1
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol 2018; 311:15-32. [PMID: 30213506 DOI: 10.1016/j.expneurol.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/10/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) treatment is an effective strategy for the functional repair of central nervous system (CNS) insults through the production of bioactive molecules. We have previously demonstrated that the interleukin-6 (IL-6) secreted by MSCs plays an anti-apoptotic role in injured astrocytes and partly promotes functional recovery in neonatal rats with hypoxic-ischemic brain damage (HIBD). However, the mechanisms of IL-6 underlying the proliferation of injured astrocytes have not been fully elucidated. In this study, we investigated the therapeutic effects of MSCs on astrocyte proliferation in neonatal rats subjected to HIBD. A HIBD model was established in Sprague Dawley (SD) rats, and MSCs were administered by intracerebroventricular injection 5 days after HIBD. Rat primary astrocytes were cultured, subjected to oxygen glucose deprivation (OGD) injury and then immediately co-cultured with MSCs in vitro. Immunofluorescence staining, Cell Counting Kit (CCK)-8, flow cytometry, Ca2+ imaging, enzyme-linked immunosorbent assay (ELISA), western blotting, and co-immunoprecipitation (Co-IP) were performed. We found that MSCs transplantation not only promoted the recovery of learning and memory function in HIBD rats but also significantly reduced the number of Ki67+/glial fibrillary acidic protein (GFAP)+ cells in the hippocampi 7-14 days after HIBD. In addition to increasing IL-6 expression in both the hippocampi of HIBD rats and astrocyte culture medium, MSCs treatment in vitro significantly increased the expression levels of glycoprotein (gp) 130 and phosphorylated AMP-activated protein kinase α (p-AMPKα) and decreased the expression levels of p-mammalian target of rapamycin (mTOR) and its downstream targets. Furthermore, MSCs treatment induced a protein-protein interaction between gp130 and p-AMPKα. Suppression of IL-6 expression in MSCs reversed the above regulatory functions of MSCs in hippocampal astrocytes. The utilization of rapamycin further confirmed that mTOR participated in the proliferation of reactive astrocytes. These findings suggest that endogenous IL-6 produced by MSCs in the HIBD microenvironment provides therapeutic advantages by activating AMPK/mTOR signaling, thus reducing the proliferation of reactive astrocytes.
Collapse
Affiliation(s)
- Mulan He
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xia Shi
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Miao Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Chongqing Stem Cell Therapy Engineering Technical Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
3
|
Eve DJ, Sanberg PR. Article Commentary: Stem Cell Research in Cell Transplantation: An Analysis of Geopolitical Influence by Publications. Cell Transplant 2017; 16:867-873. [DOI: 10.3727/000000007783465190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One of the fastest growing fields in researching treatments for neurodegenerative and other disorders is the use of stem cells. These cells are naturally occurring and can be obtained from three different stages of an organism's life: embryonic, fetal, and adult. In the US, political doctrine has restricted use of federal funds for stem cells, enhancing research towards an adult source. In order to determine how this legislation may be represented by the stem cell field, a retrospective analysis of stem cell articles published in the journal Cell Transplantation over a 2-year period was performed. Cell Transplantation is considered a translational journal from preclinical to clinical, so it was of interest to determine the publication outcome of stem cell articles 6 years after the US regulations. The distribution of the source of stem cells was found to be biased towards the adult stage, but relatively similar over the embryonic and fetal stages. The fetal stem cell reports were primarily neural in origin, whereas the adult stem cell ones were predominantly mesenchymal and used mainly in neural studies. The majority of stem cell studies published in Cell Transplantation were found to fall under the umbrella of neuroscience research. American scientists published the most articles using stem cells with a bias towards adult stem cells, supporting the effect of the legislation, whereas Europe was the leading continent with a bias towards embryonic and fetal stem cells, where research is “controlled” but not restricted. Japan was also a major player in the use of stem cells. Allogeneic transplants (where donor and recipient are the same species) were the most common transplants recorded, although the transplantation of human-derived stem cells into rodents was the most common specific transplantation performed. This demonstrates that the use of stem cells is an increasingly important field (with a doubling of papers between 2005 and 2006), which is likely to develop into a major therapeutic area over the next few decades and that funding restrictions can affect the type of research being performed.
