1
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Xie C, Wang K, Peng J, Jiang X, Pan S, Wang L, Wu Y, Guan Y. Efficacy and safety of human-derived neural stem cell in patients with ischaemic stroke: study protocol for a randomised controlled trial. BMJ Open 2022; 12:e055108. [PMID: 36351721 PMCID: PMC9644315 DOI: 10.1136/bmjopen-2021-055108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Stroke is the most common cause of neurological disability in adults worldwide. Neural stem cell (NSC) transplantation has shown promising results as a treatment for stroke in animal experiments. The pilot investigation of stem cells in stroke phase 1 and phase 2 trials showed that transplantation of the highest dose (20 million cells) was well tolerated. Preliminary clinical benefits have also been observed. However, the trials were open-label and had a small sample size. Furthermore, human NSCs (hNSCs) were intracerebrally implanted, and some serious adverse events were considered to be related to the surgical procedure. Therefore, we plan to conduct a double-blinded, randomised controlled trial to test the safety and efficacy of intranasal injection of hNSCs. METHODS AND ANALYSIS This single-centre, randomised, double-blinded, parallel-controlled trial will be conducted in China. Sixty patients with ischaemic stroke who met the qualification criteria will be randomly divided into two groups: the NSCs and control groups. All participants will receive intranasal administration of hNSCs or placebo for 4 consecutive weeks. Patients will be followed up at baseline and at 4, 12, 24 and 48 weeks after intervention. The primary outcome is the National Institutes of Health Stroke Scale score (4, 12, 24 weeks after intervention). Secondary outcomes include the modified Rankin scale, Barthel index, Mini-Mental State Examination score (4, 12, 24 weeks after intervention) and cranial MRI changes (24 and 48 weeks after intervention). All adverse events will be recorded during the study period. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of Ren Ji Hospital (2018-009). All subjects will provide informed consent. The results will be accessible in peer-reviewed publications and will be presented at academic conferences. TRIAL REGISTRATION ChiCTR1900022741; Chinese Clinical Trial Registry.
Collapse
Affiliation(s)
- Chong Xie
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Kan Wang
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jing Peng
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Xianguo Jiang
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Shuting Pan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Liping Wang
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yifan Wu
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yangtai Guan
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
3
|
Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun 2019; 10:4491. [PMID: 31582751 PMCID: PMC6776618 DOI: 10.1038/s41467-019-12472-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells. Islet transplantation is a feasible approach to treat type I diabetes, however inflammation and poor vascularisation impair long-term engraftment. Here the authors show that incorporating human amniotic epithelial cells into islet organoids improves engraftment and function of organoids, through enhanced revascularisation.
Collapse
|
4
|
Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, Vethe H, Paulo JA, Joosten AM, Berney T, Bosco D, Dorrell C, Grompe M, Ræder H, Roep BO, Thorel F, Herrera PL. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 2019; 567:43-48. [PMID: 30760930 PMCID: PMC6624841 DOI: 10.1038/s41586-019-0942-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Cell identity switches, where terminally-differentiated cells convert into different cell-types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin expressers upon ablation of insulin-secreting β-cells, promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown. Here we show that islet non-β-cells, namely α-cells and PPY-producing γ–cells, obtained from deceased non-diabetic or diabetic human donors, can be lineage-traced and reprogrammed by the transcription factors Pdx1 and MafA to produce and secrete insulin in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and remain producing insulin even after 6 months. Surprisingly, insulin-producing α-cells maintain α-cell markers, as seen by deep transcriptomic and proteomic characterization. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity as a treatment for diabetes and other degenerative diseases.
