1
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Jorgensen AM, Mahajan N, Atala A, Murphy SV. Advances in Skin Tissue Engineering and Regenerative Medicine. J Burn Care Res 2023; 44:S33-S41. [PMID: 36567474 PMCID: PMC9790899 DOI: 10.1093/jbcr/irac126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are an estimated 500,000 patients treated with full-thickness wounds in the United States every year. Fire-related burn injuries are among the most common and devastating types of wounds that require advanced clinical treatment. Autologous split-thickness skin grafting is the clinical gold standard for the treatment of large burn wounds. However, skin grafting has several limitations, particularly in large burn wounds, where there may be a limited area of non-wounded skin to use for grafting. Non-cellular dermal substitutes have been developed but have their own challenges; they are expensive to produce, may require immunosuppression depending on design and allogenic cell inclusion. There is a need for more advanced treatments for devastating burns and wounds. This manuscript provides a brief overview of some recent advances in wound care, including the use of advanced biomaterials, cell-based therapies for wound healing, biological skin substitutes, biological scaffolds, spray on skin and skin bioprinting. Finally, we provide insight into the future of wound care and technological areas that need to be addressed to support the development and incorporation of these technologies.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Naresh Mahajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
3
|
Berry-Kilgour C, Cabral J, Wise L. Advancements in the Delivery of Growth Factors and Cytokines for the Treatment of Cutaneous Wound Indications. Adv Wound Care (New Rochelle) 2021; 10:596-622. [PMID: 33086946 PMCID: PMC8392095 DOI: 10.1089/wound.2020.1183] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Significance: Wound healing involves the phasic production of growth factors (GFs) and cytokines to progress an acute wound to a resolved scar. Dysregulation of these proteins contributes to both wound chronicity and excessive scarring. Direct supplementation of GFs and cytokines for treatment of healing and scarring complications has, however, been disappointing. Failings likely relate to an inability to deliver recombinant proteins at physiologically relevant levels to an environment conducive to healing. Recent Advances: Inspired by the extracellular matrix, natural biomaterials have been developed that resemble human skin, and are capable of delivering bioactives. Hybrid biomaterials made using multiple polymers, fabrication methods, and proteins are proving efficacious in animal models of acute and impaired wound healing. Critical Issues: For clinical translation, these delivery systems must be tailored for specific wound indications and the correct phase of healing. GFs and cytokines must be delivered in a controlled manner that will target specific healing or scarring impairments. Preclinical assessment in clinically relevant animal models of impaired or excessive healing is critical. Future Directions: Clinical success will likely depend on the GF or cytokine selected, their compatibility with the chosen biomaterial(s), degradation rate of the fabricated system, and the degree of control over release kinetics. Further testing is essential to assess which wound indications are most suited to specific delivery systems and to prove whether they provide superior efficacy over direct protein therapies.
Collapse
Affiliation(s)
- Caitlin Berry-Kilgour
- Department of Pharmacology and Toxicology, School of Biomedical Sciences; Dunedin, New Zealand
| | - Jaydee Cabral
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences; Dunedin, New Zealand
| |
Collapse
|
4
|
Motamedi S, Esfandpour A, Babajani A, Jamshidi E, Bahrami S, Niknejad H. The Current Challenges on Spray-Based Cell Delivery to the Skin Wounds. Tissue Eng Part C Methods 2021; 27:543-558. [PMID: 34541897 DOI: 10.1089/ten.tec.2021.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell delivery through spray instruments is a promising and effective method in tissue engineering and regenerative medicine. It is used for treating different acute and chronic wounds, including burns with different etiologies, chronic diabetic or venous wounds, postcancer surgery, and hypopigmentation disorders. Cell spray can decrease the needed donor site area compared with conventional autologous skin grafting. Keratinocytes, fibroblasts, melanocytes, and mesenchymal stem cells are promising cell sources for cell spray procedures. Different spray instruments are designed and utilized to deliver the cells to the intended skin area. In an efficient spray instrument, cell viability and wound coverage are two determining parameters influenced by various physical and biological factors such as air pressure, spraying distance, viscosity of suspension, stiffness of the wound surface, and velocity of impact. Besides, to improve cell delivery by spray instruments, some matrices and growth factors can be added to cell suspensions. This review focuses on the different types of cells and spray instruments used in cell delivery procedures. It also discusses physical and biological parameters associated with cell viability and wound coverage in spray instruments. Moreover, the recent advances in codelivery of cells with biological glues and growth factors, as well as clinical translation of cell spraying, have been reviewed. Impact statement Skin wounds are a group of prevalent injuries that can lead to life-threatening complexities. As a focus of interest, stem cell therapy and spray-based cell delivery have effectively decreased associated morbidity and mortality. This review summarizes a broad scope of recent evidence related to spray-based cell therapy, instruments, and approaches adopted to make the process more efficient in treating skin wounds. An overview including utilized cell types, clinical cases, and current challenges is also provided.