Collapse
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| |
Collapse
|
4
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Tang Y, Yasuhara T, Hara K, Matsukawa N, Maki M, Yu G, Xu L, Hess DC, Borlongan CV. Transplantation of Bone Marrow-Derived Stem Cells: A Promising Therapy for Stroke. Cell Transplant 2017. [DOI: 10.3727/000000007783464614] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stroke remains a major cause of death in the US and around the world. Over the last decade, stem cell therapy has been introduced as an experimental treatment for stroke. Transplantation of stem cells or progenitors into the injured site to replace the nonfunctional cells, and enhancement of proliferation or differentiation of endogenous stem or progenitor cells stand as the two major cell-based strategies. Potential sources of stem/progenitor cells for stroke include fetal neural stem cells, embryonic stem cells, neuroteratocarcinoma cells, umbilical cord blood-derived nonhematopoietic stem cells, and bone marrow-derived stem cells. The goal of this article is to provide an update on the preclinical use of bone marrow-derived stem cells with major emphasis on mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) because they are currently most widely applied in experimental stroke studies and are now being phased into early clinical trials. The phenotypic features of MSCs and MAPCs, as well as their application in stroke, are described.
Collapse
Affiliation(s)
- Yamei Tang
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Koichi Hara
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | - Mina Maki
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Guolong Yu
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Lin Xu
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Research & Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Cesario V. Borlongan
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Research & Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
6
|
Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2016; 17:ijms17091550. [PMID: 27649153 PMCID: PMC5037823 DOI: 10.3390/ijms17091550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/25/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes.
Collapse
|
7
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
8
|
Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery. Acta Pharmacol Sin 2015; 36:928-38. [PMID: 26095039 DOI: 10.1038/aps.2015.39] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
Abstract
AIM Connexin 43 (Cx43) is a member of connexin family mainly expressed in astrocytes, which forms gap junctions and hemichannels and maintains the normal shape and function of astrocytes. In this study we investigated the role of Cx43 in astrocytes in facilitating neuronal recovery during ischemic stroke. METHODS Primary culture of astrocytes or a mixed culture of astrocytes and cortical neurons was subjected to oxygen glucose deprivation and reperfusion (OGD/R). The expression of Cx43 and Ephrin-A4 in astrocytes was detected using immunocytochemical staining and Western blot assays. Intercellular Ca(2+) concentration was determined with Fluo-4 AM fluorescent staining. Middle cerebral artery occlusion (MCAO) model rats were used for in vivo studies. RESULTS OGD/R treatment of cultured astrocytes caused a decrement of Cx43 expression and translocation of Cx43 from cell membrane to cytoplasm, accompanied by cell retraction. Furthermore, OGD/R increased intracellular Ca(2+) concentration, activated CaMKII/CREB pathways and upregulated expression of Ephrin-A4 in the astrocytes. All these changes in OGD/R-treated astrocytes were alleviated by overexpression of Cx43. In the cortical neurons cultured with astrocytes, OGD/R inhibited the neurite growth, whereas overexpression of Cx43 or knockdown of Ephrin-A4 in astrocytes restored the neurite growth. In MCAO model rats, neuronal recovery was found to be correlated with the recuperation of Cx43 and Ephrin-A4 in astrocytes. CONCLUSION Cx43 can stabilize astrocytes and facilitate the resistance to the deleterious effects of a stroke-like milieu and promote neuronal recovery.
Collapse
|
9
|
Choi KH, Park MS, Kim HS, Kim KT, Kim HS, Kim JT, Kim BC, Kim MK, Park JT, Cho KH. Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. Mol Brain 2015; 8:9. [PMID: 25761600 PMCID: PMC4339247 DOI: 10.1186/s13041-015-0101-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
The antioxidant properties of alpha-lipoic acid (aLA) correlate with its ability to promote neuroproliferation. However, there have been no comprehensive studies examining the neurorestorative effects of aLA administration after the onset of ischemia. The middle cerebral artery (MCA) of adult rats was occluded for 2 hours and then reperfused. aLA (20 mg/kg) was administered in 71 animals (aLA group) through the left external jugular vein immediately after reperfusion. An equivalent volume of vehicle was administered to 71 animals (control group). Functional outcome, levels of endogenous neural precursors with neurogenesis, glial cell activation, and brain metabolism were evaluated. Immediate aLA administration after reperfusion resulted in significantly reduced mortality, infarct size, and neurological deficit score (NDS) in the test group compared to the control group. Long-term functional outcomes, measured by the rotarod test, were markedly improved by aLA treatment. There was a significant increase in the number of cells expressing nestin and GFAP in the boundary zone and infarct core regions after aLA treatment. Furthermore, significantly more BrdU/GFAP, BrdU/DCX, and BrdU/NeuN double-labeled cells were observed along the boundary zone of the aLA group on days 7, 14, and 28 days, respectively. And brain metabolism using 18F-FDG microPET imaging was markedly improved in aLA group. The effects of aLA was blocked by insulin receptor inhibitor, HNMPA (AM)3. These results indicate that immediate treatment with aLA after ischemic injury may have significant neurorestorative effects mediated at least partially via insulin receptor activation. Thus, aLA may be useful for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Kang-Ho Choi
- Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea. .,Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Hyung-Seok Kim
- Department of Forensic medicine, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Kyung-Tae Kim
- Department of Anesthesiology and Pain Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea.
