1
|
Caprnda M, Kubatka P, Gazdikova K, Gasparova I, Valentova V, Stollarova N, La Rocca G, Kobyliak N, Dragasek J, Mozos I, Prosecky R, Siniscalco D, Büsselberg D, Rodrigo L, Kruzliak P. Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders. Biomed Pharmacother 2017; 91:60-69. [PMID: 28448871 DOI: 10.1016/j.biopha.2017.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Stem cells have the capability of self-renewal and can differentiate into different cell types that might be used in regenerative medicine. Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) currently lack effective treatments. Although stem cell therapy is still on the way from bench to bedside, we consider that it might provide new hope for patients suffering with neurodegenerative diseases. In this article, we will give an overview of recent studies on the potential therapeutic use of mesenchymal stem cells (MSCs), neural stem cells (NSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and perinatal stem cells to neurodegenerative disorders and we will describe their immunomodulatory mechanisms of action in specific therapeutic modalities.
Collapse
Affiliation(s)
- Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia; Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Nadezda Stollarova
- Catholic University in Ružomberok, Faculty of Pedagogy, Department of Biology and Ecology, Ružomberok, Slovakia
| | - Giampiero La Rocca
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Jozef Dragasek
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Ioana Mozos
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Robert Prosecky
- Department of Internal Medicine, Merciful Brotherś Hospital, Brno, Czech Republic
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Luis Rodrigo
- University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; 2nd Department of Surgery, Faculty of Medicine,St. Annés University Hospital, Brno, Czech Republic.
| |
Collapse
|
2
|
Peng SP, Copray S. Comparison of Human Primary with Human iPS Cell-Derived Dopaminergic Neuron Grafts in the Rat Model for Parkinson's Disease. Stem Cell Rev Rep 2016; 12:105-20. [PMID: 26438376 PMCID: PMC4720696 DOI: 10.1007/s12015-015-9623-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuronal degeneration within the substantia nigra and the loss of the dopaminergic nigro-striatal pathway are the major hallmarks of Parkinson's disease (PD). Grafts of foetal ventral mesencephalic (VM) dopaminergic (DA) neurons into the striatum have been shown to be able to restore striatal dopamine levels and to improve overall PD symptoms. However, human foetus-derived cell grafts are not feasible for clinical application. Autologous induced pluripotent stem cell (iPS cell)-derived DA neurons are emerging as an unprecedented alternative. In this review, we summarize and compare the efficacy of human iPS cell-derived DA neuron grafts to restore normal behaviour in a rat model for PD with that of human foetal primary DA neurons. The differences we observed in the efficacy to restore normal function between the 2 types of DA neuron grafts could be ascribed to intrinsic properties of the iPS cell-derived DA neurons that critically affected survival and proper neurite extension in the striatum after implantation.
Collapse
Affiliation(s)
- Su-Ping Peng
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
- Department of Neuroscience, Medical Physiology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sjef Copray
- Department of Neuroscience, Medical Physiology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
3
|
Willems C, Vankelecom H. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism? Regen Med 2015; 9:513-34. [PMID: 25159067 DOI: 10.2217/rme.14.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.
Collapse
Affiliation(s)
- Christophe Willems
- Department of Development & Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
4
|
Ganz J, Arie I, Buch S, Zur TB, Barhum Y, Pour S, Araidy S, Pitaru S, Offen D. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS One 2014; 9:e100445. [PMID: 24945922 PMCID: PMC4063966 DOI: 10.1371/journal.pone.0100445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/28/2014] [Indexed: 11/23/2022] Open
Abstract
Achieving safe and readily accessible sources for cell replacement therapy in Parkinson’s disease (PD) is still a challenging unresolved issue. Recently, a primitive neural crest stem cell population (hOMSC) was isolated from the adult human oral mucosa and characterized in vitro and in vivo. In this study we assessed hOMSC ability to differentiate into dopamine-secreting cells with a neuronal-dopaminergic phenotype in vitro in response to dopaminergic developmental cues and tested their therapeutic potential in the hemi-Parkinsonian rat model. We found that hOMSC express constitutively a repertoire of neuronal and dopaminergic markers and pivotal transcription factors. Soluble developmental factors induced a reproducible neuronal-like morphology in the majority of hOMSC, downregulated stem cells markers, upregulated the expression of the neuronal and dopaminergic markers that resulted in dopamine release capabilities. Transplantation of these dopaminergic-induced hOMSC into the striatum of hemi-Parkinsonian rats improved their behavioral deficits as determined by amphetamine-induced rotational behavior, motor asymmetry and motor coordination tests. Human TH expressing cells and increased levels of dopamine in the transplanted hemispheres were observed 10 weeks after transplantation. These results demonstrate for the first time that soluble factors involved in the development of DA neurons, induced a DA phenotype in hOMSC in vitro that significantly improved the motor function of hemiparkinsonian rats. Based on their neural-related origin, their niche accessibility by minimal-invasive procedures and their propensity for DA differentiation, hOMSC emerge as an attractive tool for autologous cell replacement therapy in PD.