Collapse
Affiliation(s)
- Shiva Motamedi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Esfandpour
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Catanzano O, Quaglia F, Boateng JS. Wound dressings as growth factor delivery platforms for chronic wound healing. Expert Opin Drug Deliv 2021; 18:737-759. [PMID: 33338386 DOI: 10.1080/17425247.2021.1867096] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Years of tissue engineering research have clearly demonstrated the potential of integrating growth factors (GFs) into scaffolds for tissue regeneration, a concept that has recently been applied to wound dressings. The old concept of wound dressings that only take a passive role in wound healing has now been overtaken, and advanced dressings which can take an active part in wound healing, are of current research interest.Areas covered: In this review we will focus on the recent strategies for the delivery of GFs to wound sites with an emphasis on the different approaches used to achieve fine tuning of spatial and temporal concentrations to achieve therapeutic efficacy.Expert opinion: The use of GFs to accelerate wound healing and reduce scar formation is now considered a feasible therapeutic approach in patients with a high risk of infections and complications. The integration of micro - and nanotechnologies into wound dressings could be the key to overcome the inherent instability of GFs and offer adequate control over the release rate. Many investigations have led to encouraging outcomes in various in vitro and in vivo wound models, and it is expected that some of these technologies will satisfy clinical needs and will enter commercialization.
Collapse
Affiliation(s)
- Ovidio Catanzano
- Institute for Polymers Composites and Biomaterials (IPCB) - CNR, Pozzuoli, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Joshua S Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Central Avenue, Chatham Maritime, Kent, UK
| |
Collapse
|
6
|
Tatara AM, Kontoyiannis DP, Mikos AG. Drug delivery and tissue engineering to promote wound healing in the immunocompromised host: Current challenges and future directions. Adv Drug Deliv Rev 2018; 129:319-329. [PMID: 29221962 PMCID: PMC5988908 DOI: 10.1016/j.addr.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/23/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
As regenerative medicine matures as a field, more promising technologies are being translated from the benchtop to the clinic. However, many of these strategies are designed with otherwise healthy hosts in mind and validated in animal models without other co-morbidities. In reality, many of the patient populations benefiting from drug delivery and tissue engineering-based devices to enhance wound healing also have significant underlying immunodeficiency. Specifically, patients suffering from diabetes, malignancy, human immunodeficiency virus, post-organ transplantation, and other compromised states have significant pleotropic immune defects that affect wound healing. In this work, we review the role of different immune cells in the regenerative process, highlight the effect of several common immunocompromised states on wound healing, and discuss different drug delivery strategies for overcoming immunodeficiencies.
Collapse
Affiliation(s)
- Alexander M Tatara
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, United States; Department of Bioengineering, Rice University, Houston, TX, United States.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
7
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
8
|
Ter Horst B, Chouhan G, Moiemen NS, Grover LM. Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Rev 2018; 123:18-32. [PMID: 28668483 PMCID: PMC5764224 DOI: 10.1016/j.addr.2017.06.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
This review gives an updated overview on keratinocyte transplantation in burn wounds concentrating on application methods and future therapeutic cell delivery options with a special interest in hydrogels and spray devices for cell delivery. To achieve faster re-epithelialisation of burn wounds, the original autologous keratinocyte culture and transplantation technique was introduced over 3 decades ago. Application types of keratinocytes transplantation have improved from cell sheets to single-cell solutions delivered with a spray system. However, further enhancement of cell culture, cell viability and function in vivo, cell carrier and cell delivery systems remain themes of interest. Hydrogels such as chitosan, alginate, fibrin and collagen are frequently used in burn wound care and have advantageous characteristics as cell carriers. Future approaches of keratinocyte transplantation involve spray devices, but optimisation of application technique and carrier type is necessary.
