1
|
Opara A, Canning P, Alwan A, Opara EC. Challenges and Perspectives for Future Considerations in the Bioengineering of a Bioartificial Pancreas. Ann Biomed Eng 2024; 52:1795-1803. [PMID: 36913086 DOI: 10.1007/s10439-023-03180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
There is an unrelenting interest in the development of a reliable bioartificial pancreas construct since the first description of this technology of encapsulated islets by Lim and Sun in 1980 because it promised to be a curative treatment for Type 1 Diabetes Mellitus (T1DM). Despite the promise of the concept of encapsulated islets, there are still some challenges that impede the full realization of the clinical potential of the technology. In this review, we will first present the justification for continued research and development of this technology. Next, we will review key barriers that impede progress in this field and discuss strategies that can be used to design a reliable construct capable of effective long-term performance after transplantation in diabetic patients. Finally, we will share our perspectives on areas of additional work for future research and development of the technology.
Collapse
Affiliation(s)
- Amoge Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV, 89502, USA
| | - Priyadarshini Canning
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Abdelrahman Alwan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV, 89502, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
2
|
Molano RD, Pileggi A, Tse HM, Stabler CL, Fraker CA. A static glucose-stimulated insulin secretion (sGSIS) assay that is significantly predictive of time to diabetes reversal in the human islet bioassay. BMJ Open Diabetes Res Care 2024; 12:e003897. [PMID: 38485229 PMCID: PMC10941118 DOI: 10.1136/bmjdrc-2023-003897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Static incubation (static glucose-stimulated insulin secretion, sGSIS) is a measure of islet secretory function. The Stimulation Index (SI; insulin produced in high glucose/insulin produced in low glucose) is currently used as a product release criterion of islet transplant potency. RESEARCH DESIGN AND METHODS Our hypothesis was that the Delta, insulin secreted in high glucose minus insulin secreted in low glucose, would be more predictive. To evaluate this hypothesis, sGSIS was performed on 32 consecutive human islet preparations, immobilizing the islets in a slurry of Sepharose beads to minimize mechanical perturbation. Simultaneous full-mass subrenal capsular transplants were performed in chemically induced diabetic immunodeficient mice. Logistic regression analysis was used to determine optimal cut-points for diabetes reversal time and the Fisher Exact Test was used to assess the ability of the Delta and the SI to accurately classify transplant outcomes. Receiver operating characteristic curve analysis was performed on cut-point grouped data, assessing the predictive power and optimal cut-point for each sGSIS potency metric. Finally, standard Kaplan-Meier-type survival analysis was conducted. RESULTS In the case of the sGSIS the Delta provided a superior islet potency metric relative to the SI.ConclusionsThe sGSIS Delta value is predicitive of time to diabetes reversal in the full mass human islet transplant bioassay.
Collapse
Affiliation(s)
- Ruth Damaris Molano
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Coral Gables, Florida, USA
| | - Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Coral Gables, Florida, USA
| | - Hubert M Tse
- Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, Florida, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Zhang S, Xu G, Wu J, Liu X, Fan Y, Chen J, Wallace G, Gu Q. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications. SMALL METHODS 2024; 8:e2300685. [PMID: 37798902 DOI: 10.1002/smtd.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Indexed: 10/07/2023]
Abstract
In recent decades, microphysiological constructs and systems (MPCs and MPSs) have undergone significant development, ranging from self-organized organoids to high-throughput organ-on-a-chip platforms. Advances in biomaterials, bioinks, 3D bioprinting, micro/nanofabrication, and sensor technologies have contributed to diverse and innovative biofabrication tactics. MPCs and MPSs, particularly tissue chips relevant to absorption, distribution, metabolism, excretion, and toxicity, have demonstrated potential as precise, efficient, and economical alternatives to animal models for drug discovery and personalized medicine. However, current approaches mainly focus on the in vitro recapitulation of the human anatomical structure and physiological-biochemical indices at a single or a few simple levels. This review highlights the recent remarkable progress in MPC and MPS models and their applications. The challenges that must be addressed to assess the reliability, quantify the techniques, and utilize the fidelity of the models are also discussed.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoshi Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Juan Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| |
Collapse
|
4
|
McKeegan PJ, Boardman SF, Wanless AA, Boyd G, Warwick LJ, Lu J, Gnanaprabha K, Picton HM. Intracellular oxygen metabolism during bovine oocyte and preimplantation embryo development. Sci Rep 2021; 11:21245. [PMID: 34711892 PMCID: PMC8553752 DOI: 10.1038/s41598-021-99512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022] Open
Abstract
We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Paul J McKeegan
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Selina F Boardman
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- CARE Fertility, Manchester, England, UK
| | - Amy A Wanless
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee, Scotland, UK
| | - Grace Boyd
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Department of Biological Sciences, University of York, Wentworth Way, York, YO10 5DD, England, UK
| | - Laura J Warwick
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- St James's University Hospital, Beckett Street, Leeds, LS9 7TF, England, UK
| | - Jianping Lu
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Keerthi Gnanaprabha
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- GCRM Fertility, 21 Fifty Pitches Way, Glasgow, G51 4FD, Scotland, UK
| | - Helen M Picton
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Glieberman AL, Pope BD, Melton DA, Parker KK. Building Biomimetic Potency Tests for Islet Transplantation. Diabetes 2021; 70:347-363. [PMID: 33472944 PMCID: PMC7881865 DOI: 10.2337/db20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Douglas A Melton
- Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
6
|
Chen J, Chen J, Cheng Y, Fu Y, Zhao H, Tang M, Zhao H, Lin N, Shi X, Lei Y, Wang S, Huang L, Wu W, Tan J. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 2020; 11:97. [PMID: 32127037 PMCID: PMC7055095 DOI: 10.1186/s13287-020-01610-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia is a major cause of beta cell death and dysfunction after transplantation. The aim of this study was to investigate the effect of exosomes derived from mesenchymal stem cells (MSCs) on beta cells under hypoxic conditions and the potential underlying mechanisms. Methods Exosomes were isolated from the conditioned medium of human umbilical cord MSCs and identified by WB, NTA, and transmission electron microscopy. Beta cells (βTC-6) were cultured in serum-free medium in the presence or absence of exosomes under 2% oxygen conditions. Cell viability and apoptosis were analysed with a CCK-8 assay and a flow cytometry-based annexin V-FITC/PI apoptosis detection kit, respectively. Endoplasmic reticulum stress (ER stress) proteins and apoptosis-related proteins were detected by the WB method. MiRNAs contained in MSC exosomes were determined by Illumina HiSeq, and treatment with specific miRNA mimics or inhibitors of the most abundant miRNAs was used to reveal the underlying mechanism of exosomes. Results Exosomes derived from MSC-conditioned culture medium were 40–100 nm in diameter and expressed the exosome markers CD9, CD63, CD81, HSP70, and Flotillin 1, as well as the MSC markers CD73, CD90, and CD105. Hypoxia significantly induced beta cell apoptosis, while MSC exosomes remarkably improved beta cell survival. The WB results showed that ER stress-related proteins, including GRP78, GRP94, p-eIF2α and CHOP, and the apoptosis-related proteins cleaved caspase 3 and PARP, were upregulated under hypoxic conditions but were inhibited by MSC exosomes. Moreover, the p38 MAPK signalling pathway was activated by hypoxia and was inhibited by MSC exosomes. The Illumina HiSeq results show that MSC exosomes were rich in miR-21, let-7 g, miR-1246, miR-381, and miR-100. After transfection with miRNA mimics, the viability of beta cells under hypoxia was increased significantly by miR-21 mimic, and the p38 MAPK and ER stress-related proteins in beta cells were downregulated. These changes were reversed after exosomes were pretreated with miR-21 inhibitor. Conclusions Exosomes derived from MSCs could protect beta cells against apoptosis induced by hypoxia, largely by carrying miR-21, alleviating ER stress and inhibiting p38 MAPK signalling. This result indicated that MSC exosomes might improve encapsulated islet survival and benefit diabetes patients.
