1
|
Zhang X, Li T, Lu YQ. Mesenchymal stem cell-based therapy for paraquat-induced lung injury. Cell Biol Toxicol 2024; 40:70. [PMID: 39136896 PMCID: PMC11322247 DOI: 10.1007/s10565-024-09911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Paraquat poisoning results in significant pulmonary damage, but current treatments are only minimally effective in repairing the injured lung tissues. Recent research has highlighted the promise of using stem cell therapy, namely mesenchymal stem cells, as a new method for treating paraquat toxicity. These cells have shown effectiveness in decreasing inflammation, apoptosis, and fibrosis in the mice lungs subjected to paraquat. The therapeutic implications of mesenchymal stem cells are believed to arise from their release of bioactive proteins and their capacity to regulate inflammatory responses. However, additional clinical study is required to validate these therapies' efficacy. This review thoroughly explores the pathophysiology of paraquat poisoning and the properties of mesenchymal stem cells. Additionally, it critically assesses the long-term safety and effectiveness of mesenchymal stem cell therapies, which is crucial for developing more dependable and effective treatment protocols. In summary, although mesenchymal stem cells offer promising prospects for treating lung injuries, more investigations are required to optimize their therapeutic promise and ensure their safe clinical application in the context of paraquat poisoning.
Collapse
Affiliation(s)
- Xiaping Zhang
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ting Li
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
2
|
Ghasemi F, Mohammadi M, Ghaffari F, Hosseini-Sharifabad A, Omidifar N, Nili-Ahmadabadi A. Therapeutic Potential of Pentoxifylline in Paraquat-Induced Pulmonary Toxicity: Role of the Phosphodiesterase Enzymes. Drug Res (Stuttg) 2024; 74:241-249. [PMID: 38830372 DOI: 10.1055/a-2314-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Pentoxifylline (PTX), a non-selective phosphodiesterase inhibitor, has demonstrated protective effects against lung injury in animal models. Given the significance of pulmonary toxicity resulting from paraquat (PQ) exposure, the present investigation was designed to explore the impact of PTX on PQ-induced pulmonary oxidative impairment in male mice.Following preliminary studies, thirty-six mice were divided into six groups. Group 1 received normal saline, group 2 received a single dose of PQ (20 mg/kg; i.p.), and group 3 received PTX (100 mg/kg/day; i.p.). Additionally, treatment groups 4-6 were received various doses of PTX (25, 50, and 100 mg/kg/day; respectively) one hour after a single dose of PQ. After 72 hours, the animals were sacrificed, and lung tissue was collected.PQ administration caused a significant decrease in hematocrit and an increase in blood potassium levels. Moreover, a notable increase was found in the lipid peroxidation (LPO), nitric oxide (NO), and myeloperoxidase (MPO) levels, along with a notable decrease in total thiol (TTM) and total antioxidant capacity (TAC) contents, catalase (CAT) and superoxide dismutase (SOD) enzymes activity in lung tissue. PTX demonstrated the ability to improve hematocrit levels; enhance SOD activity and TTM content; and decrease MPO activity, LPO and NO levels in PQ-induced pulmonary toxicity. Furthermore, these findings were well-correlated with the observed lung histopathological changes.In conclusion, our results suggest that the high dose of PTX may ameliorate lung injury by improving the oxidant/antioxidant balance in animals exposed to PQ.