Collapse
Affiliation(s)
- Britt Ter Horst
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom; University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom
| | - Gurpreet Chouhan
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Naiem S Moiemen
- University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
9
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
10
|
SanMartin A, Borlongan CV. Article Commentary: Cell Transplantation: Toward Cell Therapy. Cell Transplant 2017; 15:665-73. [PMID: 17176618 DOI: 10.3727/000000006783981666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Agneta SanMartin
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
11
|
Seo J, Park SJ, Choi JJ, Kang SW, Lim JJ, Lee HJ, Kim JS, Yang HM, Kim SJ, Kim EY, Park SP, Moon SH, Chung HM. Examination of endothelial cell-induced epidermal regeneration in a mice-based chimney wound model. Wound Repair Regen 2016; 24:686-94. [DOI: 10.1111/wrr.12448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph Seo
- Department of Stem Cell Biology, School of Medicine; Konkuk University; 120 Neungdong-Ro, Gwangjin-Gu Seoul 143-701 Korea
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine; Konkuk University; 120 Neungdong-Ro, Gwangjin-Gu Seoul 143-701 Korea
| | - Jong-Jin Choi
- Department of Stem Cell Biology, School of Medicine; Konkuk University; 120 Neungdong-Ro, Gwangjin-Gu Seoul 143-701 Korea
| | - Sun-Woong Kang
- Human and Environmental Toxicology Program; University of Science and Technology; Daejeon Korea
| | - Joa-Jin Lim
- Stem Cell Research Laboratory; CHA Stem Cell Institute, CHA University; 605-21, Yoeksamsam 1-Dong, Gangnam-Gu Seoul 135-907 Korea
| | - Hye-Jin Lee
- Stem Cell Research Laboratory; CHA Stem Cell Institute, CHA University; 605-21, Yoeksamsam 1-Dong, Gangnam-Gu Seoul 135-907 Korea
| | - Jong-Soo Kim
- Department of Stem Cell Biology, School of Medicine; Konkuk University; 120 Neungdong-Ro, Gwangjin-Gu Seoul 143-701 Korea
| | - Heung-Mo Yang
- Department of Surgery, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul 135-710 Korea
| | - Sung-Joo Kim
- Department of Surgery, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul 135-710 Korea
| | - Eun-Young Kim
- Mirae Cell Bio Inc./Jeju National University Stem Cell Research Center; Seoul 143-854 Korea
- Faculty of Biotechnology, College of Applied Life Science; Jeju National University; Jeju 690-756 Korea
| | - Se-Pil Park
- Mirae Cell Bio Inc./Jeju National University Stem Cell Research Center; Seoul 143-854 Korea
- Faculty of Biotechnology, College of Applied Life Science; Jeju National University; Jeju 690-756 Korea
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine; Konkuk University; 120 Neungdong-Ro, Gwangjin-gu Seoul 143-701 Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine; Konkuk University; 120 Neungdong-Ro, Gwangjin-Gu Seoul 143-701 Korea
| |
Collapse
|
12
|
Ogino S, Morimoto N, Sakamoto M, Jinno C, Taira T, Suzuki S. Efficacy of gelatin gel sheets sustaining epidermal growth factor for murine skin defects. J Surg Res 2015; 201:446-54. [PMID: 27020831 DOI: 10.1016/j.jss.2015.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/05/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidermal growth factor (EGF) plays an important role in wound healing. However, EGF must be applied daily due to rapid inactivation in vivo. We investigated the sustained release of EGF from gelatin gel sheets (GGSs) and the efficacy of GGSs impregnated with EGF for promoting wound healing. MATERIALS AND METHODS GGSs impregnated with EGF were prepared by cross-linking via glutaraldehyde to gelatin solution containing EGF. The sustained release of EGF and the bioactivity of released EGF were evaluated. Then, three kinds of GGSs containing NSS (normal saline solution; NSS group), 2.5 μg of EGF (EGF-L group), or 25 μg of EGF (EGF-H group) were applied to full-thickness skin defects created on the backs of mice. The wounds covered with polyurethane film without GGS were used as a control (PUF group). The wound area, neoepithelium length, regenerated granulation tissue, and newly formed capillaries were evaluated. RESULTS EGF was sustained and released from GGS as it degraded. The bioactivity of released EGF was confirmed. EGF-L group promoted the neoepithelium length, regenerated granulation tissue, and newly formed capillaries compared with those in the PUF and NSS groups. The area of regenerated granulation tissue in the NSS group (week 1: 2.6 + 0.2 mm(2), week 2: 2.8 + 0.3 mm(2)) was larger than that in the PUF group (week 1: 0.6 + 0.1 mm(2), week 2: 1.0 + 0.1 mm(2)). The area of newly formed capillaries in the EGF-L group (9967 + 1903 μm(2)) was larger than that of the EGF-H group (3485 + 1050 μm(2)). CONCLUSIONS GGSs impregnated with EGF-L showed promising results regarding wound healing.
