1
|
Nunez DA, Guo RC. Acquired sensorineural hearing loss, oxidative stress, and microRNAs. Neural Regen Res 2025; 20:2513-2519. [PMID: 39314173 PMCID: PMC11801280 DOI: 10.4103/nrr.nrr-d-24-00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Hearing loss is the third leading cause of human disability. Age-related hearing loss, one type of acquired sensorineural hearing loss, is largely responsible for this escalating global health burden. Noise-induced, ototoxic, and idiopathic sudden sensorineural are other less common types of acquired hearing loss. The etiology of these conditions is complex and multi-factorial involving an interplay of genetic and environmental factors. Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss. Short non-coding RNA sequences known as microRNAs (miRNAs) have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response. Sensory hair cell death is a central histopathological finding in sensorineural hearing loss. As these cells do not regenerate in humans, it underlies the irreversibility of human age-related hearing loss. Ovid EMBASE, Ovid MEDLINE, Web of Science Core Collection, and ClinicalTrials.gov databases over the period August 1, 2018 to July 31, 2023 were searched with "hearing loss," "hypoxamiRs," "hypoxia," "microRNAs," "ischemia," and "oxidative stress" text words for English language primary study publications or registered clinical trials. Registered clinical trials known to the senior author were also assessed. A total of 222 studies were thus identified. After excluding duplicates, editorials, retractions, secondary research studies, and non-English language articles, 39 primary studies and clinical trials underwent full-text screening. This resulted in 11 animal, in vitro , and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review. MiRNAs miR-34a and miR-29b levels increase with age in mice. These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator-1-alpha (SIRT1/PGC-1α), SIRT1/p53, and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis. Furthermore, hypoxia and oxidative stress had a similar adverse apoptotic effect, which was inhibited by resveratrol and a myocardial inhibitor-associated transcript, a miR-29b competing endogenous mRNA. Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice - an effect that was corrected by inner ear stem cell-derived exosomes. There is ongoing work seeking to determine if these findings can be effectively translated to humans.
Collapse
Affiliation(s)
- Desmond A. Nunez
- Division of Otolaryngology – Head & Neck Surgery, Department of Surgery, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology – Head & Neck Surgery, Gordon & Leslie Diamond Health Care Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Ru C. Guo
- Faculty of Medicine – The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Lin X, Xu Y, Fan C, Zhang G. Novel insights into mechanisms and therapeutics for presbycusis. Heliyon 2025; 11:e41203. [PMID: 39807511 PMCID: PMC11728942 DOI: 10.1016/j.heliyon.2024.e41203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs). Although hearing aids and cochlear implantations (CIs) are established approaches for alleviating symptoms of presbycusis, there are currently no preventive or curative measures available. This article provides a comprehensive discussion on the research progress pertaining to the classification, molecular mechanism, genetic susceptibility, as well as the applications and prospects of diverse therapeutic interventions of presbycusis. Building upon these discussions, promising interventions like gene therapy and stem cell (SC) therapy are proposed for their potential value in restoring cochlear function; thus aiming to pave new avenues for prevention and cure of presbycusis.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Research and Development, Fujian CapitalBio Medical Laboratory, Fuzhou, 350100, China
| | - Yiyuan Xu
- Department of Research and Development, Fujian CapitalBio Medical Laboratory, Fuzhou, 350100, China
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Guanbin Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
- Department of Laboratory Medicine, Mianyang People's Hospital, Mianyang, 621000, China
| |
Collapse
|
3
|
Liu J, Peng H, Liu Y, Li C, Xie W. Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss. FRONT BIOSCI-LANDMRK 2025; 30:26179. [PMID: 39862101 DOI: 10.31083/fbl26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms. METHODS Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression. Flow cytometry and immunofluorescence assays were performed for the detection of apoptosis and autophagy, respectively. Hearing function and loss of outer hair cells (HCs) in ARHL rats were measured using the auditory brainstem response and cochlear silver nitrate staining, respectively. MSC proliferation was evaluated with the Cell Counting Kit-8 assay. RESULTS Growth differentiation factor 15 (GDF15) and sirtuin 1 (SIRT1) expression was significantly decreased in hydrogen peroxide (H2O2)-induced House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and the cochlea of ARHL rats. Elevated apoptosis and blocked autophagic flux were uncovered in H2O2-induced HEI-OC1 cells and ARHL rats. GDF15 overexpression inhibited apoptosis and restored autophagic flux in vitro and in vivo. Meanwhile, GDF15 positively regulated SIRT1 protein expression. MSCs-GDF6 not only upregulated GDF15 and SIRT1 expression but also suppressed apoptosis and restored autophagic flux to reduce loss of HCs and hearing loss in ARHL rats. CONCLUSIONS MSCs-GDF6 prevented loss of HCs to relieve ARHL by inhibiting apoptosis and restoring autophagic flux, likely in association with upregulation of the GDF15/SIRT1 axis.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Haisen Peng