Collapse
Affiliation(s)
- Jin Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Junqiu Chen
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Yuanhang Cheng
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yunfeng Fu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hongzhou Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Minying Tang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Hu Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Na Lin
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Xiaohua Shi
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Yan Lei
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Shuiliang Wang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Lianghu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China
| | - Weizhen Wu
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China. .,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China.
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, 900th Hospital, Xiamen University, 156th XiErHuan Road, Fuzhou, 350025, China.,Organ Transplant Institute, 900th Hospital, Clinical Medical Institute of Fujian Medical University, 156th XiErHuan Road, Fuzhou, 350025, China
| |
Collapse
|
7
|
Vlahos AE, Kinney SM, Kingston BR, Keshavjee S, Won SY, Martyts A, Chan WC, Sefton MV. Endothelialized collagen based pseudo-islets enables tuneable subcutaneous diabetes therapy. Biomaterials 2020; 232:119710. [DOI: 10.1016/j.biomaterials.2019.119710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
|
8
|
Cabrera O, Jacques-Silva MC, Berman DM, Fachado A, Echeverri F, Poo R, Khan A, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. Automated, High-Throughput Assays for Evaluation of Human Pancreatic Islet Function. Cell Transplant 2017; 16:1039-1048. [DOI: 10.3727/000000007783472408] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An important challenge in pancreatic islet transplantation in association with type 1 diabetes is to define automatic high-throughput assays for evaluation of human islet function. The physiological techniques presently used are amenable to small-scale experimental samples and produce descriptive results. The postgenomic era provides an opportunity to analyze biological processes on a larger scale, but the transition to high-throughput technologies is still a challenge. As a first step to implement high-throughput assays for the study of human islet function, we have developed two methodologies: multiple automated perifusion to determine islet hormone secretion and high-throughput kinetic imaging to examine islet cellular responses. Both technologies use fully automated devices that allow performing simultaneous experiments on multiple islet preparations. Our results illustrate that these technologies can be applied to study the functional status and explore the pharmacological profiles of islet cells. These methodologies will enable functional characterization of human islet preparations before transplantation and thereby provide the basis for the establishment of predictive tests for β-cell potency.
Collapse
Affiliation(s)
- Over Cabrera
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | | | - Dora M. Berman
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alberto Fachado
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Ramon Poo
- Biorep® Technologies, Inc., Miami, FL, USA
| | - Aisha Khan
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Norma S. Kenyon
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Per-Olof Berggren
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Alejandro Caicedo
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Iuamoto LR, Franco AS, Suguita FY, Essu FF, Oliveira LT, Kato JM, Torsani MB, Meyer A, Andraus W, Chaib E, D'Albuquerque LAC. Human islet xenotransplantation in rodents: A literature review of experimental model trends. Clinics (Sao Paulo) 2017; 72:238-243. [PMID: 28492724 PMCID: PMC5401612 DOI: 10.6061/clinics/2017(04)08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Among the innovations for the treatment of type 1 diabetes, islet transplantation is a less invasive method of treatment, although it is still in development. One of the greatest barriers to this technique is the low number of pancreas donors and the low number of pancreases that are available for transplantation. Rodent models have been chosen in most studies of islet rejection and type 1 diabetes prevention to evaluate the quality and function of isolated human islets and to identify alternative solutions to the problem of islet scarcity. The purpose of this study is to conduct a review of islet xenotransplantation experiments from humans to rodents, to organize and analyze the parameters of these experiments, to describe trends in experimental modeling and to assess the viability of this procedure. In this study, we reviewed recently published research regarding islet xenotransplantation from humans to rodents, and we summarized the findings and organized the relevant data. The included studies were recent reports that involved xenotransplantation using human islets in a rodent model. We excluded the studies that related to isotransplantation, autotransplantation and allotransplantation. A total of 34 studies that related to xenotransplantation were selected for review based on their relevance and current data. Advances in the use of different graft sites may overcome autoimmunity and rejection after transplantation, which may solve the problem of the scarcity of islet donors in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Leandro Ryuchi Iuamoto
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | | | | | | | | | | | - Alberto Meyer
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Wellington Andraus
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Eleazar Chaib
- Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
11
|
Lecomte MJ, Pechberty S, Machado C, Da Barroca S, Ravassard P, Scharfmann R, Czernichow P, Duvillié B. Aggregation of Engineered Human β-Cells Into Pseudoislets: Insulin Secretion and Gene Expression Profile in Normoxic and Hypoxic Milieu. CELL MEDICINE 2016; 8:99-112. [PMID: 28003935 DOI: 10.3727/215517916x692843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Innovative treatments to cure type 1 diabetes are being actively researched. Among the different strategies, the replacement of β-cells has given promising results. Classically, islets from cadaveric donors are transplanted into diabetic patients, but recently phase I clinical trials that use stem cell-derived β-cells have been started. Such protocols require either an immunosuppressive treatment or the macroencapsulation of the β-cells. They involve cell aggregation and the exposure of the cells to hypoxia. Using an engineered human β-cell, we have addressed these two problems: a novel human β-cell line called EndoC-βH3 was cultured as single cells or aggregated clusters. EndoC-βH3 cells were also cultured at normal atmospheric oxygen tension (pO2 = 21%) or hypoxia (pO2 = 3%) in the presence or absence of modulators of the hypoxia-inducible factor 1α (HIF1α) pathway. Cell aggregation improved glucose-stimulated insulin secretion, demonstrating the benefit of cell-cell contacts. Low oxygen tension decreased β-cell viability and their sensitivity to glucose, but did not alter insulin production nor the insulin secretion capacity of the remaining cells. To investigate the role of HIF1α, we first used a HIF stabilizer at pO2 = 21%. This led to a mild decrease in cell viability, impaired glucose sensitivity, and altered insulin secretion. Finally, we used a HIF inhibitor on EndoC-βH3 pseudoislets exposed to hypoxia. Such treatment considerably decreased cell viability. In conclusion, aggregation of the EndoC-βH3 cells seems to be important to improve their function. A fraction of the EndoC-βH3 cells are resistant to hypoxia, depending on the level of activity of HIF1α. Thus, these cells represent a good human cell model for future investigations on islet cell transplantation analysis.
Collapse
Affiliation(s)
- Marie-José Lecomte
- Univercell-Biosolutions, Centre de recherche des Cordeliers , Paris , France
| | - Séverine Pechberty
- Univercell-Biosolutions, Centre de recherche des Cordeliers , Paris , France
| | - Cécile Machado
- Univercell-Biosolutions, Centre de recherche des Cordeliers , Paris , France
| | - Sandra Da Barroca
- Univercell-Biosolutions, Centre de recherche des Cordeliers , Paris , France
| | - Philippe Ravassard
- † Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM)-Hôpital Pitié-Salpêtrière , Paris , France
| | - Raphaël Scharfmann
- ‡INSERM U1016, Institut Cochin, Paris, France; §Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Paul Czernichow
- Univercell-Biosolutions, Centre de recherche des Cordeliers , Paris , France
| | - Bertrand Duvillié
- ‡INSERM U1016, Institut Cochin, Paris, France; §Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
12
|
Rodriguez-Brotons A, Bietiger W, Peronet C, Magisson J, Sookhareea C, Langlois A, Mura C, Jeandidier N, Pinget M, Sigrist S, Maillard E. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia. J Diabetes Res 2016; 2016:3615286. [PMID: 26824040 PMCID: PMC4707363 DOI: 10.1155/2016/3615286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm(2)) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.