Collapse
Affiliation(s)
- Shuichi Ogino
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Hirakata, Japan.
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Jinno
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 2014; 196:1-8. [PMID: 25284479 DOI: 10.1016/j.jconrel.2014.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
Fibrin is formed in the body upon initiation of the clotting cascade and is produced commercially for use as a tissue sealant and hemostasis device during surgical procedures. Experimentally fibrin is being increasingly used as a vector to deliver growth factors, cells, drugs and genes in tissue engineering applications mimicking aspects of the extra cellular matrix. Growth factors (GFs) are central to wound healing, inducing cell proliferation, migration and differentiation. Attempts have been made to augment wound healing with GFs, however widespread clinical use has been hindered in vivo due to their rapid metabolism within the body. Fibrin hydrogels protect GFs from rapid degradation and the composition of which can be altered to achieve their optimal release. This article reviews the use of fibrin for the delivery of GFs and details the various strategies that have evolved to alter the release rate so as to enhance the regenerative process, including bi-domain peptides, plasmin degradation sequences and heparin incorporation. This paper also reviews other recent advances in this field, such as dual delivery of cells and GF or sequential release of multiple GF.
Collapse
|
14
|
Natural and synthetic biomaterials for controlled drug delivery. Arch Pharm Res 2013; 37:60-8. [PMID: 24197492 DOI: 10.1007/s12272-013-0280-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.
Collapse
|
15
|
Rajangam T, An SSA. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 2013; 8:3641-62. [PMID: 24106425 PMCID: PMC3792008 DOI: 10.2147/ijn.s43945] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Over the past two decades, many types of natural and synthetic polymer-based micro- and nanocarriers, with exciting properties and applications, have been developed for application in various types of tissue regeneration, including bone, cartilage, nerve, blood vessels, and skin. The development of suitable polymers scaffold designs to aid the repair of specific cell types have created diverse and important potentials in tissue restoration. Fibrinogen (Fbg)- and fibrin (Fbn)-based micro- and nanostructures can provide suitable natural matrix environments. Since these primary materials are abundantly available in blood as the main coagulation proteins, they can easily interact with damaged tissues and cells through native biochemical interactions. Fbg- and Fbn-based micro and nanostructures can also be consecutively furnished/or encapsulated and specifically delivered, with multiple growth factors, proteins, and stem cells, in structures designed to aid in specific phases of the tissue regeneration process. The present review has been carried out to demonstrate the progress made with micro and nanoscaffold applications and features a number of applications of Fbg- and Fbn-based carriers in the field of biomaterials, including the delivery of drugs, active biomolecules, cells, and genes, that have been effectively used in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Thanavel Rajangam
- Department of Bionanotechnology, Gachon University, Seongnam-Si, Republic of Korea
| | | |
Collapse
|
16
|
Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 2012; 25:349-70. [PMID: 22820962 DOI: 10.1097/01.asw.0000418541.31366.a3] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed.