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Yuehui Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Chunhua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Wen Xie
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Ji H, Shu Y, Li H. Unveiling a novel GJB2 dominant K22T mutation in a Chinese family with hearing loss. Acta Biochim Biophys Sin (Shanghai) 2024; 56:945-951. [PMID: 38733163 PMCID: PMC11292126 DOI: 10.3724/abbs.2024064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 05/13/2024] Open
Abstract
Hearing loss constitutes one of the most prevalent conditions within the field of otolaryngology. Recent investigations have revealed that mutations in deafness-associated genes, including point mutations and variations in DNA sequences, can cause hearing impairments. With the ethology of deafness remaining unclear for a substantial portion of the affected population, further screenings for pathogenic mutations are imperative to unveil the underlying mechanisms. On this study, by using next-generation sequencing, we examine 129 commonly implicated deafness-related genes in a Chinese family with hearing loss, revealing a novel heterozygous dominant mutation in the GJB2 gene (GJB2: c.65T>G: p. Lys22Thr). This mutation consistently occurs in affected family members but is not detected in unaffected individuals, strongly suggesting its causative role in hearing loss. Structural analysis indicates potential disruption to the Cx26 gap junction channel's hydrogen bond and electrostatic interactions, aligning with predictions from the PolyPhen and SIFT algorithms. In conclusion, our study provides conclusive evidence that the identified heterozygous GJB2 mutation (GJB2: c.65T>G: p. Lys22Thr), specifically the K22T alteration, is the primary determinant of the family's deafness. This contribution enhances our understanding of the interplay between common deafness-associated genes and hearing loss, offering valuable insights for diagnostic guidance and the formulation of therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Haiting Ji
- Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyENT Institute and OtorhinolaryngologyFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- Shanghai Engineering Research Centre of Cochlear ImplantShanghai200031China
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
| | - Yilai Shu
- Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyENT Institute and OtorhinolaryngologyFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- Shanghai Engineering Research Centre of Cochlear ImplantShanghai200031China
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Huawei Li
- Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyENT Institute and OtorhinolaryngologyFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- Shanghai Engineering Research Centre of Cochlear ImplantShanghai200031China
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
5
|
Li J, Zhang J, Jin X, Li S, Du Y, Zeng Y, Wang J, Chen W. Identification and functional prediction of long non-coding RNAs related to oxidative stress in the jejunum of piglets. Anim Biosci 2024; 37:193-202. [PMID: 37641831 PMCID: PMC10766486 DOI: 10.5713/ab.23.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Oxidative stress (OS) is a pathological process arising from the excessive production of free radicals in the body. It has the potential to alter animal gene expression and cause damage to the jejunum. However, there have been few reports of changes in the expression of long noncoding RNAs (lncRNAs) in the jejunum in piglets under OS. The purpose of this research was to examine how lncRNAs in piglet jejunum change under OS. METHODS The abdominal cavities of piglets were injected with diquat (DQ) to produce OS. Raw reads were downloaded from the SRA database. RNA-seq was utilized to study the expression of lncRNAs in piglets under OS. Additionally, six randomly selected lncRNAs were verified using quantitative real-time polymerase chain reaction (qRT‒PCR) to examine the mechanism of oxidative damage. RESULTS A total of 79 lncRNAs were differentially expressed (DE) in the treatment group compared to the negative control group. The target genes of DE lncRNAs were enriched in gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways. Chemical carcinogenesis-reactive oxygen species, the Foxo signaling pathway, colorectal cancer, and the AMPK signaling pathway were all linked to OS. CONCLUSION Our results demonstrated that DQ-induced OS causes differential expression of lncRNAs, laying the groundwork for future research into the processes involved in the jejunum's response to OS.