Collapse
Affiliation(s)
- Farshad Ghasemi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Mobina Mohammadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ghaffari
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Hosseini-Sharifabad
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Sun H, Wu Y, Xiong Z, Gu Y, Jia Q, Ru Z, Peng Y, Kang Z, Li Y, Huang Y, Yin S, Guo K, Feng C, Tang J, Gao Z, Wang Y, Yang X. Amphibian-derived peptide RL-RF10 ameliorates paraquat-induced pulmonary fibrosis injury. Biomed Pharmacother 2024; 171:116184. [PMID: 38244328 DOI: 10.1016/j.biopha.2024.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
Pulmonary fibrosis is the result of dysfunctional repair after lung tissue injury, characterized by fibroblast proliferation and massive extracellular matrix aggregation. Once fibrotic lesions develop, effective treatment is difficult, with few drugs currently available. Here, we identified a short cyclic decapeptide RL-RF10 derived from frog skin secretions as a potential novel lead molecule for the amelioration of pulmonary fibrosis. In vivo experiments indicated that RL-RF10 treatment ameliorated lung histopathological damage and fibrogenesis after paraquat (PQ) induction in a concentration-dependent manner. On day 7, bronchoalveolar lavage fluid assays performed on mice showed that RL-RF10 exerted anti-inflammatory effects by decreasing the expression of inflammation-related factors, including transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α, in lung tissue. In addition, RL-RF10 down-regulated the levels of collagen I, collagen III, and vimentin, while increasing the expression of E-cadherin to inhibit epithelial-mesenchymal transition. Further research demonstrated that the SMAD2/3 signaling pathway, which is strongly linked to TGF-β1, played a critical function in enhancing the pulmonary fibrosis relief achieved by RL-RF10. Both in vivo and in vitro assays showed that RL-RF10 treatment led to a significant reduction in the phosphorylation levels of SMAD2 and SMAD3 following PQ induction. Overall, we investigated the protective effects and underlying mechanisms of the RL-RF10 peptide against pulmonary fibrosis and demonstrated its potential as a novel therapeutic drug candidate for the treatment of pulmonary fibrotic diseases.
Collapse
Affiliation(s)
- Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ziqian Xiong
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuanqi Gu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yubing Huang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Kun Guo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chengan Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhenhua Gao
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, Yunnan, 650032, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
4
|
Liu X, Li C, Hou C, Jiang Y, Chen F, Zhu Y, Zou L. Dissecting the effects of paraquat-induced pulmonary injury in rats using UPLC-Q-TOF-MS/MS-based metabonomics. Toxicol Res (Camb) 2023; 12:527-538. [PMID: 37397915 PMCID: PMC10311158 DOI: 10.1093/toxres/tfad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/22/2023] [Accepted: 05/14/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Paraquat (PQ) is a toxic compound that selectively accumulates in the lungs, inducing severe pulmonary inflammation and fibrosis. However, data on the metabolomic changes induced by the PQ remain scant. This study aimed to determine the metabolic changes in Sprague-Dawley rats subjected to PQ using UPLC-Q-TOF-MS/MS. Methods We established groups of PQ-induced pulmonary injury rats for 14 or 28 days. Results Our data showed that PQ decreased the survival of the rats and induced pulmonary inflammation at day 14 or pulmonary fibrosis at day 28. There was upregulation of IL-1β expression in the inflammation group as well as upregulation of fibronectin, collagen and α-SMA in the pulmonary fibrosis group. OPLS-DA revealed differential expression of 26 metabotites between the normal and the inflammation groups; 31 plasma metabotites were also differently expressed between the normal and the fibrosis groups. There was high expression of lysoPc160-, hydroxybutyrylcarnitine, stearic acid, and imidazolelactic acid in the pulmonary injury group compared to the normal group. Conclusion Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. This study gives insights into the mechanisms of PQ-induced lung injury and highlights the potential therapeutic targets. Nonstructured abstract The effect of PQ on lung injury in rats was detected by metabonomics, and the possible metabolic mechanism was investigated by KEGG analysis. OPLS-DA revealed the differential expression of 26 metabotites and 31 plasma metabotites between the normal and the pulmonary injury groups. Metabolomics analysis confirmed that the PQ-induced lung injury was not only related to the aggravation of inflammation and apoptosis but also to mediated histidine, serine, glycerophospholipid, and lipid metabolism. Oleoylethanolamine, stearic acid, and imidazolelactic acid are potential molecular markers in PQ-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiehong Liu