| | - Hyeon-Sik Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea.
| | - Joon-Tae Kim
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Byeong-Chae Kim
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Jong-Tae Park
- Department of Forensic medicine, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Ki-Hyun Cho
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| |
Collapse
|
10
|
Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 2014; 8:377. [PMID: 25426026 PMCID: PMC4226157 DOI: 10.3389/fncel.2014.00377] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/22/2014] [Indexed: 12/19/2022] Open
Abstract
Cell-based therapy, e.g., multipotent mesenchymal stromal cell (MSC) treatment, shows promise for the treatment of various diseases. The strong paracrine capacity of these cells and not their differentiation capacity, is the principal mechanism of therapeutic action. MSCs robustly release exosomes, membrane vesicles (~30–100 nm) originally derived in endosomes as intraluminal vesicles, which contain various molecular constituents including proteins and RNAs from maternal cells. Contained among these constituents, are small non-coding RNA molecules, microRNAs (miRNAs), which play a key role in mediating biological function due to their prominent role in gene regulation. The release as well as the content of the MSC generated exosomes are modified by environmental conditions. Via exosomes, MSCs transfer their therapeutic factors, especially miRNAs, to recipient cells, and therein alter gene expression and thereby promote therapeutic response. The present review focuses on the paracrine mechanism of MSC exosomes, and the regulation and transfer of exosome content, especially the packaging and transfer of miRNAs which enhance tissue repair and functional recovery. Perspectives on the developing role of MSC mediated transfer of exosomes as a therapeutic approach will also be discussed.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Hospital Detroit, MI, USA
| | - Yi Li
- Department of Neurology, Henry Ford Hospital Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital Detroit, MI, USA ; Department of Physics, Oakland University Rochester, MI, USA
| |
Collapse
|
11
|
Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 2013; 62:1-16. [PMID: 24272702 DOI: 10.1002/glia.22585] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/08/2013] [Accepted: 09/18/2013] [Indexed: 12/19/2022]
Abstract
Astrocytes have not been a major therapeutic target for the treatment of stroke, with most research emphasis on the neuron. Given the essential role that astrocytes play in maintaining physiological function of the central nervous system and the very rapid and sensitive reaction astrocytes have in response to cerebral injury or ischemic insult, we propose to replace the neurocentric view for treatment with a more nuanced astrocytic centered approach. In addition, after decades of effort in attempting to develop neuroprotective therapies, which target reduction of the ischemic lesion, there are no effective clinical treatments for stroke, aside from thrombolysis with tissue plasminogen activator, which is used in a small minority of patients. A more promising therapeutic approach, which may affect nearly all stroke patients, may be in promoting endogenous restorative mechanisms, which enhance neurological recovery. A focus of efforts in stimulating recovery post stroke is the use of exogenously administered cells. The present review focuses on the role of the astrocyte in mediating the brain network, brain plasticity, and neurological recovery post stroke. As a model to describe the interaction of a restorative cell-based therapy with astrocytes, which drives recovery from stroke, we specifically highlight the subacute treatment of stroke with multipotent mesenchymal stromal cell therapy.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | | | | |
Collapse
|
12
|
Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 2012; 30:1556-64. [PMID: 22605481 DOI: 10.1002/stem.1129] [Citation(s) in RCA: 678] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 2011; 95:213-28. [PMID: 21903148 PMCID: PMC3185169 DOI: 10.1016/j.pneurobio.2011.08.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 02/08/2023]
Abstract
Accumulating laboratory studies have implicated the mobilization of bone marrow (BM)-derived stem cells in brain plasticity and stroke therapy. This mobilization of bone cells to the brain is an essential concept in regenerative medicine. Over the past ten years, mounting data have shown the ability of bone marrow-derived stem cells to mobilize from BM to the peripheral blood (PB) and eventually enter the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Various BM-derived cells, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and very small embryonic-like cells (VSELs) have been demonstrated to exert therapeutic benefits in stroke. Here, we discuss the current status of these BM-derived stem cells in stroke therapy, with emphasis on possible cellular and molecular mechanisms of action that mediate the cells' beneficial effects in the ischemic brain. When possible, we also discuss the relevance of this therapeutic regimen in other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
14
|
Borlongan CV. Bone marrow stem cell mobilization in stroke: a 'bonehead' may be good after all! Leukemia 2011; 25:1674-86. [PMID: 21727900 DOI: 10.1038/leu.2011.167] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mobilizing bone cells to the head, astutely referred to as 'bonehead' therapeutic approach, represents a major discipline of regenerative medicine. The last decade has witnessed mounting evidence supporting the capacity of bone marrow (BM)-derived cells to mobilize from BM to peripheral blood (PB), eventually finding their way to the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Here, I review accumulating laboratory studies implicating the role of therapeutic mobilization of transplanted BM stem cells for brain plasticity and remodeling in stroke.
