1
|
Anti-LFA-1 induces CD8 T-cell dependent allograft tolerance and augments suppressor phenotype CD8 cells. Cell Immunol 2018; 332:101-110. [PMID: 30103941 DOI: 10.1016/j.cellimm.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022]
Abstract
The induction of tolerance to transplanted organs is a major objective in transplantation immunology research. Lymphocyte function-associated antigen-1 (LFA-1) interactions have been identified as a key component of the T-cell activation process that may be interrupted to lead to allograft tolerance. In mice, αLFA-1 mAb is a potent monotherapy that leads to the induction of donor-specific transferable tolerance. By interrogating important adaptive and innate immunity pathways, we demonstrate that the induction of tolerance relies on CD8+T-cells. We further demonstrate that αLFA-1 induced tolerance is associated with CD8+CD28-T-cells with a suppressor phenotype, and that while CD8 cells are present, the effector T-cell response is abrogated. A recent publication has shown that CD8+CD28- cells are not diminished by cyclosporine or rapamycin, therefore CD8+CD28- cells represent a clinically relevant population. To our knowledge, this is the first time that a mechanism for αLFA-1 induced tolerance has been described.
Collapse
|
2
|
Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Khater SM, Ashamallah SA, Azzam MM, Ghoneim MA. Insulin-producing Cells from Adult Human Bone Marrow Mesenchymal Stromal Cells Could Control Chemically Induced Diabetes in Dogs: A Preliminary Study. Cell Transplant 2018; 27:937-947. [PMID: 29860900 PMCID: PMC6050912 DOI: 10.1177/0963689718759913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
Ten mongrel dogs were used in this study. Diabetes was chemically induced in 7 dogs, and 3 dogs served as normal controls. For each diabetic dog, 5 million human bone marrow-derived mesenchymal stem cells/kg were differentiated to form insulin-producing cells using a trichostatin-based protocol. Cells were then loaded in 2 TheraCyte capsules which were transplanted under the rectus sheath. One dog died 4 d postoperatively from pneumonia. Six dogs were followed up with for 6 to 18 mo. Euglycemia was achieved in 4 dogs. Their glucose tolerance curves exhibited a normal pattern demonstrating that the encapsulated cells were glucose sensitive and insulin responsive. In the remaining 2 dogs, the fasting blood sugar levels were reduced but did not reach normal values. The sera of all transplanted dogs contained human insulin and C-peptide with a negligible amount of canine insulin. Removal of the transplanted capsules was followed by prompt return of diabetes. Intracytoplasmic insulin granules were seen by immunofluorescence in cells from the harvested capsules. Furthermore, all pancreatic endocrine genes were expressed. This study demonstrated that the TheraCyte capsule or a similar device can provide adequate immunoisolation, an important issue when stem cells are considered for the treatment of type 1 diabetes mellitus.
Collapse
|
3
|
Bertoni A, Alabiso O, Galetto AS, Baldanzi G. Integrins in T Cell Physiology. Int J Mol Sci 2018; 19:E485. [PMID: 29415483 PMCID: PMC5855707 DOI: 10.3390/ijms19020485] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022] Open
Abstract
From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Oscar Alabiso
- Department of Translational Medicine, University of Eastern Piedmont, Novara-Italy and Oncology Division, University Hospital "Maggiore della Carità", 28100 Novara, Italy.
| | - Alessandra Silvia Galetto
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100-Italy and Palliative Care Division, A.S.L., 13100 Vercelli, Italy.
| | - Gianluca Baldanzi
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| |
Collapse
|
4
|
Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel) 2017; 9:E110. [PMID: 28832494 PMCID: PMC5615325 DOI: 10.3390/cancers9090110] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.
Collapse
Affiliation(s)
- Sabine Raab-Westphal
- Translational In Vivo Pharmacology, Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | - John F Marshall
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Simon L Goodman
- Translational and Biomarkers Research, Translational Innovation Platform Oncology, Merck KGaA, 64293 Darmstadt, Germany.
