1
|
Tran DD, Lien NTK, Tung NV, Huu NC, Nguyen PT, Tien DA, Thu DTH, Huy BQ, Oanh TTK, Lien NTP, Hien NT, Lan NN, Thanh LT, Duc NM, Hoang NH. Three Novel Pathogenic Variants in Unrelated Vietnamese Patients with Cardiomyopathy. Diagnostics (Basel) 2024; 14:2709. [PMID: 39682617 DOI: 10.3390/diagnostics14232709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Cardiomyopathy, including dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), is a major cause of heart failure (HF) and a leading indication for heart transplantation. Of these patients, 20-50% have a genetic cause, so understanding the genetic basis of cardiomyopathy will provide knowledge about the pathogenesis of the disease for diagnosis, treatment, prevention, and genetic counseling for families. Methods: This study collected nine patients from different Vietnamese families for genetic analysis at The Cardiovascular Center, E Hospital, Hanoi, Vietnam. The patients were diagnosed with cardiomyopathy based on clinical symptoms. Whole-exome sequencing (WES) was performed in the Vietnamese patients to identify variants associated with cardiomyopathy, and the Sanger sequencing method was used to validate the variants in the patients' families. The influence of the variants was predicted using in silico analysis tools. Results: Nine heterozygous variants were detected as a cause of disease in the patients, three of which were novel variants, including c.284C>G, p.Pro95Arg in the MYL2 gene, c.2356A>G, p.Thr786Ala in the MYH7 gene, and c.1223T>A, p.Leu408Gln in the DES gene. Two other variants were pathogenic variants (c.602T>C, p.Ile201Thr in the MYH7 gene and c.1391G>C, p.Gly464Ala in the PTPN11 gene), and four were variants of uncertain significance in the ACTA2, ANK2, MYOZ2, and PRKAG2 genes. The results of the in silico prediction software showed that the identified variants were pathogenic and responsible for the patients' DCM. Conclusions: Our results contribute to the understanding of cardiomyopathy pathogenesis and provide a basis for diagnosis, treatment, prevention, and genetic counseling.
Collapse
Affiliation(s)
- Dac Dai Tran
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Cong Huu
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Phan Thao Nguyen
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Do Anh Tien
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Doan Thi Hoai Thu
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Bui Quang Huy
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | - Tran Thi Kim Oanh
- E Hospital, Ministry of Health, 89 Tran Cung Str., Cau Giay, Hanoi 100000, Vietnam
| | | | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Center for Gene and Protein Research, Hanoi Medical University, 1st Ton That Tung Str., Dong Da, Hanoi 100000, Vietnam
| | - Le Tat Thanh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Minh Duc
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- National Research Center for Medicinal Plant Germplasm & Breeding, National Institute of Medicinal Materials, Thanh Tri, Hanoi 100000, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|