Collapse
Affiliation(s)
- Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicolas Damond
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Antoinette M Joosten
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Craig Dorrell
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Bart O Roep
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre Facultaire du Diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Cigliola V, Ghila L, Thorel F, van Gurp L, Baronnier D, Oropeza D, Gupta S, Miyatsuka T, Kaneto H, Magnuson MA, Osipovich AB, Sander M, Wright CEV, Thomas MK, Furuyama K, Chera S, Herrera PL. Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon + α-cells. Nat Cell Biol 2018; 20:1267-1277. [PMID: 30361701 PMCID: PMC6215453 DOI: 10.1038/s41556-018-0216-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
The mechanisms that restrict regeneration and maintain cell identity following injury are poorly characterized in higher vertebrates. Following β-cell loss, 1-2% of the glucagon-producing α-cells spontaneously engage in insulin production in mice. Here we explore the mechanisms inhibiting α-cell plasticity. We show that adaptive α-cell identity changes are constrained by intra-islet insulin- and Smoothened-mediated signalling, among others. The combination of β-cell loss or insulin-signalling inhibition, with Smoothened inactivation in α- or δ-cells, stimulates insulin production in more α-cells. These findings suggest that the removal of constitutive 'brake signals' is crucial to neutralize the refractoriness to adaptive cell-fate changes. It appears that the maintenance of cell identity is an active process mediated by repressive signals, which are released by neighbouring cells and curb an intrinsic trend of differentiated cells to change.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Luiza Ghila
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Delphine Baronnier
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Gupta
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Graduate School of Medicine , Juntendo University , Tokyo, Japan
| | - Hideaki Kaneto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mark A Magnuson
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Christopher E V Wright
- Department of Cell and Developmental Biology, Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Melissa K Thomas
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Saghiri MA, Asatourian A, Sheibani N. Angiogenesis and the prevention of alveolar osteitis: a review study. J Korean Assoc Oral Maxillofac Surg 2018; 44:93-102. [PMID: 29963489 PMCID: PMC6024058 DOI: 10.5125/jkaoms.2018.44.3.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis is one of the essential processes that occur during wound healing. It is responsible for providing immunity as well as the regenerative cells, nutrition, and oxygen needed for the healing of the alveolar socket following tooth extraction. The inappropriate removal of formed blood clots causes the undesirable phenomenon of alveolar osteitis (AO) or dry socket. In this review, we aimed to investigate whether enhanced angiogenesis contributes to a more effective prevention of AO. The potential pro- or anti-angiogenic activity of different materials used for the treatment of AO were evaluated. An electronic search was performed in the PubMed, MEDLINE, and EMBASE databases via OVID from January 2000 to September 2016 using the keywords mentioned in the PubMed and MeSH (Medical Subject Headings) terms regarding the role of angiogenesis in the prevention of AO. Our initial search identified 408 articles using the keywords indicated above, with 38 of them meeting the inclusion criteria set for this review. Due to the undeniable role of angiogenesis in the socket healing process, it is beneficial if strategies for preventing AO are directed toward more proangiogenic materials and modalities.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Armen Asatourian
- Angiogenesis Regenerative Medicine Sector, Dr. H. Afsar Lajevardi Research Cluster (DHALC), Shiraz, Iran
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
7
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Sinden JD, Hicks C, Stroemer P, Vishnubhatla I, Corteling R. Human Neural Stem Cell Therapy for Chronic Ischemic Stroke: Charting Progress from Laboratory to Patients. Stem Cells Dev 2017; 26:933-947. [PMID: 28446071 PMCID: PMC5510676 DOI: 10.1089/scd.2017.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic disability after stroke represents a major unmet neurologic need. ReNeuron's development of a human neural stem cell (hNSC) therapy for chronic disability after stroke is progressing through early clinical studies. A Phase I trial has recently been published, showing no safety concerns and some promising signs of efficacy. A single-arm Phase II multicenter trial in patients with stable upper-limb paresis has recently completed recruitment. The hNSCs administrated are from a manufactured, conditionally immortalized hNSC line (ReNeuron's CTX0E03 or CTX), generated with c-mycERTAM technology. This technology has enabled CTX to be manufactured at large scale under cGMP conditions, ensuring sufficient supply to meets the demands of research, clinical development, and, eventually, the market. CTX has key pro-angiogenic, pro-neurogenic, and immunomodulatory characteristics that are mechanistically important in functional recovery poststroke. This review covers the progress of CTX cell therapy from its laboratory origins to the clinic, concluding with a look into the late stage clinical future.