Collapse
|
17
|
A comparison of human cord blood- and embryonic stem cell-derived endothelial progenitor cells in the treatment of chronic wounds. Biomaterials 2012; 34:995-1003. [PMID: 23127335 DOI: 10.1016/j.biomaterials.2012.10.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/12/2012] [Indexed: 12/21/2022]
Abstract
Endothelial progenitor cells (EPCs) promote new blood vessel formation and increase angiogenesis by secreting growth factors and cytokines in ischemic tissues. Therefore, EPCs have been highlighted as an alternative cell source for wound healing. EPCs can be isolated from various sources, including the bone marrow, cord blood, and adipose tissue. However, several recent studies have reported that isolating EPCs from these sources has limitations, such as the isolation of insufficient cell numbers and the difficulty of expanding these cells in culture. Thus, human embryonic stem cells (hESCs) have generated great interest as an alternative source of EPCs. Previously, we established an efficient preparation method to obtain EPCs from hESCs (hESC-EPCs). These hESC-EPCs secreted growth factors and cytokines, which are known to be important in angiogenesis and wound healing. In this study, we directly compared the capacity of hESC-EPCs and human cord blood-derived EPCs (hCB-EPCs) to benefit wound healing. The number of hESC-EPCs increased during culture and was always higher than the number of hCB-EPCs during the culture period. In addition, the levels of VEGF and Ang-1 secreted by hESC-EPCs were significantly higher than those produced by hCB-EPCs. After transplantation in a mouse dermal excisional wound model, all EPC-transplanted wounds exhibited better regeneration than in the control group. More importantly, we found that the wounds transplanted with hESC-EPCs showed significantly accelerated re-epithelialization. Thus, hESC-EPCs may be a promising cell source for the treatment of chronic wounds.
Collapse
|
18
|
Sustained local delivery of insulin for potential improvement of peri-implant bone formation in diabetes. SCIENCE CHINA-LIFE SCIENCES 2012; 55:948-57. [DOI: 10.1007/s11427-012-4392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/05/2012] [Indexed: 10/27/2022]
|
19
|
Li W, Chen WJ, Liu W, Liang L, Zhang MC. Homemade lyophilized cross linking amniotic sustained-release drug membrane with anti-scarring role after filtering surgery in rabbit eyes. Int J Ophthalmol 2012; 5:555-61. [PMID: 23166864 DOI: 10.3980/j.issn.2222-3959.2012.05.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/18/2012] [Indexed: 01/31/2023] Open
Abstract
AIM To investigate the antifibrotic effect of the freeze-dried bilayered fibrin-binding amniotic membrane as a drug delivery system on glaucoma surgery in rabbit model. The aim of this study was to prepare a novel local delivery system for the sustained and controllable release of 5-Fu. METHODS Twenty-four Japanese white rabbits were randomized into three groups: the experimental group (ocular trabeculectomy in combination with 5-Fu loaded freeze-dried bilayered fibrin-binding amniotic membrane transplantation), the control group (ocular trabeculectomy in combination with 5-Fu) and the blank group (single trabeculectomy). HE staining, massion staining and immunohistochemistry for α-SMA were performed on days 7, 14, 21 and 30 following surgery. The concentration of 5-Fu in rabbit aqueous humor was examined by high performance liquid chromatography (HPLC) 3 days after the surgery. RESULTS Statistical differences were noted in intraocular pressure among groups on day 7, 14, 21 and 30 following surgery. Histology further demonstrated that trabeculectomy in combination with freeze-dried bilayered fibrin-binding amniotic membrane yielded well wound healing and no scar formation and was beneficial for long term effect. CONCLUSION HPLC showed a good slow-release effect with freeze-dried bilayered fibrin-binding amniotic membrane.
Collapse
Affiliation(s)
- Wan Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | | | | | | | | |
Collapse
|
20
|
Zhou W, Zhao M, Zhao Y, Mou Y. A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: preparation and in vitro release studies. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1221-30. [PMID: 21445654 DOI: 10.1007/s10856-011-4304-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/21/2011] [Indexed: 05/24/2023]
Abstract
Recombinant human epidermal growth factor (rhEGF) is known to stimulate cell proliferation and accelerate wound healing. Direct delivery of rhEGF at the wound site in a sustained and controllable way without loss of bioactivity would enhance its biological effects. The aim of this study was to prepare a novel local delivery system for the sustained and controllable release of rhEGF, a fibrin gel loaded with chitosan nanoparticles. First, rhEGF-loaded chitosan nanoparticles were prepared and characterized, and these showed an ability to protect rhEGF from proteolysis. The prepared nanoparticles were then incorporated into a fibrin gel matrix during polymerization. In vitro release studies showed that the fibrin gel loaded with rhEGF/chitosan nanoparticles could achieve a more sustained release of rhEGF than either chitosan nanoparticles or an unloaded fibrin gel. Additionally, the release rate could be controlled by altering the contents of fibrinogen and thrombin in this composite delivery system. The bioactivity of the released rhEGF was determined by assessing its ability to stimulate the proliferation of BALB/c 3T3 cells, and the results showed that rhEGF bioactivity was not affected during the preparation process and could be maintained for at least 7 days. This novel delivery system may have great potential applications in the local administration of rhEGF.