Collapse
Affiliation(s)
- C V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA.
| |
Collapse
|
15
|
Pu K, Li SY, Gao Y, Ma L, Ma W, Liu Y. Bystander effect in suicide gene therapy using immortalized neural stem cells transduced with herpes simplex virus thymidine kinase gene on medulloblastoma regression. Brain Res 2011; 1369:245-52. [DOI: 10.1016/j.brainres.2010.10.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 11/24/2022]
|
16
|
Mori K, Iwata J, Miyazaki M, Osada H, Tange Y, Yamamoto T, Aiko Y, Tamura M, Shiroishi T. Bystander killing effect of tymidine kinase gene-transduced adult bone marrow stromal cells with ganciclovir on malignant glioma cells. Neurol Med Chir (Tokyo) 2010; 50:545-53. [PMID: 20671379 DOI: 10.2176/nmc.50.545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transduction of the suicide gene of Herpes simplex virus thymidine kinase (Hsv-tk) into glioma cells or neural stem cells combined with pro-drug ganciclovir (GCV) treatment has been effective to treat experimental glioma in the rat through the bystander effect. Bone marrow stromal cells (MSCs) in the adult bone marrow have tropism for brain tumors and act as tumor stromal cells. Whether adult MSCs expressing Hsv-tk can also act as effector cells of the bystander killing effect on murine glioma cells was investigated. In vitro study of co-culture between 9L/LacZ (9L) glioma cells and Hsv-tk-transduced MSCs (MSCs/tk(+)) followed by GCV administration in the culture medium resulted in apparent nuclear morphological changes in the 9L glioma cells surrounding the MSCs/tk(+). 9L glioma cell survival in the presence of MSCs/tk(+) and GCV treatment was quantitatively measured and showed significant decrease of 9L glioma cell proliferation with higher MSCs/tk(+) ratio and GCV concentration. Intracerebral co-inoculation experiments in Fisher rats used 9L glioma cells and either MSCs/tk(+) or Hsv-tk-non-transduced MSCs (MSCs/tk(-)) followed by intraperitoneal injection of GCV (100 mg/kg, daily for 7 days). The animals co-inoculated with 9L glioma cells and MSCs/tk(+) showed significant retardation of tumor growth and prolongation of survival time compared with the animals with 9L glioma cells and MSCs/tk(-). Quantitative findings were established of the novel effects of adult MSCs/tk(+) as effector cells of the bystander killing effect on glioma cells.
Collapse
Affiliation(s)
- Kentaro Mori
- Department of Neurosurgery, Juntendo University, Shizuoka Hospital, Izunokuni, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Role of connexin43 in central nervous system injury. Exp Neurol 2010; 225:250-61. [DOI: 10.1016/j.expneurol.2010.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/09/2010] [Accepted: 07/15/2010] [Indexed: 01/03/2023]
|
18
|
Lee CH, Chen IH, Lee CR, Chi CH, Tsai MC, Tsai JL, Lin HF. Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways. J Occup Med Toxicol 2010; 5:17. [PMID: 20591183 PMCID: PMC2904784 DOI: 10.1186/1745-6673-5-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells. Method In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique. Results TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis. Conclusions These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways.