Collapse
|
9
|
Cunha JPMCM, Leuckx G, Sterkendries P, Korf H, Bomfim-Ferreira G, Overbergh L, Vaes B, Heimberg H, Gysemans C, Mathieu C. Human multipotent adult progenitor cells enhance islet function and revascularisation when co-transplanted as a composite pellet in a mouse model of diabetes. Diabetologia 2017; 60:134-142. [PMID: 27704164 PMCID: PMC6518081 DOI: 10.1007/s00125-016-4120-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Hypoxia in the initial days after islet transplantation leads to considerable loss of islet mass and contributes to disappointing outcomes in the clinical setting. The aim of the present study was to investigate whether co-transplantation of human non-endothelial bone marrow-derived multipotent adult progenitor cells (MAPCs), which are non-immunogenic and can secrete angiogenic growth factors during the initial days after implantation, could improve islet engraftment and survival. METHODS Islets (150) were co-transplanted, with or without human MAPCs (2.5 × 105) as separate or composite pellets, under the kidney capsule of syngeneic alloxan-induced diabetic C57BL/6 mice. Blood glucose levels were frequently monitored and IPGTTs were carried out. Grafts and serum were harvested at 2 and 5 weeks after transplantation to assess outcome. RESULTS Human MAPCs produced high amounts of angiogenic growth factors, including vascular endothelial growth factor, in vitro and in vivo, as demonstrated by the induction of neo-angiogenesis in the chorioallantoic membrane assay. Islet-human MAPC co-transplantation as a composite pellet significantly improved the outcome of islet transplantation as measured by the initial glycaemic control, diabetes reversal rate, glucose tolerance and serum C-peptide concentration compared with the outcome following transplantation of islets alone. Histologically, a higher blood vessel area and density in addition to a higher vessel/islet ratio were detected in recipients of islet-human MAPC composites. CONCLUSIONS/INTERPRETATION The present data suggest that co-transplantation of mouse pancreatic islets with human MAPCs, which secrete high amounts of angiogenic growth factors, enhance islet graft revascularisation and subsequently improve islet graft function.
Collapse
Affiliation(s)
- João Paulo M C M Cunha
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Gunter Leuckx
- Beta cell neogenesis laboratory, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Hannelie Korf
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Gabriela Bomfim-Ferreira
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Lutgart Overbergh
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | | | - Harry Heimberg
- Beta cell neogenesis laboratory, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium.
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven (KULEUVEN), Campus Gasthuisberg O&N1, Herestraat 49 bus 902, 3000, Leuven, Belgium
| |
Collapse
|
10
|
RNA interference mediated JAM-A gene silencing promotes human epidermal stem cell proliferation. Hum Cell 2014; 28:73-80. [DOI: 10.1007/s13577-013-0087-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/23/2013] [Indexed: 10/24/2022]
|
11
|
Hypoxia as a target for tissue specific gene therapy. J Control Release 2013; 172:484-94. [DOI: 10.1016/j.jconrel.2013.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|
12
|
Lazard D, Vardi P, Bloch K. Induction of beta-cell resistance to hypoxia and technologies for oxygen delivery to transplanted pancreatic islets. Diabetes Metab Res Rev 2012; 28:475-84. [PMID: 22389124 DOI: 10.1002/dmrr.2294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypoxia is believed to be a crucial factor involved in cell adaptation to environmental stress. Islet transplantation, especially with immunoisolated islets, interrupts vascular connections, resulting in the substantially decreased delivery of oxygen and nutrients to islet cells. Insulin-producing pancreatic beta cells are known to be highly susceptible to oxygen deficiency. Such susceptibility to hypoxia is believed to be one of the main causes of beta-cell death in the post-transplantation period. Different strategies have been developed for the protection of beta cells against hypoxic injury and for oxygen delivery to transplanted islets. The enhancement of beta-cell defense properties against hypoxia has been achieved using various techniques such as gene transfection, drug supplementation, co-culturing with stem cells and cell selection. Technologies for oxygen delivery to transplanted islets include local neovascularization of subcutaneous sites, electrochemical and photosynthetic oxygen generation, oxygen refuelling of bio-artificial pancreas and whole body oxygenation by using hyperbaric therapy. Progress in the field of oxygen technologies for islet transplantation requires a multidisciplinary approach to explore and optimize the interaction between components of the biological system and different technological processes. This review article focuses mainly on the recently developed strategies for oxygenation and protection from hypoxic injury - to achieve stable and long-term normoglycaemia in diabetic patients with transplanted pancreatic islets.
