1
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
2
|
Liu K, Wang Z, Guo X, Luo J, Wu X, Wang F, Mei Y. The glutamine starvation-induced lncRNA FERRIN suppresses ferroptosis via the stabilization of SLC7A11 mRNA. Int J Biol Macromol 2025; 308:142388. [PMID: 40127798 DOI: 10.1016/j.ijbiomac.2025.142388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
As an essential nutrient for cancer cell survival, glutamine plays both promoting and inhibitory roles in ferroptosis; however, the underlying mechanisms remain obscure. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are crucial regulators of ferroptosis. Nevertheless, it remains unclear whether lncRNAs are involved in glutamine-regulated ferroptosis. In this study, we report that the lncRNA FERRIN is induced by the transcription factor ATF4 under glutamine starvation conditions. FERRIN functions as an inhibitor of ferroptosis by upregulating SLC7A11 expression. Mechanistically, FERRIN interacts with the RNA binding protein hnRNPK, facilitating its binding to SLC7A11 mRNA and leading to the stabilization of SLC7A11 mRNA. Consistent with its inhibitory role in ferroptosis, FERRIN promotes in vitro cancer cell proliferation and in vivo xenograft tumor growth through its modulation of SLC7A11. Collectively, these findings establish FERRIN as a critical negative regulator of ferroptosis and suggest that FERRIN may represent an important link between glutamine availability and ferroptosis.
Collapse
Affiliation(s)
- Kaiyue Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongyu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaorui Guo
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Luo
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianning Wu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Fang Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Yide Mei
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Wu J, Qin T, Han W, Zhang C, Zhang X, Huang Z, Wu Y, Xu Y, Xu K, Ye W. GLS1-mediated glutamine metabolism mitigates oxidative stress-induced matrix degradation, ferroptosis, and senescence in nucleus pulposus cells by modulating Fe 2+ homeostasis. Free Radic Biol Med 2025; 228:93-107. [PMID: 39710108 DOI: 10.1016/j.freeradbiomed.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/26/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Intervertebral disc degeneration (IDD) is intricately linked to the pathogenesis of low back pain (LBP). The balance of nucleus pulposus (NP) cell and intervertebral disc (IVD) integrity is significantly supported by amino acid metabolism within an avascular milieu. However, the specific metabolic demands during the progression of IDD are not fully understood. Our study revealed that GLS1, a key enzyme that regulates glutamine metabolism, is key for mitigating NP cell ferroptosis, senescence, and IDD progression. Our findings show that GLS1 overexpression modulates glutamine metabolism, reducing NP cell matrix degradation, ferroptosis, and senescence. Mechanistically, GLS1 interacts with NFS1 and regulates ferrous ion (Fe2+) homeostasis. GLS1-driven glutamine metabolism facilitates acetyl-CoA production, which is important for the histone acetylation of NFS1. Thus, restoring GLS1 activity through gene overexpression to maintain Fe2+ homeostasis is a promising approach for mitigating matrix degradation, ferroptosis, and senescence and for rejuvenating intervertebral discs. Collectively, our data suggest a model in which GLS1-mediated glutamine metabolism is associated with NP cell matrix degradation, ferroptosis, and senescence and that NFS1 can be targeted to maintain Fe2+ homeostasis and ultimately revitalize intervertebral discs.
Collapse
Affiliation(s)
- Jiajun Wu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510530, China; Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Tianyu Qin
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China; Department of Spine Surgery, Orthopaedic, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University. the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Weitao Han
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Xiaohe Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Zhengqi Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Yuliang Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China
| | - Yichun Xu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510530, China.
| | - Kang Xu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China.