Collapse
Affiliation(s)
- A. Rodriguez-Brotons
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - W. Bietiger
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - C. Peronet
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - J. Magisson
- Defymed, avenue Dante, 67200 Strasbourg, France
| | - C. Sookhareea
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - A. Langlois
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - C. Mura
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - N. Jeandidier
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), 67000 Strasbourg, France
| | - M. Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS), 67000 Strasbourg, France
| | - S. Sigrist
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - E. Maillard
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- *E. Maillard:
| |
Collapse
|
13
|
Hawthorne WJ, Williams L, Chew YV. Clinical Islet Isolation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:89-122. [PMID: 27586424 DOI: 10.1007/978-3-319-39824-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The overarching success of islet transplantation relies on the success in the laboratory to isolate the islets. This chapter focuses on the processes of human islet cell isolation and the ways to optimally provide islet cells for transplantation. The major improvements in regards to the choice of enzyme type, way the digested pancreas tissue is handled to best separate islets from the acinar and surrounding tissues, the various methods of purification of the islets, their subsequent culture and quality assurance to improve outcomes to culminate in safe and effective islet transplantation will be discussed. After decades of improvements, islet cell isolation and transplantation now clearly offer a safe, effective and feasible therapeutic treatment option for an increasing number of patients suffering from type 1 diabetes specifically for those with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| | - Lindy Williams
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Yi Vee Chew
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| |
Collapse
|
14
|
Papas KK, Bellin MD, Sutherland DER, Suszynski TM, Kitzmann JP, Avgoustiniatos ES, Gruessner AC, Mueller KR, Beilman GJ, Balamurugan AN, Loganathan G, Colton CK, Koulmanda M, Weir GC, Wilhelm JJ, Qian D, Niland JC, Hering BJ. Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation. PLoS One 2015; 10:e0134428. [PMID: 26258815 PMCID: PMC4530873 DOI: 10.1371/journal.pone.0134428] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 12/05/2022] Open
Abstract
Background Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Methods Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Results Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6–12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Conclusions Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.
Collapse
Affiliation(s)
- Klearchos K. Papas
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona, Tucson, Arizona, United States of America
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Melena D. Bellin
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - David E. R. Sutherland
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Thomas M. Suszynski
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Jennifer P. Kitzmann
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona, Tucson, Arizona, United States of America
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Efstathios S. Avgoustiniatos
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Angelika C. Gruessner
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona, Tucson, Arizona, United States of America
| | - Kathryn R. Mueller
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona, Tucson, Arizona, United States of America
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Gregory J. Beilman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Appakalai N. Balamurugan
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Gopalakrishnan Loganathan
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Clark K. Colton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Maria Koulmanda
- The Transplant Institute, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gordon C. Weir
- Joslin Diabetes Center, Boston, Massachusetts, United States of America
| | - Josh J. Wilhelm
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| | - Dajun Qian
- Information Science, City of Hope, Duarte, California, United States of America
| | - Joyce C. Niland
- Information Science, City of Hope, Duarte, California, United States of America
| | - Bernhard J. Hering
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Minneapolis, Minnesota, United States of America
| |
Collapse
|
15
|
Kim HW, Choi WS, Sorscher N, Park HJ, Tronche F, Palmiter RD, Xia Z. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo. Neurobiol Aging 2015; 36:2617-27. [PMID: 26070241 DOI: 10.1016/j.neurobiolaging.2015.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron death during aging nor does it contribute to dopamine neuron toxicity in the MPTP model of Parkinson's disease. These findings suggest the existence of alternative mechanisms of dopaminergic neuron death independent of mitochondrial complex I inhibition.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; College of Life Sciences, Sejong University, Seoul, Korea
| | - Won-Seok Choi
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Korea; College of Medicine, Chonnam National University, Gwangju, Korea
| | - Noah Sorscher
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, WA, USA
| | - Hyung Joon Park
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Korea; College of Medicine, Chonnam National University, Gwangju, Korea
| | - François Tronche
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_CR18, Neuroscience Paris-Seine, Paris, France; Centre National de la Recherche Scientifique UMR 8246, Paris, France; Institut National de la Santé et de la Rechesrche Médicale U1130, Paris, France
| | - Richard D Palmiter
- Howard Huges Medical Institute, University of Washington, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Zhengui Xia
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Re-engineering islet cell transplantation. Pharmacol Res 2015; 98:76-85. [PMID: 25814189 DOI: 10.1016/j.phrs.2015.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
We are living exciting times in the field of beta cell replacement therapies for the treatment of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel approaches are needed to make cell-based therapies more reproducible and leading to long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain this goal, by targeting immunity, promoting engraftment and sustained functional potency. We discuss herein the emerging technologies applied to this rapidly evolving field.
Collapse
|
17
|
Suszynski TM, Avgoustiniatos ES, Stein SA, Falde EJ, Hammer BE, Papas KK. Assessment of tissue-engineered islet graft viability by fluorine magnetic resonance spectroscopy. Transplant Proc 2014; 43:3221-5. [PMID: 22099762 DOI: 10.1016/j.transproceed.2011.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Despite significant progress in the last decade, islet transplantation remains an experimental therapy for a limited number of patients with type 1 diabetes. Tissue-engineered approaches may provide promising alternatives to the current clinical protocol and would benefit greatly from concurrent development of graft quality assessment techniques. This study was designed to evaluate whether viability of tissue-engineered islet grafts can be assessed using fluorine magnetic resonance spectroscopy ((19)F-MRS), by the noninvasive measurement of oxygen partial pressure (pO(2)) and the subsequent calculation of islet oxygen consumption rate (OCR). METHODS Scaffolds composed of porcine plasma were seeded with human islets and perfluorodecalin. Each graft was covered with the same volume of culture media in a Petri dish. Four scaffolds were seeded with various numbers (0-8000) of islet equivalents (IE) aliquoted from the same preparation. After randomizing run order, grafts were examined by (19)F-MRS at 37°C using a 5T spectrometer and a single-loop surface coil placed underneath. A standard inversion recovery sequence was used to obtain characteristic (19)F spin-lattice relaxation times (T1), which were converted to steady-state average pO(2) estimates using a previously determined linear calibration (R(2) = 1.000). Each condition was assessed using replicate (19)F-MRS measurements (n = 6-8). RESULTS Grafts exhibited IE dose-dependent increases in T1 and decreases in pO(2) estimates. From the difference between scaffold pO(2) estimates and ambient pO(2), the islet preparation OCR was calculated to be 95 ± 12 (mean ± standard error of the mean) nmol/(min·mg DNA) using theoretical modeling. This value compared well with OCR values measured using established methods for human islet preparations. CONCLUSIONS (19)F-MRS can be used for noninvasive pre- and possibly posttransplant assessment of tissue-engineered islet graft viability by estimating the amount of viable, oxygen-consuming tissue in a scaffold.