Collapse
Affiliation(s)
- Javier Ganz
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ina Arie
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Buch
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ben Zur
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yael Barhum
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Sammy Pour
- Oral & Maxillofacial Dept., Baruch Padeh Medical Center, Poria, Lower Galilee, Israel
| | - Shareef Araidy
- Oral & Maxillofacial Dept., Baruch Padeh Medical Center, Poria, Lower Galilee, Israel
| | - Sandu Pitaru
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
5
|
Eve DJ, Marty PJ, McDermott RJ, Klasko SK, Sanberg PR. Stem Cell Research and Health Education. AMERICAN JOURNAL OF HEALTH EDUCATION 2013. [DOI: 10.1080/19325037.2008.10599033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- David J. Eve
- a Center of Excellence for Aging and Brain Repair , University of South Florida College of Medicin, Department of Neurosurgery , 12901 Bruce B. Downs Blvd. (MDC 078), Tampa , FL , 33612
| | - Phillip J. Marty
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | - Robert J. McDermott
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | | | - Paul R. Sanberg
- d Center of Excellence for Aging and Brain Repair , University of South Florida
| |
Collapse
|
6
|
Abstract
Transplants of cells and tissues to the central nervous system of adult mammals can, under appropriate conditions, survive, integrate, and function. In particular, the grafted cells can sustain functional recovery in animal models of a range of neurodegenerative conditions including genetic and idiopathic neurodegenerative diseases of adulthood and aging, ischemic stroke, and brain and spinal cord trauma. In a restricted subset of such conditions, cell transplantation has progressed to application in humans in early-stage clinical trials. At the present stage of play, there is clear evidence of clinical efficacy of fetal cell transplants in Parkinson disease (notwithstanding a range of technical difficulties still to be fully resolved), and preliminary claims of promising outcomes in several other severe neurodegenerative conditions, including Huntington disease and stroke. Moreover, the experimental literature is increasingly suggesting that the experience and training of the graft recipient materially affects the functional outcome. For example, environmental enrichment, behavioral activity, and specific training can enhance the recovery process to maximize functional recovery. There are even circumstances where the grafted cells have been demonstrated to restore the neural substrate for new learning. Consequently, it is not sufficient to replace lost cells anatomically; rather, for the grafts to be effective, they need to be integrated functionally into the host circuitry, and the host animal requires training and rehabilitation to maximize function of the reconstructed graft-host circuitry. Such observations require reconsideration of the design of the next generation of clinical trials and subsequent service delivery, to include physiotherapists, cognitive therapists, and rehabilitation experts as core members of the transplant team, along with the neurologists and neurosurgeons that have conventionally led the field.