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510289, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China.
| |
Collapse
|
4
|
Zheng S, Piao Y, Jung SN, Oh C, Lim MA, Nguyen Q, Shen S, Park SH, Cui S, Piao S, Kim YI, Kim JW, Won HR, Chang JW, Shan Y, Liu L, Koo BS. Gene Expression Alteration by Non-thermal Plasma-Activated Media Treatment in Radioresistant Head and Neck Squamous Cell Carcinoma. Clin Exp Otorhinolaryngol 2025; 18:73-87. [PMID: 39757757 PMCID: PMC11917201 DOI: 10.21053/ceo.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/05/2025] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) exhibits high recurrence rates, particularly in cases of radioresistant HNSCC (RR-HNSCC). Non-thermal plasma (NTP) therapy effectively suppresses the progression of HNSCC. However, the therapeutic mechanisms of NTP therapy in treating RR-HNSCC are not well understood. In this study, we explored the regulatory role of NTP in the RR-HNSCC signaling pathway and identified its signature genes. METHODS After constructing two RR-HNSCC cell lines, we prepared cell lysates from cells treated or not treated with NTP-activated media (NTPAM) and performed RNA sequencing to determine their mRNA expression profiles. Based on the RNA sequencing results, we identified differentially expressed genes (DEGs), followed by a bioinformatics analysis to identify candidate molecules potentially associated with NTPAM therapy for RR-HNSCC. RESULTS NTPAM reduced RR-HNSCC cell viability in vitro. RNA sequencing results indicated that NTPAM treatment activated the reactive oxygen species (ROS) pathway and induced ferroptosis in RR-HNSCC cell lines. Among the 1,924 genes correlated with radiation treatment, eight showed statistical significance in both the cell lines and The Cancer Genome Atlas (TCGA) cohort. Only five genes-ABCC3, DUSP16, PDGFB, RAF1, and THBS1-showed consistent results between the NTPAM data sequencing and TCGA data. LASSO regression analysis revealed that five genes were associated with cancer prognosis, with a hazard ratio of 2.26. In RR-HNSCC cells, NTPAM affected DUSP16, PDGFB, and THBS1 as activated markers within 6 hours, and this effect persisted for 12 hours. Furthermore, enrichment analysis indicated that these three DEGs were associated with the extracellular matrix, transforming growth factor-beta, phosphoinositide 3-kinase/protein kinase B, and mesenchymal-epithelial transition factor pathways. CONCLUSION NTPAM therapy exerts cytotoxic effects in RR-HNSCC cell lines by inducing specific ROS-mediated ferroptosis. DUSP16, PDGFB, and THBS1 were identified as crucial targets for reversing the radiation resistance induced by NTPAM therapy, providing insights into the mechanisms and clinical applications of NTPAM treatment in RR-HNSCC.
Collapse
Affiliation(s)
- Sicong Zheng
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yudan Piao
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Chan Oh
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - QuocKhanh Nguyen
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Shan Shen
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Se-Hee Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Shengzhe Cui
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Shuyu Piao
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Il Kim
- Department of Radiation Oncology, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Ji Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Ho-Ryun Won
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Jae Won Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yujuan Shan
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Lihua Liu
- Department of Nutrition, Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Bon Seok Koo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
5
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun Biol 2024; 7:1475. [PMID: 39521912 PMCID: PMC11550846 DOI: 10.1038/s42003-024-07180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a newly defined type of programmed cell death, ferroptosis is considered a potent weapon against tumors due to its distinct mechanism from other types of programmed cell death. Ferroptosis is triggered by the uncontrolled accumulation of hydroperoxyl polyunsaturated fatty acid-containing phospholipids, also called lipid peroxidation. The lipid peroxidation, generated through enzymatic and non-enzymatic mechanisms, drives changes in cell morphology and the destruction of membrane integrity. Here, we dissect the mechanisms of ferroptosis induced enzymatically or non-enzymatically, summarize the major metabolism pathways in modulating lipid peroxidation, and provide insights into the relationship between ferroptosis and tumor suppression. In this review, we discuss the recent advances of ferroptosis in tumor microenvironments and the prospect of potential therapeutic application.