Collapse
Affiliation(s)
- T M Suszynski
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abdelli S, Papas KK, Mueller KR, Murtaugh MP, Hering BJ, Bonny C. Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation. PLoS One 2014; 9:e99796. [PMID: 24983249 PMCID: PMC4077704 DOI: 10.1371/journal.pone.0099796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/19/2014] [Indexed: 12/22/2022] Open
Abstract
Stress conditions generated throughout pancreatic islet processing initiate the activation of pro-inflammatory pathways and beta-cell destruction. Our goal is to identify relevant and preferably beta-specific markers to assess the activation of beta-cell stress and apoptotic mechanisms, and therefore the general quality of the islet preparation prior to transplantation. Protein expression and activation were analyzed by Western blotting and kinase assays. ATP measurements were performed by a luminescence-based assay. Oxygen consumption rate (OCR) was measured based on standard protocols using fiber optic sensors. Total RNA was used for gene expression analyzes. Our results indicate that pancreas digestion initiates a potent stress response in the islets by activating two stress kinases, c-Jun N-terminal Kinase (JNK) and p38. JNK1 protein levels remained unchanged between different islet preparations and following culture. In contrast, levels of JNK3 increased after islet culture, but varied markedly, with a subset of preparations bearing low JNK3 expression. The observed changes in JNK3 protein content strongly correlated with OCR measurements as determined by the Spearman's rank correlation coefficient rho in the matching islet samples, while inversely correlating with c-fos mRNA expression . In conclusion, pancreas digestion recruits JNK and p38 kinases that are known to participate to beta-cell apoptosis. Concomitantly, the islet isolation alters JNK3 and c-fos expression, both strongly correlating with OCR. Thus, a comparative analysis of JNK3 and c-fos expression before and after culture may provide for novel markers to assess islet quality prior to transplantation. JNK3 has the advantage over all other proposed markers to be islet-specific, and thus to provide for a marker independent of non-beta cell contamination.
Collapse
Affiliation(s)
- Saida Abdelli
- Departement of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Klearchos K. Papas
- Department of Surgery, University of Arizona, Institute for Cellular Transplantation, Tucson, Arizona, United States of America
| | - Kate R. Mueller
- Department of Surgery, University of Arizona, Institute for Cellular Transplantation, Tucson, Arizona, United States of America
| | - Mike P. Murtaugh
- Department of Veterinary and Biomedical Sciences, St. Paul, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christophe Bonny
- Departement of Medical Genetics, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Cechin S, Alvarez-Cubela S, Giraldo JA, Molano RD, Villate S, Ricordi C, Pileggi A, Inverardi L, Fraker CA, Domínguez-Bendala J. Influence of in vitro and in vivo oxygen modulation on β cell differentiation from human embryonic stem cells. Stem Cells Transl Med 2013; 3:277-89. [PMID: 24375542 DOI: 10.5966/sctm.2013-0160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The possibility of using human embryonic stem (hES) cell-derived β cells as an alternative to cadaveric islets for the treatment of type 1 diabetes is now widely acknowledged. However, current differentiation methods consistently fail to generate meaningful numbers of mature, functional β cells. In order to address this issue, we set out to explore the role of oxygen modulation in the maturation of pancreatic progenitor (PP) cells differentiated from hES cells. We have previously determined that oxygenation is a powerful driver of murine PP differentiation along the endocrine lineage of the pancreas. We hypothesized that targeting physiological oxygen partial pressure (pO2) levels seen in mature islets would help the differentiation of PP cells along the β-cell lineage. This hypothesis was tested both in vivo (by exposing PP-transplanted immunodeficient mice to a daily hyperbaric oxygen regimen) and in vitro (by allowing PP cells to mature in a perfluorocarbon-based culture device designed to carefully adjust pO2 to a desired range). Our results show that oxygen modulation does indeed contribute to enhanced maturation of PP cells, as evidenced by improved engraftment, segregation of α and β cells, body weight maintenance, and rate of diabetes reversal in vivo, and by elevated expression of pancreatic endocrine makers, β-cell differentiation yield, and insulin production in vitro. Our studies confirm the importance of oxygen modulation as a key variable to consider in the design of β-cell differentiation protocols and open the door to future strategies for the transplantation of fully mature β cells.
Collapse
Affiliation(s)
- Sirlene Cechin
- Diabetes Research Institute, Department of Surgery, Department of Microbiology and Immunology, Department of Biomedical Engineering, Department of Medicine, and Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hals IK, Rokstad AM, Strand BL, Oberholzer J, Grill V. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. J Diabetes Res 2013; 2013:374925. [PMID: 24364039 PMCID: PMC3864170 DOI: 10.1155/2013/374925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/08/2013] [Indexed: 01/06/2023] Open
Abstract
Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1-0.3% O2 for 8 h, followed by reoxygenation) on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8 ± 3.5% in encapsulated and 42.9 ± 5.2% in nonencapsulated islets (P < 0.2). Nonencapsulated islets released 37.7% (median) more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P < 0.001). Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0 ± 6.1% versus 24.8 ± 5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.
Collapse
Affiliation(s)
- I. K. Hals
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- *I. K. Hals:
| | - A. M. Rokstad
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
| | - B. L. Strand
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- Department of Biotechnology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - J. Oberholzer
- Department of Surgery, University of Illinois, IL at Chicago, Chicago, IL 60612, USA
| | - V. Grill
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Postbox 8905, 7491 Trondheim, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Postbox 3250, 7006 Trondheim, Norway
| |
Collapse
|
21
|
Fraker CA, Cechin S, Álvarez-Cubela S, Echeverri F, Bernal A, Poo R, Ricordi C, Inverardi L, Domínguez-Bendala J. A physiological pattern of oxygenation using perfluorocarbon-based culture devices maximizes pancreatic islet viability and enhances β-cell function. Cell Transplant 2012; 22:1723-33. [PMID: 23068091 DOI: 10.3727/096368912x657873] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Conventional culture vessels are not designed for physiological oxygen (O2) delivery. Both hyperoxia and hypoxia-commonly observed when culturing cells in regular plasticware-have been linked to reduced cellular function and death. Pancreatic islets, used for the clinical treatment of diabetes, are especially sensitive to sub- and supraphysiological O2 concentrations. A result of current culture standards is that a high percentage of islet preparations are never transplanted because of cell death and loss of function in the 24-48 h postisolation. Here, we describe a new culture system designed to provide quasiphysiological oxygenation to islets in culture. The use of dishes where islets rest atop a perfluorocarbon (PFC)-based membrane, coupled with a careful adjustment of environmental O2 concentration to target the islet physiological pO2 range, resulted in dramatic gains in viability and function. These observations underline the importance of approximating culture conditions as closely as possible to those of the native microenvironment, and fill a widely acknowledged gap in our ability to preserve islet functionality in vitro. As stem cell-derived insulin-producing cells are likely to suffer from the same limitations as those observed in real islets, our findings are especially timely in the context of current efforts to define renewable sources for transplantation.