Collapse
Affiliation(s)
- Stephen B Dunnett
- Department of Biosciences, The Brain Repair Group, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
7
|
Li F, Niyibizi C. Cells derived from murine induced pluripotent stem cells (iPSC) by treatment with members of TGF-beta family give rise to osteoblasts differentiation and form bone in vivo. BMC Cell Biol 2012; 13:35. [PMID: 23241430 PMCID: PMC3541062 DOI: 10.1186/1471-2121-13-35] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023] Open
Abstract
Background Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells into embryonic like state (ESC) using defined factors. There is great interest in these cells because of their potential for application in regenerative medicine. Results iPSC reprogrammed from murine tail tip fibroblasts were exposed to retinoic acid alone (RA) or in combination with TGF-β1 and 3, basic fibroblast growth factor (bFGF) or bone morphogenetic protein 2 (BMP-2). The resulting cells expressed selected putative mesenchymal stem cells (MSCs) markers; differentiated toward osteoblasts and adipocytic cell lineages in vitro at varying degrees. TGF-beta1 and 3 derived-cells possessed higher potential to give rise to osteoblasts than bFGF or BMP-2 derived-cells while BMP-2 derived cells exhibited a higher potential to differentiate toward adipocytic lineage. TGF-β1 in combination with RA derived-cells seeded onto HA/TCP ceramics and implanted in mice deposited typical bone. Immunofluorescence staining for bone specific proteins in cell seeded scaffolds tissue sections confirmed differentiation of the cells into osteoblasts in vivo. Conclusions The results demonstrate that TGF-beta family of proteins could potentially be used to generate murine iPSC derived-cells with potential for osteoblasts differentiation and bone formation in vivo and thus for application in musculoskeletal tissue repair and regeneration.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
8
|
Kozlova EN, Berens C. Guiding Differentiation of Stem Cells in Vivo by Tetracycline-Controlled Expression of Key Transcription Factors. Cell Transplant 2012; 21:2537-54. [DOI: 10.3727/096368911x637407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplantation of stem or progenitor cells is an attractive strategy for cell replacement therapy. However, poor long-term survival and insufficiently reproducible differentiation to functionally appropriate cells in vivo still present major obstacles for translation of this methodology to clinical applications. Numerous experimental studies have revealed that the expression of just a few transcription factors can be sufficient to drive stem cell differentiation toward a specific cell type, to transdifferentiate cells from one fate to another, or to dedifferentiate mature cells to pluripotent stem/progenitor cells (iPSCs). We thus propose here to apply the strategy of expressing the relevant key transcription factors to guide the differentiation of transplanted cells to the desired cell fate in vivo. To achieve this requires tools allowing us to control the expression of these genes in the transplant. Here, we describe drug-inducible systems that allow us to sequentially and timely activate gene expression from the outside, with a particular emphasis on the Tet system, which has been widely and successfully used in stem cells. These regulatory systems offer a tool for strictly limiting gene expression to the respective optimal stage after transplantation. This approach will direct the differentiation of the immature stem/progenitor cells in vivo to the desired cell type.
Collapse
Affiliation(s)
- Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
9
|
Liu SP, Fu RH, Huang SJ, Huang YC, Chen SY, Chang CH, Liu CH, Tsai CH, Shyu WC, Lin SZ. Stem cell applications in regenerative medicine for neurological disorders. Cell Transplant 2012; 22:631-7. [PMID: 23127757 DOI: 10.3727/096368912x655145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including stroke, amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. Embryonic stem (ES) cells were originally targeted for differentiation into functional dopamine neurons for cell therapy. Today, induced pluripotent stem (iPS) cells are being tested for such purposes as generating functional dopamine neurons and treating a rat model of Parkinson's disease. In addition, neural stem cell and mesenchymal stem cells are also being used in neurodegenerative disorder therapies for stroke and Parkinson's disease. Although stem cell therapy is still in its infancy, it will likely become a powerful tool for many diseases that currently do not have effective therapeutic approaches. In this article, we discuss current research on the potential application of neural stem cells, mesenchymal stem cells, ES cells, and iPS cells to neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu J, Sumer H, Leung J, Upton K, Dottori M, Pébay A, Verma PJ. Late Passage Human Fibroblasts Induced to Pluripotency Are Capable of Directed Neuronal Differentiation. Cell Transplant 2011; 20:193-203. [DOI: 10.3727/096368910x514305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is possible to generate induced pluripotent stem (iPS) cells from mouse and human somatic cells by ectopic expression of defined sets of transcription factors. However, the recommendation that somatic cells should be utilized at early passages for induced reprogramming limits their therapeutic application. Here we report successful reprogramming of human fibroblasts after more than 20 passages in vitro, to a pluripotent state with four transcription factors: Oct4, Sox2, Klf4, and c-Myc. The late passage-derived human iPS cells resemble human embryonic stem cells in morphology, cell surface antigens, pluripotent gene expression profiles, and epigenetic states. Moreover, these iPS cells differentiate into cell types representative of the three germ layers in teratomas in vivo, and directed neuronal differentiation in vitro.