Collapse
Affiliation(s)
- Xin Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ying Jin
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou Ninth People's Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Huang Z, Li M, Gu B, Chen J, Liu S, Tan P, Fu W. Ferroptosis-related LINC02535/has-miR-30c-5p/EIF2S1 axis as a novel prognostic biomarker involved in immune infiltration and progression of PDAC. Cell Signal 2024; 123:111338. [PMID: 39117252 DOI: 10.1016/j.cellsig.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND PDAC, also known as pancreatic ductal adenocarcinoma, is often diagnosed at a late stage due to nonspecific symptoms and a distinct lack of reliable biomarkers for timely diagnosis. Ferroptosis, a novel non-apoptotic cell death mode discovered in recent years, is strongly linked to the progression of PDAC and the evasion of the immune system. The objective of this study is to discover a novel ceRNA biomarker associated with ferroptosis and investigate its possible molecular mechanisms and therapeutic potential in PDAC. METHODS Based on the FerrDb and TCGA databases, the R survival package was used to screen for ferroptosis-related mRNAs associated with PDAC prognosis. The ferroptosis-related ceRNA network was identified by miRTarBase, miRNet, and starBase and visualized using Cytoscape. The LASSO regression analysis was used to build a risk model associated with ceRNA. Additionally, we investigated the correlation between the ceRNA axis and the infiltration of immune cells in PDAC by employing the ssGSEA algorithm. Spearman correlation analysis was used to investigate the association between the ceRNA network and the expression levels of immune checkpoint genes in PDAC. The prediction of potential medications for PAAD patients with high risk scores was conducted using the R package oncoPredict and the Genomics of Drug Sensitivity in Cancer (GDSC) repository. Expression levels of LINC02535 in clinical specimens and PDAC cell lines were determined using qRT-PCR. CCK-8, colony formation, EdU, wound healing, and transwell assays were performed to assess the impact of reducing LINC02535 on the growth, migration, and invasion of PDAC cell lines BxPC3 and PANC1. RESULTS We first discovered a new LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis and created a prognostic nomogram for predicting overall survival. Meanwhile, the risk scores of the LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis were linked to immune subtypes in PDAC. The high immune infiltration subtype exhibited elevated ceRNA risk scores and EIF2S1 expression. The correlation analysis revealed a positive correlation between ceRNA risk scores and four immune cells, namely Activated CD4 T cell, Memory B cell, Neutrophil, and Type 2 T helper cell, as well as four immune checkpoint genes, namely CD274, HAVCR2, PDCD1LG2, and TIGIT. The analysis of drug sensitivity indicated that individuals with a high-risk score may exhibit greater sensitivity to inhibitors targeting MEK1/2 compared to those with a low-risk score. In our validation experiments, it was observed that the expression of LINC02535 was increased in both PDAC tissues and cell lines. Additionally, the inhibition of LINC02535 resulted in decreased proliferation, migration, and invasion of PDAC cells. Rescue experiments demonstrated that LINC02535 promoted PDAC cell growth and metastasis by upregulating EIF2S1 expression. CONCLUSION To summarize, a novel ferroptosis-associated LINC02535/miR-30c-5p/EIF2S1 ceRNA network for PDAC patients was established. The analysis of this network's functionality offers potential insights for clinical decision-making and the advancement of precision medicine.
Collapse
MESH Headings
- Humans
- Ferroptosis/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Prognosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Gene Expression Regulation, Neoplastic
- Disease Progression
- Cell Line, Tumor
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Mo Li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Boyuan Gu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Peng Tan
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Jang W, Haucke V. ER remodeling via lipid metabolism. Trends Cell Biol 2024; 34:942-954. [PMID: 38395735 DOI: 10.1016/j.tcb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Unlike most other organelles found in multiple copies, the endoplasmic reticulum (ER) is a unique singular organelle within eukaryotic cells. Despite its continuous membrane structure, encompassing more than half of the cellular endomembrane system, the ER is subdivided into specialized sub-compartments, including morphological, membrane contact site (MCS), and de novo organelle biogenesis domains. In this review, we discuss recent emerging evidence indicating that, in response to nutrient stress, cells undergo a reorganization of these sub-compartmental ER domains through two main mechanisms: non-destructive remodeling of morphological ER domains via regulation of MCS and organelle hitchhiking, and destructive remodeling of specialized domains by ER-phagy. We further highlight and propose a critical role of membrane lipid metabolism in this ER remodeling during starvation.