Collapse
Affiliation(s)
- Chris A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pepper AR, Hasilo CP, Melling CWJ, Mazzuca DM, Vilk G, Zou G, White DJG. The islet size to oxygen consumption ratio reliably predicts reversal of diabetes posttransplant. Cell Transplant 2012; 21:2797-804. [PMID: 22943589 DOI: 10.3727/096368912x653273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
β-Cell replacement therapy by either whole-organ pancreas or islets of Langerhans transplantation can restore carbohydrate control to diabetic patients and reduces complications associated with the disease. One of the variables inherent in islet transplantation is the isolation of functional islets from donor pancreata. Islet isolations fail to consistently produce good-quality functional islets. A rapid pretransplant assay to determine posttransplant function of islets would be an invaluable tool. We have tested the novel hypothesis that modified oxygen consumption rates (OCR), standardized to DNA quantity (nmol/min-mg DNA), would serve as a pretransplant assessment of the metabolic potency of the islets postisolation. This study compares the ability of current in vitro assays to predict in vivo restoration of normoglycemia in a diabetic nude mouse posttransplantation of adult pig islets. There is known to be a diversity of islet sizes within each preparation. This parameter has not heretofore been effectively considered a critical factor in islet engraftment. Our results suggest a surprising finding that islet size influences the probability of restoring carbohydrate control. Based on this observation, we thus developed a novel predictor of islet graft function that combines the effects of both islet OCR and size. When OCR was divided by the islet index (size), a highly significant predictor of graft function was established (p = 0.0002, n = 75). Furthermore, when OCR/islet index values exceeded 70.0 nmol/min-mg DNA/islet index, an effective threshold of diabetes reversal was observed. This assay can be performed with as few as 1,000 islet equivalents (IEQ) and conducted in less than 60 min. Our data suggest that, using this novel method to assess islet cell function prior to transplantation, OCR/islet index thresholds provide a valuable tool in identifying which islet preparations are most likely to restore glycemic control posttransplant.
Collapse
Affiliation(s)
- Andrew R Pepper
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Jin SM, Shin JS, Kim KS, Gong CH, Park SK, Kim JS, Yeom SC, Hwang ES, Lee CT, Kim SJ, Park CG. Islet isolation from adult designated pathogen-free pigs: use of the newer bovine nervous tissue-free enzymes and a revised donor selection strategy would improve the islet graft function. Xenotransplantation 2012; 18:369-79. [PMID: 22168143 DOI: 10.1111/j.1399-3089.2011.00677.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In clinical trials using adult porcine islet products, islets should be isolated from the designated pathogen-free (DPF) pigs under the current good manufacturing practice (GMP) regulations. Our previous studies suggested that male DPF pigs are better donors than retired breeder pigs and histomorphometrical parameters of donor pancreas predict the porcine islet quality. We aimed to investigate whether the use of the newer bovine nervous tissue-free enzymes and a revised donor selection strategy could improve the islet graft function in the context of islet isolation with DPF pigs. METHODS Using 30 DPF pigs within a closed herd, we compared the islet yield of porcine islets isolated with Liberase PI (n = 11, as a historical control group), Liberase MTF C/T, which is a GMP-grade enzyme (n = 12), and CIzyme collagenase MA/BP protease (n = 7). We analyzed the relationship between the diabetes reversal rate of recipient NOD/SCID mice (n = 75) and histomorphometric parameters of each donor pancreas as well as donor characteristics. RESULTS Proportion of islets larger than 200 μm from the biopsied donor pancreas (P = 0.006) better predicted islet yield than age (P = 0.760) or body weight (P = 0.371) of donor. The proportion of islets larger than 200 μm from the biopsied donor pancreas was not related to the sex of the donor miniature pig (P = 0.358). The islet yield obtained with the three enzymes did not differ, even after stratification of the donor with the histomorphometric parameters of the biopsied donor pancreas and the sex of donor. The use of the newer bovine nervous tissue-free enzymes (P < 0.001), a higher proportion of large islets in donor pancreas (P = 0.006), and a male sex of the donor (P = 0.025) were independent predictors of earlier diabetes reversal. CONCLUSIONS Use of the newer bovine nervous tissue-free enzymes including a GMP-grade enzyme resulted in better islet quality than that of islet isolated using Liberase PI. To obtain high-quality islet from DPF pigs, the donor should be male pig and histomorphometrical parameters from donor pancreas should be considered.
Collapse
Affiliation(s)
- Sang-Man Jin
- Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One 2012; 7:e33023. [PMID: 22606219 PMCID: PMC3351473 DOI: 10.1371/journal.pone.0033023] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/09/2012] [Indexed: 11/19/2022] Open
Abstract
Background The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets. Methodology/Principal Findings The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets. Conclusions/Significance The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells.
Collapse
|
25
|
Chen W, Lisowski M, Khalil G, Sweet IR, Shen AQ. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets. PLoS One 2012; 7:e33070. [PMID: 22479359 PMCID: PMC3315556 DOI: 10.1371/journal.pone.0033070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/03/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. METHODOLOGY/PRINCIPAL FINDINGS Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. CONCLUSIONS/SIGNIFICANCE An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other biologically important molecules.
Collapse
Affiliation(s)
- Wanyu Chen
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Mark Lisowski
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gamal Khalil
- Department of Aeronautics and Astronautics Department, University of Washington, Seattle, Washington, Unites States of America
| | - Ian R. Sweet
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Amy Q. Shen
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Yang J, Pollock JS, Carmines PK. NADPH oxidase and PKC contribute to increased Na transport by the thick ascending limb during type 1 diabetes. Hypertension 2011; 59:431-6. [PMID: 22203737 DOI: 10.1161/hypertensionaha.111.184796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes triggers protein kinase C (PKC)-dependent NADPH oxidase activation in the renal medullary thick ascending limb (mTAL), resulting in accelerated superoxide production. As acute exposure to superoxide stimulates NaCl transport by the mTAL, we hypothesized that diabetes increases mTAL Na(+) transport through PKC-dependent and NADPH oxidase-dependent mechanisms. An O(2)-sensitive fluoroprobe was used to measure O(2) consumption by mTALs from rats with streptozotocin-induced diabetes and sham rats. In sham mTALs, total O(2) consumption was evident as a 0.34±0.03 U change in normalized relative fluorescence (ΔNRF)/min per mg protein. Ouabain (2 mmol/L) reduced O(2) consumption by 69±4% and 500 μmol/L furosemide reduced O(2) consumption by 58±8%. Total O(2) consumption was accelerated in mTAL from diabetic rats (0.74±0.07 ΔNRF/min/mg protein; P<0.05 versus sham), reflecting increases in ouabain- and furosemide-sensitive O(2) consumption. NADPH oxidase inhibition (100 μmol/L apocynin) reduced furosemide-sensitive O(2) consumption by mTAL from diabetic rats to values not different from sham. The PKC inhibitor calphostin C (1 μmol/L) or the PKCα/β inhibitor Gö6976 (1 μmol/L) decreased furosemide-sensitive O(2) consumption in both groups, achieving values that did not differ between sham and diabetic. PKCβ inhibition had no effect in either group. Similar inhibitory patterns were evident with regard to ouabain-sensitive O(2) consumption. We conclude that NADPH oxidase and PKC (primarily PKCα) contribute to an increase in O(2) consumption by the mTAL during type 1 diabetes through effects on the ouabain-sensitive Na(+)-K(+)-ATPase and furosemide-sensitive Na(+)-K(+)-2Cl(-) cotransporter that are primarily responsible for active transport Na(+) reabsorption by this nephron segment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
27
|
Meyer A, Condon RGG, Keil G, Jhaveri N, Liu Z, Tsao YS. Fluorinert, an oxygen carrier, improves cell culture performance in deep square 96-well plates by facilitating oxygen transfer. Biotechnol Prog 2011; 28:171-8. [DOI: 10.1002/btpr.712] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 06/14/2011] [Indexed: 11/06/2022]
|
28
|
Bentsi-Barnes K, Doyle ME, Abad D, Kandeel F, Al-Abdullah I. Detailed protocol for evaluation of dynamic perifusion of human islets to assess β-cell function. Islets 2011; 3:284-90. [PMID: 21811103 PMCID: PMC3219161 DOI: 10.4161/isl.3.5.15938] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The definitive measure of β-cell quality in an islet is the measurement of β-cell function, i.e., the ability of the islets to release insulin in a controlled manner in response to minute changes in ambient glucose levels. Continuous flow or dynamic perifusion of the solution containing glucose and secretagogues through the islets is the most accurate assessment of regulated insulin release in vitro. Here, we describe in detail a low cost, mini-perifusion system that can be adapted to any laboratory to assess islet function by examining dynamic insulin release in response to elevated glucose concentrations and addition of secretagogues. Human islets with purity > 80% and viability > 90% were perifused with low glucose (1 mM) and subsequently challenged with high glucose (16.8 mM ± KCl, 25 mM). A prototypical biphasic response to elevated glucose concentrations was observed with an average 8-fold (above basal) increase in insulin concentration at peak values. Similarly, perifusion with carbachol or exendin-4 (Byetta) with glucose (6 mM) resulted in 1.32- and 1.35-fold increase in insulin secretion above basal. Islets could be maintained in the perifusion apparatus and continued to respond to glucose for up to 3 h. At minimal financial cost and technical expertise, this apparatus can be set-up in any biological laboratory to evaluate regulated hormone release from many cell types in less than 6 h. This will allow other laboratories to measure insulin responses to their drug or modifier of interest in vitro, in a manner that better approximates islet function in vivo.