Collapse
Affiliation(s)
- Chung-Hsun Lee
- Graduate Institute of Occupational Safety and Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling. Mol Cell Biol 2010; 30:206-19. [PMID: 19841066 DOI: 10.1128/mcb.01844-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junction intercellular communication in osteocytes plays an important role in bone remodeling in response to mechanical loading; however, the responsible molecular mechanisms remain largely unknown. Here, we show that phosphoinositide-3 kinase (PI3K)/Akt signaling activated by fluid flow shear stress and prostaglandin E(2) (PGE(2)) had a stimulatory effect on both connexin 43 (Cx43) mRNA and protein expression. PGE(2) inactivated glycogen synthase kinase 3 (GSK-3) and promoted nuclear localization and accumulation of beta-catenin. Knockdown of beta-catenin expression resulted in a reduction in Cx43 protein. Furthermore, the chromatin immunoprecipitation (ChIP) assay demonstrated an association of beta-catenin with the Cx43 promoter, suggesting that beta-catenin could regulate Cx43 expression at the level of gene transcription. We have previously reported that PGE(2) activates cyclic AMP (cAMP)-protein kinase A (PKA) signaling and increases Cx43 and gap junctions. Interestingly, the activation of PI3K/Akt appeared to be independent of the activation of PKA, whereas both PI3K/Akt and PKA signaling inactivated GSK-3 and increased beta-catenin translocation. Together, these results suggest that shear stress, through PGE(2) release, activates both PI3K/Akt and cAMP-PKA signaling, which converge through the inactivation of GSK-3, leading to the increase in nuclear accumulation of beta-catenin. beta-Catenin binds to the Cx43 promoter, stimulating Cx43 expression and functional gap junctions between osteocytes.
Collapse
|
20
|
Liu Y, Zhang X, Li ZJ, Chen XH. Up-regulation of Cx43 expression and GJIC function in acute leukemia bone marrow stromal cells post-chemotherapy. Leuk Res 2009; 34:631-40. [PMID: 19910046 DOI: 10.1016/j.leukres.2009.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/10/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Gap junction intercellular communication (GJIC) among bone marrow stromal cells (BMSCs) most frequently occurs through a channel composed of connexin43 (Cx43). Dysregulation of connexin expression is believed to have a role in carcinogenesis. In earlier work, we found that in acute leukemia BMSCs, expression of Cx43 and functioning GJIC declined. However, there has been no evaluation of whether GJIC in BMSCs in complete remission (CR) post-chemotherapy is different from GJIC pre-chemotherapy. We studied Cx43 expression and tested GJIC function in human bone marrow cultures under different physiological and pathological conditions. To assay Cx43 expression we used immunocytochemistry, laser scan confocal microscopy (LSCM), flow cytometry and RT-PCR. The results showed that the expression level of Cx43 and its mRNA in acute leukemia BMSCs post-chemotherapy was significantly higher and similar to normal levels than in primary acute leukemia BMSCs (p<0.01). Functional tests in cultures using dye transfer and fluorescence recovery after photobleaching (FRAP) assays showed that the function of GJIC in acute leukemia BMSCs was significantly improved following effective chemotherapy. Our findings suggest Cx43 and GJIC might be involved in the courses of occurrence, development and termination of acute leukemia, and effective chemotherapy could improve Cx43 expression and GJIC function that were dysfunctional prior to treatment.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Shapingba District, Xinqiao Street, Chongqing 400037, China
| | | | | | | |
Collapse
|
21
|
Gui SB, Zhang YZ, Sun MZ, Wang HY, He Y, Li D. Effect of bone marrow stromal cell-conditioned medium on the glutamate uptake of peroxide-injured astrocytes. J Clin Neurosci 2009; 16:1205-10. [PMID: 19589682 DOI: 10.1016/j.jocn.2008.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/24/2008] [Accepted: 11/02/2008] [Indexed: 11/28/2022]
Abstract
We aimed to investigate the effect of bone marrow stromal cell-conditioned medium (BCM) on glutamate uptake of peroxide (H(2)O(2))-injured astrocytes. Bone marrow stromal cells (BMSC) were isolated from rat bone marrow. Confluent BMSC cultures were incubated with serum-free Dulbecco's Modified Eagle's Medium to create the BCM. Astrocytes were isolated from 1-day-old rats. H(2)O(2)-injured astrocytes were cultured in BCM (experimental group) or serum-free medium (control group). The labeled glutamate ((3)H-L-glutamate) uptake by H(2)O(2)-injured astrocytes with or without BCM was compared after 1 and 3 days. We found that astrocytes cultured in BCM exhibited increased glutamate uptake compared to those cultured in serum-free medium following H(2)O(2)-induced injury (p<0.01) and concluded that BCM increased the glutamate uptake capability of H(2)O(2)-injured rat astrocytes. The therapeutic benefits associated with BMSC transplantation following brain injury might be partly due to increased glutamate uptake by astrocytes.