Collapse
Affiliation(s)
- Jun Liu
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Huseyin Sumer
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Jessie Leung
- Centre for Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Kyle Upton
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Mirella Dottori
- Centre for Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alice Pébay
- Centre for Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Verma
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Lin PC, Chang LF, Liu PY, Lin SZ, Wu WC, Chen WS, Tsai CH, Chiou TW, Harn HJ. Botanical Drugs and Stem Cells. Cell Transplant 2011; 20:71-83. [PMID: 20887674 DOI: 10.3727/096368910x532747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The potential to generate virtually any differentiated cell type from stem cells offers the possibility of creating new sources of cells for regenerative medicine. To realize this potential, it will be essential to control stem cell differentiation. Chinese herbal medicine is a major aspect of traditional Chinese medicine and is a rich source of unique chemicals. As such, individual herbs or extracts may play a role in the proliferation and differentiation of stem cells. In this review, we discuss some of the Chinese herbal medicines that are used to treat human diseases such as neuronal degenerative diseases, cardiovascular diseases, and osteoporosis. We also describe the relationship between Chinese herbal medicines and stem cell regulation.
Collapse
Affiliation(s)
- Po-Cheng Lin
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Li-Fu Chang
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Po-Yen Liu
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- China Medical University Beigang Hospital, Yun-Lin, Taiwan
| | - Wan-Chen Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wuen-Shyong Chen
- Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University and Hospital, Taichung, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Kozubenko N, Turnovcova K, Kapcalova M, Butenko O, Anderova M, Rusnakova V, Kubista M, Hampl A, Jendelova P, Sykova E. Analysis of in Vitro and in Vivo Characteristics of Human Embryonic Stem Cell-Derived Neural Precursors. Cell Transplant 2010. [DOI: 10.3727/096368909x484707b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During the last decade, much progress has been made in developing protocols for the differentiation of human embryonic stem cells (hESCs) into a neural phenotype. The appropriate agent for cell therapy is neural precursors (NPs). Here, we demonstrate the derivation of highly enriched and expandable populations of proliferating NPs from the CCTL14 line of hESCs. These NPs could differentiate in vitro into functionally active neurons, as confirmed by immunohistochemical staining and electrophysiological analysis. Neural cells differentiated in vitro from hESCs exhibit broad cellular heterogeneity with respect to developmental stage and lineage specification. To analyze the population of the derived NPs, we used fluorescence-activated cell sorting (FACS) and characterized the expression of several pluripotent and neural markers, such as Nanog, SSEA-4, SSEA-1, TRA-1-60, CD24, CD133, CD56 (NCAM), β-III-tubulin, NF70, nestin, CD271 (NGFR), CD29, CD73, and CD105 during long-term propagation. The analyzed cells were used for transplantation into the injured rodent brain; the tumorigenicity of the transplanted cells was apparently eliminated following long-term culture. These results complete the characterization of the CCTL14 line of hESCs and provide a framework for developing cell selection strategies for neural cell-based therapies.