Collapse
|
29
|
Jin SM, Kim KS, Lee SY, Gong CH, Park SK, Shin JS, Park CG, Kim SJ. The sequential combination of a JNK inhibitor and simvastatin protects porcine islets from peritransplant apoptosis and inflammation. Cell Transplant 2010; 20:1139-51. [PMID: 21176401 DOI: 10.3727/096368910x550170] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intraductal administration of a c-Jun NH(2)-terminal kinase (JNK) inhibitor enhances islet viability. However, its role in reducing the inflammatory response in islets is unknown. It is also unknown whether a JNK inhibitor could act in synergy with statins. We examined if the sequential combination of a JNK inhibitor and simvastatin would reduce islet inflammation and improve islet viability. We performed porcine islet isolation with or without intraductal administration of SP600125, a JNK inhibitor. This was followed by culture medium supplementation with either nicotinamide alone or nicotinamide plus simvastatin. We assessed the viability of islets by flow cytometry, islet loss during overnight culture, graft function in NOD/SCID mice, and expression of inflammation-related genes in islets. The sequential combination of a JNK inhibitor and simvastatin increased the β-cell viability index of porcine islets cultured overnight (p = 0.015) as well as islet viability as assessed by a DNA binding dye staining (p = 0.011). The combination of a JNK inhibitor and simvastatin significantly increased the islet survival rate (p = 0.027) when the histomorphometry of donor pancreas indicated a large islet proportion of greater than 50.55%. When we transplanted the same islet mass per recipient for each group, there was no difference in overall islet graft function. Intraductal administration of JNK inhibitor significantly suppressed mRNA expression levels of interleukin-1β (IL-1β), interferon-γ, tumor necrosis factor-α, IL-6, IL-8, and macrophage chemoattractant protein-1. It also decreased the concentration of IL-1β (p = 0.040) and IL-8 (p = 0.023) in the culture supernatant. In conclusion, the sequential combination of a JNK inhibitor and simvastatin protected porcine islets from peritransplant apoptosis. Inhibition of JNK reduced the inflammatory response and could be considered an alternative target for suppression of porcine islet inflammation.
Collapse
Affiliation(s)
- Sang-Man Jin
- Xenotransplantation Research Center, Seoul National University Hospital, 103 Daehak-ro Jongno-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Papas KK, Colton CK, Qipo A, Wu H, Nelson RA, Hering BJ, Weir GC, Koulmanda M. Prediction of marginal mass required for successful islet transplantation. J INVEST SURG 2010; 23:28-34. [PMID: 20233002 DOI: 10.3109/08941930903410825] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet quality assessment methods for predicting diabetes reversal (DR) following transplantation are needed. We investigated two islet parameters, oxygen consumption rate (OCR) and OCR per DNA content, to predict transplantation outcome and explored the impact of islet quality on marginal islet mass for DR. Outcomes in immunosuppressed diabetic mice were evaluated by transplanting mixtures of healthy and purposely damaged rat islets for systematic variation of OCR/DNA over a wide range. The probability of DR increased with increasing transplanted OCR and OCR/DNA. On coordinates of OCR versus OCR/DNA, data fell into regions in which DR occurred in all, some, or none of the animals with a sharp threshold of around 150-nmol/min mg DNA. A model incorporating both parameters predicted transplantation outcome with sensitivity and specificity of 93% and 94%, respectively. Marginal mass was not constant, depended on OCR/DNA, and increased from 2,800 to over 100,000 islet equivalents/kg body weight as OCR/DNA decreased. We conclude that measurements of OCR and OCR/DNA are useful for predicting transplantation outcome in this model system, and OCR/DNA can be used to estimate the marginal mass required for reversing diabetes. Because human clinical islet preparations in a previous study had OCR/DNA.
Collapse
Affiliation(s)
- Klearchos K Papas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND The successful treatment of patients with type 1 diabetes by islet transplantation is affected by a multitude of factors of which infusion of the highest quality tissue is essential. The current standard pretransplant quality assessments lack sensitivity, accuracy, and objectivity in the determination of islet viability and potency. We hypothesized that a multiparametric approach focused on islet cell metabolic state, mitochondrial integrity, and in vitro glucose-stimulated insulin secretion (GSIS) could provide data predictive of in vivo function. The objective of this study was to validate a novel set of islet quality assays and develop a simplified islet quality scoring system for both basic research and clinical applications. METHODS A series of 42 human islet preparations were screened using standard and novel methods, which included determination of yield, viability by fluorescent microscopy, GSIS, percentage of islet loss in culture, quantification of adenine nucleotides, flow cytometric measurement of viability, apoptosis, and mitochondrial membrane potential (MMP). In vivo functional potency was tested by minimal model transplant in streptozotocin-induced diabetic NOD.scid mice. RESULTS Functionally potent islet preparations showed significantly greater numbers of cells with polarized MMP, higher ATP-to-ADP ratios, and increased glucose-induced insulin secretion. The MMP, ATP-to-ADP ratio, and GSIS data were combined into a single islet scoring formula that showed more than 86% accuracy in predicting in vivo functional potency. CONCLUSIONS Our study demonstrates that a multiparametric approach using objective assessments focused on islet cell mitochondrial integrity and in vitro function can provide data predictive of in vivo function.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation. Development, testing, and validation of such assays have been the subject of intense investigation for the last decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. RECENT FINDINGS Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate, especially when conducted with intact islets, appear most promising in evaluating their quality prior to islet cell transplantation. Prospective, quantitative assays based on measurements of oxygen consumption rate with intact islets have been developed, validated, and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. CONCLUSION More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting.