Collapse
Affiliation(s)
- Song-Bai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Clinicians have long used lithium to treat manic depression. They have also observed that lithium causes granulocytosis and lymphopenia while it enhances immunological activities of monocytes and lymphocytes. In fact, clinicians have long used lithium to treat granulocytopenia resulting from radiation and chemotherapy, to boost immunoglobulins after vaccination, and to enhance natural killer activity. Recent studies revealed a mechanism that ties together these disparate effects of lithium. Lithium acts through multiple pathways to inhibit glycogen synthetase kinase-3beta (GSK3 beta). This enzyme phosphorylates and inhibits nuclear factors that turn on cell growth and protection programs, including the nuclear factor of activated T cells (NFAT) and WNT/beta-catenin. In animals, lithium upregulates neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor, neurotrophin-3 (NT3), as well as receptors to these growth factors in brain. Lithium also stimulates proliferation of stem cells, including bone marrow and neural stem cells in the subventricular zone, striatum, and forebrain. The stimulation of endogenous neural stem cells may explain why lithium increases brain cell density and volume in patients with bipolar disorders. Lithium also increases brain concentrations of the neuronal markers n-acetyl-aspartate and myoinositol. Lithium also remarkably protects neurons against glutamate, seizures, and apoptosis due to a wide variety of neurotoxins. The effective dose range for lithium is 0.6-1.0 mM in serum and >1.5 mM may be toxic. Serum lithium levels of 1.5-2.0 mM may have mild and reversible toxic effects on kidney, liver, heart, and glands. Serum levels of >2 mM may be associated with neurological symptoms, including cerebellar dysfunction. Prolonged lithium intoxication >2 mM can cause permanent brain damage. Lithium has low mutagenic and carcinogenic risk. Lithium is still the most effective therapy for depression. It "cures" a third of the patients with manic depression, improves the lives of about a third, and is ineffective in about a third. Recent studies suggest that some anticonvulsants (i.e., valproate, carbamapazine, and lamotrigene) may be useful in patients that do not respond to lithium. Lithium has been reported to be beneficial in animal models of brain injury, stroke, Alzheimer's, Huntington's, and Parkinson's diseases, amyotrophic lateral sclerosis (ALS), spinal cord injury, and other conditions. Clinical trials assessing the effects of lithium are under way. A recent clinical trial suggests that lithium stops the progression of ALS.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett 2009; 456:120-3. [PMID: 19429146 DOI: 10.1016/j.neulet.2008.03.096] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/24/2008] [Accepted: 03/01/2008] [Indexed: 12/19/2022]
Abstract
There is a paucity of therapies for most central nervous system (CNS) disorders. Bone marrow stromal cells (MSCs) are a mixed cell population, including stem and progenitor cells, and are currently a strong candidate for cell-based therapy in "brain attack", including stroke, and traumatic brain injury (TBI), since they are easily isolated and can be expanded in culture from patients without ethical and technical problems. Although it has been suggested that trans-differentiation of MSCs into cells of neural lineage may occur in vitro, no one has yet observed that MSCs give rise to fully differentiated and functional neurons in vivo. The overwhelming body of data indicate that bioactive factors secreted by MSCs in response to the local environment underlie the tissue restorative effects of MSCs. The MSCs that are employed in this therapy are not necessarily stem cells, but progenitor and differentiated cells that escape immune system surveillance and survive in the CNS even for transplantation of allogeneic or xenogeneic MSCs. The injured CNS is stimulated by the MSCs to amplify its intrinsic restorative processes. Treatment of damaged brain with MSCs promotes functional recovery, and facilitates CNS endogenous plasticity and remodeling. The current mini-review is mainly based on our data and focuses on possible cellular and molecular mechanisms of interaction of MSCs with glia, neurons and vessels after brain attack. The transplantation of MSCs opens up new avenues of cell therapy and may provide an effective treatment for various CNS diseases.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | | |
Collapse
|
24
|
Shintani-Ishida K, Unuma K, Yoshida KI. Ischemia Enhances Translocation of Connexin43 and Gap Junction Intercellular Communication, Thereby Propagating Contraction Band Necrosis After Reperfusion. Circ J 2009; 73:1661-8. [DOI: 10.1253/circj.cj-09-0079] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kaori Shintani-Ishida
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo
| | - Ken-ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
25
|
Chopp M, Li Y, Zhang ZG. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 2008; 40:S143-5. [PMID: 19064763 DOI: 10.1161/strokeaha.108.533141] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We discuss the mechanisms of action underlying the beneficial effects of treating ischemic stroke in the rodent with exogenously administered cells. The essential hypothesis proposed is that the administered cells enhance recovery of neurological function by stimulating the production of restorative factors by parenchymal cells. These activated endogenous brain cells evoke white matter remodeling in the brain and the spinal cord and generate microenvironments within the injured brain that amplify brain plasticity and lead to improvement in neurological function poststroke.
