe pneumonia. Category B included CCL17, which provided complete separation between the mild/moderate and the severe/critical groups at an early phase of SARS-CoV-2 infection. The five markers provided a high predictive value (area under the receiver operating characteristic curve (AUROC): 0.9-1.0, p < 0.001). Low expression of CCL17 was specifically observed in pre-severe COVID-19 patients compared with other common diseases, and the predictive ability of CCL17 was confirmed in validation samples of COVID-19. The factors identified could be promising prognostic markers to distinguish between mild/moderate and severe/critical patients, enabling triage at an early phase of infection, thus avoiding overwhelming medical facilities.
Collapse
Affiliation(s)
- Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan.
| | - Noriko Kinoshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Satoshi Ide
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hidetoshi Nomoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takato Nakamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masahiro Ishikane
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masao Hashimoto
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Manabu Suzuki
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinyu Izumi
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masayuki Hojo
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Jin Takasaki
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Toshikazu Kano
- Department of Rheumatism and Collagen Diseases, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Hidekatsu Yanai
- Department of Internal Medicine, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Nao Nishida
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Haruhito Sugiyama
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| |
Collapse
|
12
|
Suzuki T, Hayakawa K, Ainai A, Iwata-Yoshikawa N, Sano K, Nagata N, Suzuki T, Wakimoto Y, Akiyama Y, Miyazato Y, Nakamura K, Ide S, Nomoto H, Nakamoto T, Ota M, Moriyama Y, Sugiki Y, Saito S, Morioka S, Ishikane M, Kinoshita N, Kutsuna S, Ohmagari N. Effectiveness of personal protective equipment in preventing severe acute respiratory syndrome coronavirus 2 infection among healthcare workers. J Infect Chemother 2020; 27:120-122. [PMID: 32988731 PMCID: PMC7480255 DOI: 10.1016/j.jiac.2020.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Information on the effectiveness of personal protective equipment (PPE) for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among healthcare workers (HCWs), especially among HCWs with frequent contact with patients with SARS-CoV-2, is limited. METHODS We conducted a prospective cohort study on 49 HCWs who worked in close contact with patients with SARS-CoV-2 infection. HCWs had blood samples taken every 2 weeks to test for SARS-CoV-2 antibodies using two different types of assay. RESULTS Forty-nine participants (31 nurses, 15 doctors, 3 other workers) were enrolled. In total, 112 blood samples are obtained from participants. The median work days in 2 weeks was 9 (interquartile range (IQR): 5-10) days. In a single work day, 30 of the 49 participants (61.5%) had contact with patients with suspected or conformed SARS-CoV-2 at least 8 times, and approximately 60% of participants had more than 10 min of contact with a single patient. The median self-reported compliance to PPE was 90% (IQR: 80-100%). Seven participants tested positive for SARS-CoV-2 antibody using enzyme-linked immunosorbent assay (ELISA); however, none were seropositive for SARS-CoV-2 neutralizing antibody, so the positive ELISA results were assumed to be false-positive. CONCLUSIONS The study provides evidence that appropriate PPE is sufficient to prevent infection amongHCWs. It is necessary to establish a system that provides a stable supply of PPE for HCWs to perform their duties.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuji Wakimoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yutaro Akiyama
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusuke Miyazato
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiji Nakamura
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Ide
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hidetoshi Nomoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takato Nakamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Ota
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuki Moriyama
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuko Sugiki
- Infection Control Team, National Center for Global Health and Medicine, Tokyo, Japan; Department of Nursing, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinichiro Morioka
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Ishikane
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Kinoshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Emerging and Re-emerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|