Collapse
Affiliation(s)
- Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Zang X, Lei K, Wang J, Gong R, Gao C, Jing Z, Song J, Ren H. Targeting aberrant amino acid metabolism for pancreatic cancer therapy: Opportunities for nanoparticles. CHEMICAL ENGINEERING JOURNAL 2024; 498:155071. [DOI: 10.1016/j.cej.2024.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhang P, Wu D, Zha X, Su S, Zhang Y, Wei Y, Xia L, Fan S, Peng X. Glutamine promotes the proliferation of intestinal stem cells via inhibition of TP53-induced glycolysis and apoptosis regulator promoter methylation in burned mice. BURNS & TRAUMA 2024; 12:tkae045. [PMID: 39328365 PMCID: PMC11427069 DOI: 10.1093/burnst/tkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Indexed: 09/28/2024]
Abstract
Background Intestinal stem cells (ISCs) play a pivotal role in maintaining intestinal homeostasis and facilitating the restoration of intestinal mucosal barrier integrity. Glutamine (Gln) is a crucial energy substrate in the intestine, promoting the proliferation of ISCs and mitigating damage to the intestinal mucosal barrier after burn injury. However, the underlying mechanism has not yet been fully elucidated. The objective of this study was to explore the mechanism by which Gln facilitates the proliferation of ISCs. Methods A mouse burn model was established to investigate the impact of Gln on intestinal function. Subsequently, crypts were isolated, and changes in TP53-induced glycolysis and apoptosis regulator (TIGAR) expression were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, immunohistochemistry, and immunofluorescence. The effects of TIGAR on cell proliferation were validated through CCK-8, EdU, and clonogenicity assays. Furthermore, the effect of TIGAR on Yes-associated protein (YAP) nuclear translocation and ferroptosis was examined by western blotting and immunofluorescence staining. Finally, dot blot analysis and methylation-specific PCR were performed to evaluate the effect of Gln on TIGAR promoter methylation. Results The mRNA and protein levels of TIGAR decreased after burn injury, and supplementation with Gln increased the expression of TIGAR. TIGAR accelerates the nuclear translocation of YAP, thereby increasing the proliferation of ISCs. Concurrently, TIGAR promotes the synthesis of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione to suppress ferroptosis in ISCs. Subsequent investigations demonstrated that Gln inhibits TIGAR promoter methylation by increasing the expression of the demethylase ten-eleven translocation. This change increased TIGAR transcription, increased NADPH synthesis, and reduced oxidative stress, thereby facilitating the restoration of intestinal mucosal barrier integrity post-burn injury. Conclusions Our data confirmed the inhibitory effect of Gln on TIGAR promoter methylation, which facilitates YAP translocation into the nucleus and suppresses ferroptosis, ultimately promoting the proliferation of ISCs.
Collapse
Affiliation(s)
- Panyang Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yajuan Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
11
|
Xie Y, Li J, Tao Q, Wu Y, Liu Z, Chen Y, Zeng C. Identification of subclusters and prognostic genes based on GLS-associated molecular signature in ulcerative colitis. Sci Rep 2024; 14:13102. [PMID: 38849409 PMCID: PMC11161595 DOI: 10.1038/s41598-024-63891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease that affects the colon and rectum. The response to treatment varies among individuals with UC. Therefore, the aim of this study was to identify and explore potential biomarkers for different subtypes of UC and examine their association with immune cell infiltration. We obtained UC RNA sequencing data from the GEO database, which included the training set GSE92415 and the validation set GSE87473 and GSE72514. UC patients were classified based on GLS and its associated genes using consensus clustering analysis. We identified differentially expressed genes (DEGs) in different UC subtypes through a differential expression analysis of the training cohort. Machine learning algorithms, including Weighted Gene Co-Expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine Recursive Feature Elimination (SVM-RFE), were utilized to identify marker genes for UC. The CIBERSORT algorithm was used to determine the abundance of various immune cells in UC and their correlation with UC signature genes. Finally, we validated the expression of GLS through in vivo and ex vivo experiments. The expression of GLS was found to be elevated in patients with UC compared to normal patients. GLS and its related genes were