Collapse
Affiliation(s)
- Michael Chopp
- Neurology Department, Research Division, Education and Research Building, Room 3056, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
26
|
Shen LH, Gao Q, Li Y, Savant-Bhonsale S, Chopp M. Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia 2008; 56:1747-54. [PMID: 18618668 PMCID: PMC2575136 DOI: 10.1002/glia.20722] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The glial scar, a primarily astrocytic structure bordering the infarct tissue inhibits axonal regeneration after stroke. Neurocan, an axonal extension inhibitory molecule, is up-regulated in the scar region after stroke. Bone marrow stromal cells (BMSCs) reduce the thickness of glial scar wall and facilitate axonal remodeling in the ischemic boundary zone. To further clarify the role of BMSCs in axonal regeneration and its underlying mechanism, the current study focused on the effect of BMSCs on neurocan expression in the ischemic brain. Thirty-one adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by an injection of 3 x 10(6) rat BMSCs (n = 16) or phosphate-buffered saline (n = 15) into the tail vein 24 h later. Animals were sacrificed at 8 days after stroke. Immunostaining analysis showed that reactive astrocytes were the primary source of neurocan, and BMSC-treated animals had significantly lower neurocan and higher growth associated protein 43 expression in the penumbral region compared with control rats, which was confirmed by Western blot analysis of the brain tissue. To further investigate the effects of BMSCs on astrocyte neurocan expression, single reactive astrocytes were collected from the ischemic boundary zone using laser capture microdissection. Neurocan gene expression was significantly down-regulated in rats receiving BMSC transplantation (n = 4/group). Primary cultured astrocytes showed similar alterations; BMSC coculture during reoxygenation abolished the up-regulation of neurocan gene in astrocytes undergoing oxygen-glucose deprivation (n = 3/group). Our data suggest that BMSCs promote axonal regeneration by reducing neurocan expression in peri-infarct astrocytes.
Collapse
Affiliation(s)
- Li Hong Shen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, U.S.A
| | - Qi Gao
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, U.S.A
| | - Yi Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, U.S.A
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, U.S.A
- Department of Physics, Oakland University, Rochester, Michigan, U.S.A
| |
Collapse
|
27
|
Bone marrow stromal cells reduce ischemia-induced astrocytic activation in vitro. Neuroscience 2008; 152:646-55. [PMID: 18313231 DOI: 10.1016/j.neuroscience.2007.10.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/28/2007] [Accepted: 02/11/2008] [Indexed: 11/21/2022]
Abstract
Transplantation of bone marrow stromal cells (BMSCs) improves animal neurological functional recovery after stroke. To obtain insight into the mechanisms underlying the therapeutic benefit, we directed our attention to the interaction of BMSCs with astrocytes. Astrocytes become reactive (astrogliosis) after a brain injury, such as stroke. Astrogliosis plays both beneficial and detrimental roles in brain recovery. Previously, we have shown that administration of BMSCs to animals with stroke significantly reduces the thickness of the scar wall formed by reactive astrocytes. We tested the influence of mouse bone marrow stromal cell (mBMSC) on astrogliosis under oxygen-glucose deprivation (OGD)/reoxygenation conditions in vitro, employing an anaerobic chamber. Our data indicate that mBMSCs down-regulate glial fibrillary acidic protein (GFAP) expression in astrocytes after 2 h of OGD and an additional 16 h reoxygenation. mBMSCs protected astrocytes from ischemia, maintaining morphological integrity and proliferation. The IL-6/IL-6R/gp130 pathway is associated with astrogliosis in response to CNS (disorders. Therefore, we examined the effects of mBMSC on the IL-6/IL-6R/gp130 pathway as an underlying mechanism of mBMSC-altered astrogliosis. Furthermore, IL-6 siRNA was used to block IL-6 expression in astrocytes to further investigate IL-6 involvement in mBMSC-altered astrogliosis. Our results indicate that the mBMSC-conferred decline of astrogliosis post-ischemia may derive from the down-regulation of the IL-6/IL-6R/gp130 pathway.