Collapse
|
33
|
Isolation of Viable Porcine Islets by Selective Osmotic Shock Without Enzymatic Digestion. Transplant Proc 2010; 42:381-6. [DOI: 10.1016/j.transproceed.2009.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Jin SM, Kim KS, Lee SY, Gong CH, Park SK, Yu JE, Yeom SC, Yoon TW, Ha J, Park CG, Kim SJ. Enhanced prediction of porcine islet yield and posttransplant outcome using a combination of quantitative histomorphometric parameters and flow cytometry. Cell Transplant 2009; 19:299-311. [PMID: 19951461 DOI: 10.3727/096368909x481638] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Prediction of islet yield and posttransplant outcome is essential for clinical porcine islet xenotransplantation. Although several histomorphometric parameters of biopsied porcine pancreases are predictive of islet yield, their role in the prediction of in vivo islet potency is unknown. We investigated which histomorphometrical parameter best predicts islet yield and function, and determined whether it enhanced the predictive value of in vitro islet function tests for the prediction of posttransplant outcome. We analyzed the histomorphometry of pancreases from which 60 adult pig islet isolations were obtained. Islet function was assessed using the beta-cell viability index based on flow cytometry analysis, oxygen consumption rate, ADP/ATP ratio, and/or concurrent transplantation into NOD/SCID mice. Receiver operating characteristic (ROC) analysis revealed that only islet equivalent (IEQ)/cm(2) and the number of islets >200 microm in diameter significantly predicted an islet yield of >2000 IEQ/g (p < 0.001 for both) and in vivo islet potency (p = 0.024 and p = 0.019, respectively). Although not predictive of islet yield, a high proportion of large islets (>100 microm in diameter) best predicted diabetes reversal (p = 0.001). Multiple regression analysis revealed that the beta-cell viability index (p = 0.003) and the proportion of islets >100 microm in diameter (p = 0.048) independently predicted mean posttransplant blood glucose level (BGL). When BGL was estimated using both these parameters [area under the ROC curve (AUC), 0.868; 95% confidence interval (CI), 0.730-1.006], it predicted posttransplant outcome more accurately than the beta-cell viability index alone (AUC, 0.742; 95% CI, 0.544-0.939). In conclusion, we identified the best histomorphometric predictors of islet yield and posttransplant outcome. This further enhanced the predictive value of the flow cytometry analysis. These parameters should be useful for predicting islet yield and in vivo potency before clinical adult porcine islet xenotransplantation.
Collapse
Affiliation(s)
- Sang-Man Jin
- Xenotransplantation Research Center, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hanson MS, Steffen A, Danobeitia JS, Ludwig B, Fernandez LA. Flow cytometric quantification of glucose-stimulated beta-cell metabolic flux can reveal impaired islet functional potency. Cell Transplant 2009; 17:1337-47. [PMID: 19364071 DOI: 10.3727/096368908787648038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to develop a multiparametric flow cytometry assay to simultaneously quantify isolated pancreatic islet cell viability, apoptosis, and glucose-induced metabolic flux. INS-1 and rat islet beta-cells were stained with fluorescent probes for cell viability (ToPro3), apoptosis (Annexin V and VADFMK), and intracellular calcium (Ca2+(i)) (Fura Red), stimulated with glucose, and analyzed on a FACS Vantage flow cytometer. Glucose-induced metabolic activity was indicated by changes in Fura Red fluorescence and the autofluorescence of the pyridine [NAD(P)H] and flavin (FAD/FMN) nucleotides. Rat islets cultured under conditions of proinflammatory cytokine-induced oxidative stress were evaluated by flow cytometry and transplantation into diabetic mice. INS-1 and rat islet beta-cell health and metabolic activity were quantified in response to elevated glucose dose and inhibitors of glycolysis and mitochondrial function. Changes in metabolite fluorescence were converted to an area under the curve (AUC) value. Rat islets cultured under oxidative stress conditions showed decreased viability, increased apoptosis, and decreased glucose-induced metabolic activity indicated by reduced AUC for pyridine and flavin nucleotides and Ca2+(i). Reduced metabolite AUC measured by flow cytometry correlated with the inability to reverse diabetes in mice. Single cell flow cytometry can simultaneously quantify both overall islet cell health and beta-cell glucose responsiveness as indicators of functional potency.
Collapse
Affiliation(s)
- Matthew S Hanson
- Department of Surgery, Division of Transplantation, University of Wisconsin-Madison, Madison, WI 53792-3236, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
BACKGROUND Islet transplantation success depends on the number and quality of islets transplanted. This study aimed at exploring the molecular mechanisms associated with cold pancreas preservation and their impact on islet cell survival and function. METHODS Rat pancreata were stored in cold University of Wisconsin preservation solution for short (3 hr; control) or long (18 hr) cold ischemia times (CIT). RESULTS Pancreata exposed to long CIT yielded lower islet numbers and showed reduced cellular viability; isolated islets displayed higher levels of phosphorylated stress-activated protein kinase (c-jun N-terminal Kinase and Mitogen-Activated Protein Kinase-p38), and chemokine (C-C) ligand-3, and lower levels of vascular endothelial growth factor, interleukins (IL)-9 and IL-10. Islets obtained from long-CIT pancreata were functionally impaired after transplantation. Differential proteomic expression in pancreatic tissue after CIT included increased eukaryotic translation elongation factor-1-alpha-1 (apoptosis related) and reduced Clade-B (serine protease inhibitor). CONCLUSIONS Our study indicates that cold ischemia stimulates inflammatory pathways (chemokine (c-c)ligand-3, phosphorylation of c-jun N-terminal Kinase and mitogen-activated protein kinase-p38, and eukaryotic translation elongation factor-1-alpha-1) and decreases repair/cytoprotective pathways (IL-10, vascular endothelial growth factor, and Clade-B), all of which may negatively affect the quality and mass of islets obtained from a donor pancreas.
Collapse
|
37
|
Yamamoto T, Horiguchi A, Ito M, Nagata H, Ichii H, Ricordi C, Miyakawa S. Quality control for clinical islet transplantation: organ procurement and preservation, the islet processing facility, isolation, and potency tests. ACTA ACUST UNITED AC 2009; 16:131-6. [PMID: 19242650 DOI: 10.1007/s00534-009-0064-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/15/2008] [Indexed: 11/28/2022]
Abstract
Pancreatic islet transplantation has become one of the ideal treatments for patients with type 1 diabetes mellitus due to improvements in isolation techniques and immunosuppression regimens. In order to ensure the safety and rights of patients, isolated islets need to meet the criteria for regulation as both a biological product and a drug product. For the constant success of transplantation, therefore, all investigators involved in clinical islet transplantation must strive to ensure the safety, purity, and potency of islets in all the phases of clinical islet isolation and transplantation. In this review, we summarize the quality control for clinical islet isolation and transplantation, and the latest topics of pre-transplant islet assessment.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Department of Surgery, School of Medicine, Fujita Health University, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ichii H, Ricordi C. Current status of islet cell transplantation. ACTA ACUST UNITED AC 2008; 16:101-12. [PMID: 19110649 DOI: 10.1007/s00534-008-0021-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/15/2008] [Indexed: 02/08/2023]
Abstract
Despite substantial advances in islet isolation methods and immunosuppressive protocol, pancreatic islet cell transplantation remains an experimental procedure currently limited to the most severe cases of type 1 diabetes mellitus. The objectives of this treatment are to prevent severe hypoglycemic episodes in patients with hypoglycemia unawareness and to achieve a more physiological metabolic control. Insulin independence and long term-graft function with improvement of quality of life have been obtained in several international islet transplant centers. However, experimental trials of islet transplantation clearly highlighted several obstacles that remain to be overcome before the procedure could be proposed to a much larger patient population. This review provides a brief historical perspective of islet transplantation, islet isolation techniques, the transplant procedure, immunosuppressive therapy, and outlines current challenges and future directions in clinical islet transplantation.