able to classify UC patients into two subtypes, C1 and C2. The C1 subtype, as compared to the C2 subtype, showed a higher Mayo score and poorer treatment response. A total of 18 DEGs were identified in both subtypes, including 7 up-regulated and 11 down-regulated genes. Four UC signature genes (CWH43, HEPACAM2, IL24, and PCK1) were identified and their diagnostic value was validated in a separate cohort (AUC > 0.85). Furthermore, we found that UC signature biomarkers were linked to the immune cell infiltration. CWH43, HEPACAM2, IL24, and PCK1 may serve as potential biomarkers for diagnosing different subtypes of UC, which could contribute to the development of targeted molecular therapy and immunotherapy for UC.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing Tao
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yonghui Wu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zide Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Zhang Q, Zhou J, Zhai D, Jiang Q, Yang M, Zhou M. Gut microbiota regulates the ALK5/NOX1 axis by altering glutamine metabolism to inhibit ferroptosis of intrahepatic cholangiocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167152. [PMID: 38582012 DOI: 10.1016/j.bbadis.2024.167152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a kind of hepatobiliary tumor that is increasing in incidence and mortality. The gut microbiota plays a role in the onset and progression of cancer, however, the specific mechanism by which the gut microbiota acts on ICC remains unclear. In this study, feces and plasma from healthy controls and ICC patients were collected for 16S rRNA sequencing or metabolomics analysis. Gut microbiota analysis showed that gut microbiota abundance and biodiversity were altered in ICC patients compared with controls. Plasma metabolism analysis showed that the metabolite glutamine content of the ICC patient was significantly higher than that of the controls. KEGG pathway analysis showed that glutamine plays a vital role in ICC. In addition, the use of antibiotics in ICC animals further confirmed that changes in gut microbiota affect changes in glutamine. Further experiments showed that supplementation with glutamine inhibited ferroptosis and downregulated ALK5 and NOX1 expression in HuCCT1 cells. ALK5 overexpression or NOX1 overexpression increased NOX1, p53, PTGS2, ACSL4, LPCAT3, ROS, MDA and Fe2+ and decreased FTH1, SLC7A11 and GSH. Knockdown of NOX1 suppressed FIN56-induced ferroptosis. In vivo, supplementation with glutamine promoted tumor growth. Overexpression of ALK5 repressed tumor growth and induced ferroptosis in nude mice, which could be reversed by the addition of glutamine. Our results suggested that the gut microbiota altered glutamine metabolism to inhibit ferroptosis in ICC by regulating the ALK5/NOX1 axis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha 410008, China; International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jixiang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha 410008, China
| | - Denggao Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha 410008, China
| | - Qin Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
13
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
14
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
15
|
Wu Q, Jiang N, Wang Y, Song G, Li P, Fang Y, Xu L, Wang W, Xie M. Soluble epoxide hydrolase inhibitor (TPPU) alleviates ferroptosis by regulating CCL5 after intracerebral hemorrhage in mice. Biomed Pharmacother 2024; 172:116301. [PMID: 38377737 DOI: 10.1016/j.biopha.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) inhibition has been shown multiple beneficial effects against brain injuries of Intracerebral hemorrhage (ICH). However, the underlying mechanism of its neuroprotective effects after ICH has not been explained fully. Ferroptosis, a new form of iron-dependent programmed cell death, has been shown to be implicated in the secondary injuries after ICH. In this study, We examined whether sEH inhibition can alleviate brain injuries of ICH through inhibiting ferroptosis. Expression of several markers for ferroptosis was observed in the peri-hematomal brain tissues in mice after ICH. lip-1, a ferroptosis inhibitor, alleviated iron accumulation, lipid peroxidation and the secondary damages post-ICH in mice model. Intraperitoneal injection of 1-Trifluoromethoxyphenyl-3- (1-propionylpiperidin-4-yl)urea (TPPU), a highly selective sEH inhibitor, could inhibit ferroptosis and alleviate brain damages in ICH mice. Furthermore, RNA-sequencing was applied to explore the potential regulatory mechanism underlying the effects of TPPU in ferroptosis after ICH. C-C chemokine ligand 5 (CCL5) may be the key factor by which TPPU regulated ferroptosis after ICH since CCL5 antagonist could mimic the effects of TPPU and CCL5 reversed the inhibitive effect of TPPU on ferroptosis and the neuroprotective effects of TPPU on secondary damage after ICH. Taken together, these data indicate that ferroptosis is a key pathological feature of ICH and Soluble epoxide hydrolase inhibitor can exert neuroprotective effect by preventing ferroptosis after ICH.