Collapse
Affiliation(s)
- Nataliya Kozubenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Karolina Turnovcova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Miroslava Kapcalova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Olena Butenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Vendula Rusnakova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mikael Kubista
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- TATAA Biocenter, Lundberg Laboratory, Goteborg, Sweden
| | - Ales Hampl
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Eva Sykova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| |
Collapse
|
13
|
Liu SP, Fu RH, Yu HH, Li KW, Tsai CH, Shyu WC, Lin SZ. MicroRNAs Regulation Modulated Self-Renewal and Lineage Differentiation of Stem Cells. Cell Transplant 2009; 18:1039-45. [PMID: 19523330 DOI: 10.3727/096368909x471224] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stem cells are unique cells in the ability that can self-renew and differentiate into a wide variety of cell types, suggesting that a specific molecular control network underlies these features. To date, stem cells have been applied to many clinical therapeutic approaches. For example, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are the cells responding to ischemia or injury and engage in effective revascularization to repair within impairment regions. Transplantation of MSCs after stroke and hindlimb ischemia results in remarkable recovery through enhancing angiogenesis. MicroRNAs are a novel class of endogenous, small, noncoding RNAs that work via translational inhibition or degradation of their target mRNAs to downregulate gene expression. MicroRNAs have been strongly linked to stem cells, which have a remarkable role in development. In this study, we focused on the microRNA regulation in multiple stem cells. For example, miR-520h was upregulated and miR-129 was downregulated in HSC. MiR-103, 107, 140, 143, 638, and 663 were associated with MSCs while miR-302s and miR-136 were associated with ESCs. In NSCs, miR-92b, let-7, and miR-125 were the critical regulators. This overview of the recent advances in the aspects of molecular control of stem cell biology reveals the importance of microRNAs, which may be helpful for future work.
Collapse
Affiliation(s)
- Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Department of Immunology, China Medical University, Taichung, Taiwan
| | - Hsiu-Hui Yu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
| | - Kuo-Wei Li
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Department of Immunology, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Department of Immunology, China Medical University, Taichung, Taiwan
- China Medical University Beigang Hospital, Yunlin, Taiwan
| |
Collapse
|
14
|
Chatzi C, Scott RH, Pu J, Lang B, Nakamoto C, McCaig CD, Shen S. Derivation of homogeneous GABAergic neurons from mouse embryonic stem cells. Exp Neurol 2009; 217:407-16. [PMID: 19348800 DOI: 10.1016/j.expneurol.2009.03.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 12/23/2022]
Abstract
Embryonic stem cells (ESCs) promise an unlimited source of defined cells for cell transplantation therapy, while protocols for derivation of homogeneous populations of desirable cell types are yet to be developed and/or refined. Gamma aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system, and disturbed GABAergic signaling is associated with a host of neurological conditions. We developed a simple ES cell differentiation protocol which led to the production of uniform GABAergic neurons in approximately 2 weeks. The differentiation protocol involved treatment of embryoid bodies (EBs) with high concentrations (10(-5)-10(-)(4) M) of all-trans-retinoic acid (RA) for 3 days. After plating these EBs on attached dishes in neural supportive medium, 93-96% of the cells became GABA-positive neurons in 7-11 days. These cells also expressed immature neuronal markers with voltage-gated delayed rectifier potassium currents, suggesting that they were immature GABAergic neurons. The technology may have implications for modeling and treatment of GABAergic signaling-related diseases and injuries.
Collapse
Affiliation(s)
- Christina Chatzi
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Cho MS, Hwang DY, Kim DW. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc 2009; 3:1888-94. [PMID: 19008875 DOI: 10.1038/nprot.2008.188] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell-replacement therapy using human embryonic stem cells (hESCs) holds great promise in treating Parkinson's disease. We have recently reported a highly efficient method to generate functional dopaminergic (DA) neurons from hESCs. Our method includes a unique step, the formation of spherical neural masses (SNMs), and offers the highest yield of DA neurons ever achieved so far. In this report, we describe our method step by step, covering not only how to differentiate hESCs into DA neurons at a high yield, but also how to amplify, freeze and thaw the SNMs, which are the key structures that make our protocol unique and advantageous. Although the whole process of generation of DA neurons from hESCs takes about 2 months, only 14 d are needed to derive DA neurons from the SNMs.