Collapse
Affiliation(s)
- Wenjun Zhou
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yu Zhong District, Chongqing, 400016, China
| | | | | | | |
Collapse
|
21
|
Aoi N, Inoue K, Kato H, Suga H, Higashino T, Eto H, Doi K, Araki J, Iida T, Katsuta T, Yoshimura K. Clinically applicable transplantation procedure of dermal papilla cells for hair follicle regeneration. J Tissue Eng Regen Med 2011; 6:85-95. [PMID: 21305700 DOI: 10.1002/term.400] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/11/2010] [Indexed: 11/12/2022]
Abstract
Dermal papilla cells (DPCs) interact with epithelial stem cells and induce hair folliculogenesis. Cell-based therapies using expanded DPCs for hair regeneration have been unsuccessful in humans. Two major challenges remain: first, expanded DPCs obtained from adult hair follicles have functional limitations; second, a clinically applicable method is needed for transplanting DPCs. This study aimed to identify an efficient, minimally invasive and economical DPC transplantation procedure for use in clinical settings. Five clinically applicable transplantation procedures were tested, termed the Pinhole, Laser, Slit, Non-vascularized sandwich (NVS) and Hemi-vascularized sandwich (HVS) methods. Labelled rat dermal papilla tissue was transplanted into rat sole skin, and hair follicle regeneration was evaluated histologically. Regenerated follicles and labelled DPCs were detected for all methods, although some follicles showed abnormal growth, i.e. a cystic or inverted appearance. The HVS method, pioneered here, resulted in significantly larger number of regenerated follicles that were more mature and regular than those observed using the other methods. Moreover, hair growth was detected after expanded adult-derived DPC transplantation using the HVS method. These results suggest that direct contact of epithelial and dermal components and better vascularization/oxygenation of the recipient site are critical for hair regeneration in cell-based therapies.
Collapse
Affiliation(s)
- Noriyuki Aoi
- Department of Plastic Surgery, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Breen A, O'Brien T, Pandit A. Fibrin as a delivery system for therapeutic drugs and biomolecules. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:201-14. [PMID: 19249942 DOI: 10.1089/ten.teb.2008.0527] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibrin is a natural biopolymer involved in the coagulation cascade. It acts as a reservoir for growth factors, cells, and enzymes during wound healing and provides a scaffold for the synthesis of extracellular matrix. Thus, the use of fibrin has expanded in recent years from traditional use as a sealant for surgical applications, to a tissue engineering scaffold capable of providing nature's cues for tissue regeneration. This paper reviews the advantageous biological aspects of fibrin, the history of the scaffold material, and its present role in the delivery of drugs, growth factors, cells, and gene vectors. Examples are given of studies where the structure and form of the scaffold have been manipulated for optimal release of the therapeutic agent, optimal cellular activity, and investigation into stem cell differentiation. It is evident from the body of literature presented that the benefits of fibrin are being exploited for a vast range of tissue engineering applications and that fibrin remains a key scaffold material for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ailish Breen
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
23
|
Choi D, Hwang KC, Lee KY, Kim YH. Ischemic heart diseases: Current treatments and future. J Control Release 2009; 140:194-202. [DOI: 10.1016/j.jconrel.2009.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 06/05/2009] [Accepted: 06/20/2009] [Indexed: 02/03/2023]
|
24
|
Abstract
There is currently great interest in molecular therapies to treat various diseases, and this has prompted extensive efforts to achieve target-specific and controlled delivery of bioactive macromolecules (for example, proteins, antibodies, DNA and small interfering RNA) through the design of smart drug carriers. By contrast, the influence of the microenvironment in which the target cell resides and the effect it might have on the success of biomacromolecular therapies has been under-appreciated. The extracellular matrix (ECM) component of the cellular niche may be particularly important, as many diseases and injury disrupt the normal ECM architecture, the cell adhesion to ECM, and the subsequent cellular activities. This Review will discuss the importance of the ECM and the ECM-cell interactions on the cell response to bioactive macromolecules, and suggest how this information could lead to new criteria for the design of novel drug delivery systems.
Collapse
Affiliation(s)
- Hyun Joon Kong
- Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
25
|
|
26
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|