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Na Jiang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yao Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ping Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Li Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
16
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
17
|
Zhang Y. The essential role of glutamine metabolism in diabetic cardiomyopathy: A review. Medicine (Baltimore) 2023; 102:e36299. [PMID: 38013301 PMCID: PMC10681453 DOI: 10.1097/md.0000000000036299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition caused by diabetes mellitus and is the leading cause of diabetes mellitus-related mortality. The pathophysiology of DCM involves various processes, such as oxidative stress, inflammation, ferroptosis, and abnormal protein modification. New evidence indicates that dysfunction of glutamine (Gln) metabolism contributes to the pathogenesis of DCM by regulating these pathophysiological mechanisms. Gln is a conditionally essential amino acid in the human body, playing a vital role in maintaining cell function. Although the precise molecular mechanisms of Gln in DCM have yet to be fully elucidated, recent studies have shown that supplementing with Gln improves cardiac function in diabetic hearts. However, excessive Gln may worsen myocardial injury in DCM by generating a large amount of glutamates or increasing O-GlcNacylation. To highlight the potential therapeutic method targeting Gln metabolism and its downstream pathophysiological mechanisms, this article aims to review the regulatory function of Gln in the pathophysiological mechanisms of DCM.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Cardiovascular Medicine, Wuxi No.2 People’s Hospital, Wuxi City, People’s Republic of China
| |
Collapse
|
18
|
Ensink E, Jordan T, Medeiros HCD, Thurston G, Pardal A, Yu L, Lunt SY. Pyruvate Kinase Activity Regulates Cystine Starvation Induced Ferroptosis through Malic Enzyme 1 in Pancreatic Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557984. [PMID: 37745559 PMCID: PMC10516027 DOI: 10.1101/2023.09.15.557984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high mortality and limited efficacious therapeutic options. PDAC cells undergo metabolic alterations to survive within a nutrient-depleted tumor microenvironment. One critical metabolic shift in PDAC cells occurs through altered isoform expression of the glycolytic enzyme, pyruvate kinase (PK). Pancreatic cancer cells preferentially upregulate pyruvate kinase muscle isoform 2 isoform (PKM2). PKM2 expression reprograms many metabolic pathways, but little is known about its impact on cystine metabolism. Cystine metabolism is critical for supporting survival through its role in defense against ferroptosis, a non-apoptotic iron-dependent form of cell death characterized by unchecked lipid peroxidation. To improve our understanding of the role of PKM2 in cystine metabolism and ferroptosis in PDAC, we generated PKM2 knockout (KO) human PDAC cells. Fascinatingly, PKM2KO cells demonstrate a remarkable resistance to cystine starvation mediated ferroptosis. This resistance to ferroptosis is caused by decreased PK activity, rather than an isoform-specific effect. We further utilized stable isotope tracing to evaluate the impact of glucose and glutamine reprogramming in PKM2KO cells. PKM2KO cells depend on glutamine metabolism to support antioxidant defenses against lipid peroxidation, primarily by increased glutamine flux through the malate aspartate shuttle and utilization of ME1 to produce NADPH. Ferroptosis can be synergistically induced by the combination of PKM2 activation and inhibition of the cystine/glutamate antiporter in vitro. Proof-of-concept in vivo experiments demonstrate the efficacy of this mechanism as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tessa Jordan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Galloway Thurston
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Anmol Pardal
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Lei Yu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|