Collapse
Affiliation(s)
- Hirohito Ichii
- Cell Transplant Center, Diabetes Research Institute, University of Miami Leonard M Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
39
|
Abstract
Substantial amounts of nonendocrine cells are implanted as part of human islet grafts, and a possible influence of nonendocrine cells on clinical islet transplantation outcome has been postulated. There are currently no product release criteria specific for nonendocrine cells due to lack of available methods. The aims of this study were to develop a method for the evaluation of pancreatic ductal cells (PDCs) for clinical islet transplantation and to characterize them regarding phenotype, viability, and function. We assessed 161 human islet preparations using laser scanning cytometry (LSC/iCys) for phenotypic analysis of nonendocrine cells and flow cytometry (FACS) for PDC viability. PDC and beta-cells obtained from different density fractions during the islet cell purification were compared in terms of viability. Furthermore, we examined PDC ability to produce proinflammatory cytokines/chemokines, vascular endothelial growth factor (VEGF) and tissue factor (TF) relevant to islet graft outcome. Phenotypic analysis by LSC/iCys indicated that single staining for CK19 or CA19-9 was not enough for identifying PDCs, and that double staining for amylase and CK19 or CA19-9 allowed for quantitative evaluation of acinar cells and PDC content in human islet preparation. PDC showed a significantly higher viability than beta-cells (PDC vs beta-cell: 75.5+/-13.9 and 62.7+/-18.7%; P<0.0001). Although beta-cell viability was independent of its density, that of PDCs was higher as the density from which they were recovered increased. There was no correlation between PDCs and beta-cell viability (R(2)=0.0078). PDCs sorted from high-density fractions produced significantly higher amounts of proinflammatory mediators and VEGF, but not TF. We conclude that PDCs isolated from different fractions had different viability and functions. The precise characterization and assessment of these cells in addition to beta-cells in human islet cell products may be of assistance in understanding their contribution to islet engraftment and in developing strategies to enhance islet graft function.
Collapse
|
40
|
Mancarella R, Del Guerra S, Masini M, Bugliani M, Valgimigli L, Pedulli GF, Paolini M, Canistro D, Armando A, Soleti A, Filipponi F, Mosca F, Boggi U, Del Prato S, Marchetti P, Lupi R. Beneficial Effect of the Nonpeptidyl Low Molecular Weight Radical Scavenger IAC on Cultured Human Islet Function. Cell Transplant 2008; 17:1271-6. [DOI: 10.3727/096368908787236639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined a possible protective effect of the nonpeptidyl low molecular weight radical scavenger IAC [bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decanedioate di-hydrochloride] on isolated human islet cells against isolation and culture oxidative stress. Islets isolated from pancreases of nondiabetic multiorgan donors by collagenase digestion were purified by density gradient centrifugation. After the isolation, islets were either exposed or not exposed for 7 days to 10 μmol/L IAC. We found that IAC markedly reduced oxidative stress and ameliorated islets function. These results suggest that the use of IAC could be an interesting pharmacological approach for the treatment of the islets before transplantation.
Collapse
Affiliation(s)
- Rita Mancarella
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Silvia Del Guerra
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Matilde Masini
- Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Luca Valgimigli
- Department of Organic Chemistry “A. Mangini”, University of Bologna, Bologna, Italy
| | - Gian Franco Pedulli
- Department of Organic Chemistry “A. Mangini”, University of Bologna, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacology, Molecular Toxicology Unit, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacology, Molecular Toxicology Unit, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | | | - Franco Filipponi
- Department of Oncology and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Franco Mosca
- Department of Oncology and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Department of Oncology and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Stefano Del Prato
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A 2008; 105:15136-41. [PMID: 18812510 DOI: 10.1073/pnas.0807581105] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture. Although dopaminergic neurons were more sensitive than other neurons in these cultures to cell death induced by rotenone, MPP(+), or paraquat treatments, the absence of complex I activity did not protect the dopaminergic neurons, as would be expected if these compounds act by inhibiting complex 1. In fact, the dopaminergic neurons were more sensitive to rotenone. These data suggest that dopaminergic neuron death induced by treatment with rotenone, MPP(+), or paraquat is independent of complex I inhibition.
Collapse
|
42
|
Sweet IR, Gilbert M, Scott S, Todorov I, Jensen R, Nair I, Al-Abdullah I, Rawson J, Kandeel F, Ferreri K. Glucose-stimulated increment in oxygen consumption rate as a standardized test of human islet quality. Am J Transplant 2008; 8:183-92. [PMID: 18021279 DOI: 10.1111/j.1600-6143.2007.02041.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Standardized assessment of islet quality is imperative for clinical islet transplantation. We have previously shown that the increment in oxygen consumption rate stimulated by glucose (DeltaOCR(glc)) can predict in vivo efficacy of islet transplantation in mice. To further evaluate the approach, we studied three factors: islet specificity, islet composition and agreement between results obtained by different groups. Equivalent perifusion systems were set up at the City of Hope and the University of Washington and the values of DeltaOCR(glc) obtained at both institutions were compared. Islet specificity was determined by comparing DeltaOCR(glc) in islet and nonislet tissue. The DeltaOCR(glc) ranged from 0.01 to 0.19 nmol/min/100 islets (n = 14), a wide range in islet quality, but the values obtained by the two centers were similar. The contribution from nonislet impurities was negligible (DeltaOCR(glc) was 0.12 nmol/min/100 islets vs. 0.007 nmol/min/100 nonislet clusters). The DeltaOCR(glc) was statistically independent of percent beta cells, demonstrating that DeltaOCR(glc) is governed more by islet quality than by islet composition. The DeltaOCR(glc), but not the absolute level of OCR, was predictive of reversal of hyperglycemia in diabetic mice. These demonstrations lay the foundation for testing DeltaOCR(glc) as a measurement of islet quality for human islet transplantation.
Collapse
Affiliation(s)
- I R Sweet
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Deterioration and Variability of Highly Purified Collagenase Blends Used in Clinical Islet Isolation. Transplantation 2007; 84:997-1002. [DOI: 10.1097/01.tp.0000284979.48497.de] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Ichii H, Sakuma Y, Pileggi A, Fraker C, Alvarez A, Montelongo J, Szust J, Khan A, Inverardi L, Naziruddin B, Levy MF, Klintmalm GB, Goss JA, Alejandro R, Ricordi C. Shipment of human islets for transplantation. Am J Transplant 2007; 7:1010-20. [PMID: 17391141 DOI: 10.1111/j.1600-6143.2006.01687.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of regional human islet cell processing centers (ICPC) supporting distant clinical islet transplantation programs (CITP) has proven successful in recent clinical trials. Standardization of islet shipping protocols is needed to preserve cell product identity, quantity, quality and sterility, and to meet criteria for transplantation. We evaluated the use of gas-permeable bags for human islet preparation shipment from a single ICPC to two remote CITPs. Product release tests (counts, purity, viability, sterility and potency) were performed at both centers using identical protocols to determine adequacy for transplantation.Thirty-five islet preparations were shipped either immediately after isolation (n = 20) or following culture (n = 15). Islet recovery rate after shipment was higher in cultured preparations, when compared to those not cultured (91.2 +/- 4.9% vs. 72.9 +/- 4.7%, respectively; p < 0.05), though the overall recovery rate based on isolation and pre-transplant counts was comparable (72.9 +/- 4.7% vs. 70.4 +/- 3.5%, respectively; p = N.S.). All preparations met product release criteria for transplantation. Additional experiments showed that gas-permeable bags led to improved recovery and potency, when compared to 50-mL conical tubes or to non-gas-permeable bags for shipment.Collectively, our data demonstrate that the use of gas-permeable bags is efficient for clinical-grade and should be preferred also for the shipment of research-grade islet preparations.
Collapse
Affiliation(s)
- H Ichii
- Cell Transplant Center, Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rapid Method for Assessing Oxygen Consumption Rate of Cells from Transient-state Measurements of Pericellular Dissolved Oxygen Concentration. Cytotechnology 2005. [DOI: 10.1007/s10616-006-6353-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|