Collapse
|
28
|
Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007; 40:609-19. [PMID: 17603514 DOI: 10.1038/sj.bmt.1705757] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transplantation of bone marrow-derived mesenchymal stromal cells (MSCs) into the injured brain or spinal cord may provide therapeutic benefit. Several models of central nervous system (CNS) injury have been examined, including that of ischemic stroke, traumatic brain injury and traumatic spinal cord injury in rodent, primate and, more recently, human trials. Although it has been suggested that differentiation of MSCs into cells of neural lineage may occur both in vitro and in vivo, this is unlikely to be a major factor in functional recovery after brain or spinal cord injury. Other mechanisms of recovery that may play a role include neuroprotection, creation of a favorable environment for regeneration, expression of growth factors or cytokines, vascular effects or remyelination. These mechanisms are not mutually exclusive, and it is likely that more than one contribute to functional recovery. In light of the uncertainty surrounding the fate and mechanism of action of MSCs transplanted into the CNS, further preclinical studies with appropriate animal models are urgently needed to better inform the design of new clinical trials.
Collapse
Affiliation(s)
- A M Parr
- Department of Surgery, University Health Network and Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
29
|
English D, Klasko SK, Sanberg PR. Elusive mechanisms of "stem cell"-mediated repair of cerebral damage. Exp Neurol 2006; 199:10-5. [PMID: 16730352 DOI: 10.1016/j.expneurol.2006.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Denis English
- Department of Neurosurgery, Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Bruce B. Downs Blvd., MDC-78, Tampa, FL 36112, USA.
| | | | | |
Collapse
|
30
|
Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, Chopp M. Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience 2006; 141:687-695. [PMID: 16730912 DOI: 10.1016/j.neuroscience.2006.04.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/30/2022]
Abstract
Bone morphogenetic proteins play a key role in astrocytic differentiation. Astrocytes express the gap junctional protein connexin-43, which permits exchange of small molecules in brain and enhances synaptic efficacy. Bone marrow stromal cells produce soluble factors including bone morphogenetic protein 2 and bone morphogenetic protein 4 (bone morphogenetic protein 2/4) in ischemic brain. Here, we tested whether intra-carotid infusion of bone marrow stromal cells promotes synaptophysin expression and neurological functional recovery after stroke in rats. Adult male Wistar rats were subjected to 2 h of right middle cerebral artery occlusion. Rats were treated with or without bone marrow stromal cells at 24 h after middle cerebral artery occlusion via intra-arterial injection (n=8/group). A battery of functional tests was performed. Immunostaining of 5-bromo-2-deoxyuridine, Ki67, bone morphogenetic protein 2/4, connexin-43, synaptophysin, glial fibrillary acidic protein, neuronal nuclear antigen, and double staining of 5-bromo-2-deoxyuridine/glial fibrillary acidic protein, 5-bromo-2-deoxyuridine/neuronal nuclear antigen, glial fibrillary acidic protein/bone morphogenetic protein 2/4 and glial fibrillary acidic protein/connexin-43 were employed. Rats treated with bone marrow stromal cells significantly (P<0.05) improved functional recovery compared with the controls. 5-Bromo-2-deoxyuridine and Ki67 positive cells in the ipsilateral subventricular zone were significantly (P<0.05) increased in bone marrow stromal cell treatment group compared with the controls, respectively. Administration of bone marrow stromal cells significantly (P<0.05) promoted the proliferating cell astrocytic differentiation, and increased bone morphogenetic protein 2/4, connexin-43 and synaptophysin expression in the ischemic boundary zone compared with the controls, respectively. Bone morphogenetic protein 2/4 expression correlated with the expression of connexin-43 (r=0.84, P<0.05) and connexin-43 expression correlated with the expression of synaptophysin (r=0.73, P<0.05) in the ischemic boundary zone, respectively. Administration of bone marrow stromal cells via an intra-carotid route increases endogenous brain bone morphogenetic protein 2/4 and connexin-43 expression in astrocytes and promotes synaptophysin expression, which may benefit functional recovery after stroke in rats.
Collapse
Affiliation(s)
- C Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Y Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - J Chen
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Q Gao
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - A Zacharek
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - A Kapke
- Department of Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - M Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|