Collapse
Affiliation(s)
- Jinbao Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Jianmin Zhang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Xinlin Jin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Shiyin Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Yingbin Du
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Yongqing Zeng
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Jin Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Wei Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| |
Collapse
|
6
|
Zhu K, Wang T, Li S, Liu Z, Zhan Y, Zhang Q. NcRNA: key and potential in hearing loss. Front Neurosci 2024; 17:1333131. [PMID: 38298898 PMCID: PMC10827912 DOI: 10.3389/fnins.2023.1333131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Hearing loss has an extremely high prevalence worldwide and brings incredible economic and social burdens. Mechanisms such as epigenetics are profoundly involved in the initiation and progression of hearing loss and potentially yield definite strategies for hearing loss treatment. Non-coding genes occupy 97% of the human genome, and their transcripts, non-coding RNAs (ncRNAs), are widely participated in regulating various physiological and pathological situations. NcRNAs, mainly including micro-RNAs (miRNAs), long-stranded non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the regulation of cell metabolism and cell death by modulating gene expression and protein-protein interactions, thus impacting the occurrence and prognosis of hearing loss. This review provides a detailed overview of ncRNAs, especially miRNAs and lncRNAs, in the pathogenesis of hearing loss. We also discuss the shortcomings and issues that need to be addressed in the study of hearing loss ncRNAs in the hope of providing viable therapeutic strategies for the precise treatment of hearing loss.
Collapse
Affiliation(s)
- Keyu Zhu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Graziosi A, Sita G, Corrieri C, Angelini S, d’Emmanuele di Villa Bianca R, Mitidieri E, Sorrentino R, Hrelia P, Morroni F. Effects of Subtoxic Concentrations of Atrazine, Cypermethrin, and Vinclozolin on microRNA-Mediated PI3K/Akt/mTOR Signaling in SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms232314538. [PMID: 36498866 PMCID: PMC9737829 DOI: 10.3390/ijms232314538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are different natural and synthetic chemicals that may interfere with several mechanisms of the endocrine system producing adverse developmental, metabolic, reproductive, and neurological effects in both human beings and wildlife. Among pesticides, numerous chemicals have been identified as EDCs. MicroRNAs (miRNAs) can regulate gene expression, making fine adjustments in mRNA abundance and regulating proteostasis. We hypothesized that exposure to low doses of atrazine, cypermethrin, and vinclozolin may lead to effects on miRNA expression in SH-SY5Y cells. In particular, the exposure of SH-SY5Y cells to subtoxic concentrations of vinclozolin is able to downregulate miR-29b-3p expression leading to the increase in the related gene expression of ADAM12 and CDK6, which may promote a pro-oncogenic response through the activation of the PI3K/Akt/mTOR pathway and counteracting p53 activity. A better understanding of the molecular mechanisms of EDCs could provide important insight into their role in human disease.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Corrieri
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples—Federico II, via Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Study of Naples—Federico II, via Pansini 5, 80131 Naples, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-1798
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|