| |
Collapse
|
5
|
Arefanian H, Tredget EB, Mok DCM, Ramji Q, Rafati S, Rodriguez-Barbosa J, Korbutt GS, Rajotte RV, Gill RG, Rayat GR. Porcine Islet-Specific Tolerance Induced by the Combination of Anti-LFA-1 and Anti-CD154 mAbs is Dependent on PD-1. Cell Transplant 2016; 25:327-42. [DOI: 10.3727/096368915x688506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously demonstrated that short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) induces tolerance to neonatal porcine islet (NPI) xenografts that is mediated by regulatory T cells (Tregs) in B6 mice. In this study, we examined whether the coinhibitory molecule PD-1 is required for the induction and maintenance of tolerance to NPI xenografts. We also determined whether tolerance to NPI xenografts could be extended to allogeneic mouse or xenogeneic rat islet grafts since we previously demonstrated that tolerance to NPI xenografts could be extended to second-party NPI xenografts. Finally, we determined whether tolerance to NPI xenografts could be extended to allogeneic mouse or second-party porcine skin grafts. Diabetic B6 mice were transplanted with 2,000 NPIs under the kidney capsule and treated with short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs. Some of these mice were also treated simultaneously with anti-PD-1 mAb at >150 days posttransplantation. Spleen cells from some of the tolerant B6 mice were used for proliferation assays or were injected into B6 rag-/- mice with established islet grafts from allogeneic or xenogeneic donors. All B6 mice treated with anti-LFA-1 and anti-CD154 mAbs achieved and maintained normoglycemia until the end of the study; however, some mice that were treated with anti-PD-1 mAb became diabetic. All B6 rag-/- mouse recipients of first- and second-party NPIs maintained normoglycemia after reconstitution with spleen cells from tolerant B6 mice, while all B6 rag-/- mouse recipients of allogeneic mouse or xenogeneic rat islets rejected their grafts after cell reconstitution. Tolerant B6 mice rejected their allogeneic mouse or xenogeneic second-party porcine skin grafts while remaining normoglycemic until the end of the study. These results show that porcine islet-specific tolerance is dependent on PD-1, which could not be extended to skin grafts.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pancreatic Islet Biology and Transplantation Unit, Dasman Diabetes Institute, Kuwait, Dasman, Kuwait
| | - Eric B. Tredget
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Dereck C. M. Mok
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Qahir Ramji
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Shahin Rafati
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Jose Rodriguez-Barbosa
- Institute of Biomedicine (Immunobiology), University of Leon, Campus de Vegazana s/n, Leon, Spain
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Ray V. Rajotte
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Ron G. Gill
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Gina R. Rayat
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Ashkenazi E, Baranovski BM, Shahaf G, Lewis EC. Pancreatic islet xenograft survival in mice is extended by a combination of alpha-1-antitrypsin and single-dose anti-CD4/CD8 therapy. PLoS One 2013; 8:e63625. [PMID: 23717456 PMCID: PMC3661573 DOI: 10.1371/journal.pone.0063625] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/04/2013] [Indexed: 12/31/2022] Open
Abstract
Clinical pancreatic islet transplantation is under evaluation for the treatment of autoimmune diabetes, yet several limitations preclude widespread use. For example, there is a critical shortage of human pancreas donors. Xenotransplantation may solve this problem, yet it evokes a rigorous immune response which can lead to graft rejection. Alpha-1-antitrypsin (AAT), a clinically available and safe circulating anti-inflammatory and tissue protective glycoprotein, facilitates islet alloimmune-tolerance and protects from inflammation in several models. Here, we examine whether human AAT (hAAT), alone or in combination with clinically relevant approaches, achieves long-term islet xenograft survival. Rat-to-mouse islet transplantation was examined in the following groups: untreated (n = 6), hAAT (n = 6, 60-240 mg/kg every 3 days from day -10), low-dose co-stimulation blockade (anti-CD154/LFA-1) and single-dose anti-CD4/CD8 (n = 5-7), either as mono- or combination therapies. Islet grafting was accompanied by blood glucose follow-up. In addition, skin xenografting was performed in order to depict responses that occur in draining lymph nodes. According to our results hAAT monotherapy and hAAT/anti-CD154/LFA-1 combined therapy, did not delay rejection day (11-24 days untreated vs. 10-22 day treated). However, host and donor intragraft inflammatory gene expression was diminished by hAAT therapy in both setups. Single dose T-cell depletion using anti-CD4/CD8 depleting antibodies, which provided 14-15 days of reduced circulating T-cells, significantly delayed rejection day (28-52 days) but did not achieve graft acceptance. In contrast, in combination with hAAT, the group displayed significantly extended rejection days and a high rate of graft acceptance (59, 61, >90, >90, >90). In examination of graft explants, marginal mononuclear-cell infiltration containing regulatory T-cells predominated surviving xenografts. We suggest that temporal T-cell depletion, as in the clinically practiced anti-thymocyte-globulin therapy, combined with hAAT, may promote islet xenograft acceptance. Further studies are required to elucidate the mechanism behind the observed synergy, as well as the applicability of the approach for pig-to-human islet xenotransplantation.