Collapse
Affiliation(s)
- Myung-Soo Cho
- Stem Cell Research Center, 21C Frontier R&D Program of Ministry of Education, Science and Technology, Yonsei University Medical Centre, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-752, Korea
| | | | | |
Collapse
|
16
|
Kishi Y, Tanaka Y, Shibata H, Nakamura S, Takeuchi K, Masuda S, Ikeda T, Muramatsu SI, Hanazono Y. Variation in the Incidence of Teratomas after the Transplantation of Nonhuman Primate ES Cells into Immunodeficient Mice. Cell Transplant 2008; 17:1095-1102. [DOI: 10.3727/096368908786991560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Embryonic stem (ES) cells have the ability to generate teratomas when transplanted into immunodeficient mice, but conditions affecting the generation remain to be elucidated. Nonhuman primate cynomolgus ES cells were transplanted into immunodeficient mice under different conditions; the number of transplanted cells, physical state (clumps or single dissociated cells), transplant site, differentiation state, and immunological state of recipient mice were all varied. The tumorigenicity was then evaluated. When cynomolgus ES cells were transplanted as clumps into the lower limb muscle in either nonobese diabetic/severe combined immunodeficiency (NOD/SCID) or NOD/SCID/?cnull (NOG) mice, teratomas developed in all the animals transplanted with 1 × 105 or more cells, but were not observed in any mouse transplanted with 1 × 103 cells. However, when the cells were transplanted as dissociated cells, the number of cells necessary for teratomas to form in all mice increased to 5 × 105. When the clump cells were injected subcutaneously (instead of intramuscularly), the number also increased to 5 × 105. When cynomolgus ES cell-derived progenitor cells (1 × 106), which included residual pluripotent cells, were transplanted into the lower limb muscle of NOG or NOD/SCID mice, the incidence of teratomas differed between the strains; teratomas developed in five of five NOG mice but in only two of five NOD/SCID mice. The incidence of teratomas varied substantially depending on the transplanted cells and recipient mice. Thus, considerable care must be taken as to tumorigenicity.
Collapse
Affiliation(s)
- Yukiko Kishi
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yujiro Tanaka
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroaki Shibata
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Ibaraki 305-0843, Japan
| | - Shinichiro Nakamura
- The Corporation for Production and Research of Laboratory Primates, Ibaraki 300-2658, Japan
| | - Koichi Takeuchi
- Department of Anatomy, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shigeo Masuda
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tamako Ikeda
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
17
|
Progress in Parkinson's disease—Where do we stand? Prog Neurobiol 2008; 85:376-92. [DOI: 10.1016/j.pneurobio.2008.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 02/26/2008] [Accepted: 05/30/2008] [Indexed: 12/21/2022]
|
18
|
Yu D, Silva GA. Stem cell sources and therapeutic approaches for central nervous system and neural retinal disorders. Neurosurg Focus 2008; 24:E11. [PMID: 18341387 DOI: 10.3171/foc/2008/24/3-4/e10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decades, stem cell biology has made a profound impact on our views of mammalian development as well as opened new avenues in regenerative medicine. The potential of stem cells to differentiate into various cell types of the body is the principal reason they are being explored in treatments for diseases in which there may be dysfunctional cells and/or loss of healthy cells due to disease. In addition, other properties are unique to stem cells; their endogenous trophic support, ability to home to sites of pathological entities, and stability in culture, which allows genetic manipulation, are also being utilized to formulate stem cell-based therapy for central nervous system (CNS) disorders. In this review, the authors will review key characteristics of embryonic and somatic (adult) stem cells, consider therapeutic strategies employed in stem cell therapy, and discuss the recent advances made in stem cell-based therapy for a number of progressive neurodegenerative diseases in the CNS as well as neuronal degeneration secondary to other abnormalities and injuries. Although a great deal of progress has been made in our knowledge of stem cells and their utility in treating CNS disorders, much still needs to be elucidated regarding the biology of the stem cells and the pathogenesis of targeted CNS diseases to maximize therapeutic benefits. Nonetheless, stem cells present tremendous promise in the treatment of a variety of neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana Yu
- Department of Bioengineering, University of California, San Diego, USA
| | | |
Collapse
|
19
|
Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 2008; 3:e1384. [PMID: 18167543 PMCID: PMC2148252 DOI: 10.1371/journal.pone.0001384] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 12/07/2007] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Although human embryonic stem cells (hESCs) hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems.
Collapse
|
20
|
Lin SZ. 9th International Conference on Neural Transplantation and Repair. Cell Transplant 2007; 16:99. [PMID: 28863741 DOI: 10.3727/000000007783464641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Shinn-Zong Lin
- Neurosurgery of Tzu-Chi University, Superintendent of Buddhist Tzu-Chi General Hospital Hualien, Taiwan
| |
Collapse
|