Collapse
Affiliation(s)
- Daniel Lazard
- Diabetes and Obesity Research Laboratory, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | | | | |
Collapse
|
13
|
Lee BW, Lee M, Chae HY, Lee S, Kang JG, Kim CS, Lee SJ, Yoo HJ, Ihm SH. Effect of hypoxia-inducible VEGF gene expression on revascularization and graft function in mouse islet transplantation. Transpl Int 2010; 24:307-14. [PMID: 21138485 DOI: 10.1111/j.1432-2277.2010.01194.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
For gene transfer strategies to improve islet engraftment, vascular endothelial growth factor (VEGF) expression should be regulated in a way that matches the transient nature of revascularization with simultaneously avoiding undesirable effects of overexpression. The aim of this study was to investigate the effects of hypoxia-inducible VEGF gene transfer using the RTP801 promoter on islet grafts. We implanted pSV-hVEGF transfected, pRTP801-hVEGF transfected or nontransfected mouse islets under the kidney capsule of streptozotocin-induced diabetic syngeneic mice. Human VEGF immunostaining of day 3 grafts revealed that the pRTP801-hVEGF transfected group had higher hVEGF expression compared with the pSV-hVEGF transfected group. BS-1 staining of day 3 grafts from the pRTP801-hVEGF transfected group showed the highest vascular density, which was comparable with day 6 grafts from the nontransfected group. In 360 islet equivalent (IEQ)-transplantation which reverted hyperglycemia in all mice, the area under the curve of glucose levels during intraperitoneal glucose tolerance test 7 weeks post-transplant was lower in mice transplanted with pRTP801-hVEGF transfected grafts compared with mice transplanted with nontransfected grafts. In 220 IEQ-transplantations, diabetic mice transplanted with pRTP801-hVEGF islets became normoglycemic more rapidly compared with mice transplanted with pSV-hVEGF or nontransfected islets, and diabetes reversal rate after 50 days was 90%, 68%, and 50%, respectively. In conclusion, our results indicate that regulated overexpression of hVEGF in a hypoxia-inducible manner enhances islet vascular engraftment and preserves islet function overtime in transplants.
Collapse
Affiliation(s)
- Byung Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Eve DJ, Musso J, Park DH, Oliveira C, Pollock K, Hope A, Baradez MO, Sinden JD, Sanberg PR. Methodological study investigating long term laser Doppler measured cerebral blood flow changes in a permanently occluded rat stroke model. J Neurosci Methods 2009; 180:52-6. [PMID: 19427529 DOI: 10.1016/j.jneumeth.2009.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Cerebral blood flow is impaired during middle cerebral artery occlusion in the rat model of stroke. However, the long term effects on cerebral blood flow following occlusion have received little attention. We examined cerebral blood flow in both sides at multiple time points following middle cerebral artery occlusion of the rat. The bilateral cerebral blood flow in young male Sprague Dawley rats was measured at the time of occlusion, as well as 4, 10 and 16 weeks after occlusion. Under the present experimental conditions, the difference between the left and right side's cerebral blood flow was observed to appear to switch in direction in a visual oscillatory fashion over time in the sham-treated group, whereas the occluded animals consistently showed left side dominance. One group of rats was intraparenchymally transplanted with a human neural stem cell line (CTX0E03 cells) known to have benefit in stroke models. Cerebral blood flow in the lesioned side of the cell-treated group was observed to be improved compared to the untreated rats and to demonstrate a similar oscillatory nature as that observed in sham-treated animals. These findings suggest that multiple bilateral monitoring of cerebral blood flow over time can show effects of stem cell transplantation efficiently as well as functional tests in an animal stroke model.
Collapse
Affiliation(s)
- David J Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, MDC-78, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|