Collapse
Affiliation(s)
- Efrat Ashkenazi
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| | - Boris M. Baranovski
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| | - Galit Shahaf
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| | - Eli C Lewis
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| |
Collapse
|
7
|
Zimmerer JM, Horne PH, Fiessinger LA, Fisher MG, Jayashankar K, Garcia SF, Abdel-Rasoul M, van Rooijen N, Bumgardner GL. Inhibition of recall responses through complementary therapies targeting CD8+ T-cell- and alloantibody-dependent allocytotoxicity in sensitized transplant recipients. Cell Transplant 2012; 22:1157-69. [PMID: 23069206 DOI: 10.3727/096368912x657350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allospecific T memory cell responses in transplant recipients arise from environmental exposure to previous transplantation or cross-reactive heterologous immunity. Unfortunately, these memory responses pose a significant barrier to the survival of transplanted tissue. We have previously reported that concurrent inhibition of CD154 and LFA-1 suppresses primary CD8-dependent rejection responses that are not controlled by conventional immunosuppressive strategies. We hypothesized that CD154- and LFA-1-mediated inhibition, by targeting activation as well as effector functions, may also be efficacious for the control of alloreactive CD8+ T-cell responses in sensitized hosts. We found that treatment with anti-LFA-1 mAb alone enhanced transplant survival and reduced CD8-mediated cytotoxicity in sensitized CD4 KO recipients. However, treatment with anti-CD154 mAb alone did not have an effect. Notably, when both CD4- and CD8-dependent rejection pathways are operative (wild-type sensitized recipients), LFA-1 significantly inhibited CD8-mediated in vivo allocytotoxicity but did not correspond with enhanced hepatocyte survival. We hypothesized that this was due to alloantibody-mediated rejection. When anti-LFA-1 mAb treatment was combined with macrophage depletion, which we have previously reported impairs alloantibody-mediated parenchymal cell damage, in vivo cytotoxic effector function was significantly decreased and was accompanied by significant enhancement of hepatocyte survival in sensitized wild-type recipients. Therefore, LFA-1 is a potent therapeutic target for reduction of CD8-mediated cytotoxicity in sensitized transplant recipients and can be combined with other treatments that target non-CD8-mediated recall alloimmunity.
Collapse
Affiliation(s)
- Jason M Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University Medical Center, Columbus, OH 43210-1250, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Phongpradist R, Chittasupho C, Okonogi S, Siahaan T, Anuchapreeda S, Ampasavate C, Berkland C. LFA-1 on leukemic cells as a target for therapy or drug delivery. Curr Pharm Des 2011; 16:2321-30. [PMID: 20618153 DOI: 10.2174/138161210791920450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/31/2010] [Indexed: 01/01/2023]
Abstract
Leukemia therapeutics are aiming for improved efficacy by targeting molecular markers differentially expressed on cancerous cells. Lymphocyte function-associated antigen-1 (LFA-1) expression on various types of leukemia has been well studied. Here, the role and expression of LFA-1 on leukemic cells and the possibility of using this integrin as a target for drug delivery is reviewed. To support this rationale, experimental results were also included where cIBR, a cyclic peptide derived from a binding site of LFA-1, was conjugated to the surface of polymeric nanoparticles and used as a targeting ligand. These studies revealed a correlation of LFA-1 expression level on leukemic cell lines and binding and internalization of cIBR-NPs suggesting a differential binding and internalization of cIBR-NPs to leukemic cells overexpressing LFA-1. Nanoparticles conjugated with a cyclic peptide against an accessible molecular marker of disease hold promise as a selective drug delivery system for leukemia treatment.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | |
Collapse
|
9
|
Arefanian H, Tredget EB, Rajotte RV, Gill RG, Korbutt GS, Rayat GR. Short-term administrations of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies induce tolerance to neonatal porcine islet xenografts in mice. Diabetes 2010; 59:958-66. [PMID: 20086231 PMCID: PMC2844843 DOI: 10.2337/db09-0413] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 01/06/2010] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The objective of this study was to determine whether tolerance to neonatal porcine islet (NPI) xenografts could be achieved by short-term administrations of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs). RESEARCH DESIGN AND METHODS Diabetic B6 mice received NPI transplants and short-term injections of combined anti-LFA-1 and anti-CD154 mAbs. Mice with long-term islet graft function were treated with depleting anti-CD25 mAb or re-transplanted with a second-party NPI. At the end of the study, grafts from mice with long-term islet function were examined. Their spleen cells were characterized and used for in vitro proliferation and adoptive transfer studies. RESULTS All mAb-treated NPI recipients maintained normoglycemia for >100 days post-transplantation. Only 5 of 50 mice rejected their grafts before 300 days post-transplantation. Intact islets, foxp3(+) immune cells, as well as interleukin (IL)-10 and transforming growth factor (TGF)-beta regulatory cytokine transcripts were detected in the NPI xenografts from tolerant mice. A higher percentage of CD4(+) T-cell population from these mice expressed regulatory markers, suggesting that tolerance to NPI xenografts may be mediated by T regulatory cells. This was confirmed when tolerant mice treated with depleting anti-CD25 mAb became diabetic. Lymphocytes from tolerant mice inhibited the proliferation of lymphocytes from B6 mice immunized with porcine cells and they displayed limited proliferation when adoptively transferred. All protected B6 mice transplanted with a second-party NPI xenograft maintained long-term normoglycemia even after removal of the first NPI graft-bearing kidney. CONCLUSIONS These results demonstrate that tolerance to NPI xenografts can be achieved by transient administrations of combined anti-LFA-1 and anti-CD154 mAb therapy.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Endocrinology and Metabolism Research Center, Dr. Shariati Hospital, Tehran University of Medical Sciences, North Kargar Avenue, Tehran, Iran
| | - Eric B. Tredget
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Ray V. Rajotte
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Ron G. Gill
- Alberta Diabetes Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R. Rayat
- Alberta Diabetes Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|