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Chi Li
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Changmiao Hou
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- School of Clinical Medicine, Hunan University of Chinese Medicine, 113 Shaoshan Middle Road, Changsha, Hunan, PC 410000, China
| | - Yu Jiang
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Fang Chen
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Yimin Zhu
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| | - Lianhong Zou
- Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics,61 Jiefang West Road, Changsha, Hunan, PC 410005, China
- Hunan Provinicial Institute of Emergency Medicine, 61 Jiefang West Road, Changsha, Hunan, PC 410005, China
| |
Collapse
|
5
|
Human Amnion-Derived MSCs Alleviate Acute Lung Injury and Hinder Pulmonary Fibrosis Caused by Paraquat in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3932070. [PMID: 35345827 PMCID: PMC8957415 DOI: 10.1155/2022/3932070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
Methods First, the purity of hAD-MSCs was determined by morphological observation and FCM, and the effects on the survival of paraquat-poisoned Sprague-Dawley rats were observed. All rats were randomly divided into three groups, defined as the sham control group (n = 8), model group (n = 15), and hAD-MSC-transplanted group (n = 17). Pneumonocyte damage and inflammatory cell infiltration were investigated in the three groups of rats, untreated control, paraquat only, and paraquat+hAD-MSC transplanted, using H&E staining. Fibrosis was investigated in three groups of rats using Masson's trichrome staining and Sirius red staining. The profibrotic factor TGF-β1, the composition of fibrotic collagen HYP, and the hAD-MSC-secreted immunosuppressive factor HLA-G5 in serum were investigated in the three groups of rats using ELISA. Furthermore, the distribution of hAD-MSCs was investigated in the three groups of rats using immunohistochemistry and hematoxylin staining. Results The hAD-MSCs exhibited typical hallmarks of MSCs, improved the state of being and survival of paraquat-poisoned rats, reduced both lung injury and inflammation, and inhibited the progression of pulmonary fibrosis by decreasing the deposition of collagen and the secretion of both TGF-β1 and HYP. The hAD-MSCs could survive in damaged lungs and secreted appropriate amounts of HLA-G5 into the serum. Conclusion The obtained results indicate that hAD-MSCs used to treat paraquat-induced lung injury may work through anti-inflammatory and immunosuppressive pathways and the downregulation of profibrotic elements. This study suggests that the transplantation of hAD-MSCs is a promising therapeutic approach for the treatment of paraquat-intoxicated patients.
Collapse
|
6
|
Jiao G, Li X, Wu B, Yang H, Zhang G, Ding Z, Zhao G, Chen J. Case Report: Delayed Lung Transplantation With Intraoperative ECMO Support for Herbicide Intoxication-Related Irreversible Pulmonary Fibrosis: Strategy and Outcome. Front Surg 2021; 8:754816. [PMID: 34901140 PMCID: PMC8660696 DOI: 10.3389/fsurg.2021.754816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Lung transplantation is recognized as the only therapeutic option for patients who develop irreversible pulmonary fibrosis after herbicide intoxication. Methods: We have collected and presented clinical course and outcome of four patients who received lung transplantation due to paraquat and diquat intoxication from 2018 to 2021. Another patient who received initial lung transplantation due to paraquat intoxication and re-transplantation due to chronic lung allograft dysfunction in 2019, was further reported. Patients were admitted in lung transplantation centers, including the 1st affiliated hospital of Zhengzhou University and Wuxi Lung transplantation center. Previous reported cases from Europe, Canada and China were also summarized as benchmark. Results: During the period from the year of 2018 to 2021, there have been four patients in China, who received lung transplantation due to herbicide intoxication. Median age of the four patients was 37 (IQR 34.5, 39.75) years old. Median time from intoxication to lung transplantation was 27.5 (IQR 27, 30.5) days. Bilateral lung transplantation was performed in three patients, while one single lung transplantation was performed in an urgent listed patient. Extracorporeal Membrane Oxygenation (ECMO) and hemopurification support were used in all patients (100%). Details of the cases with follow-ups were further presented and analyzed. Conclusions: Late timing of bilateral lung transplantation can be performed successfully for pulmonary fibrosis after paraquat or diquat intoxication. The survival of patients with complex perioperative conditions can be achieved with a multidisciplinary team to manage the irreversible effects of intoxication.
Collapse
Affiliation(s)
- Guohui Jiao
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Wu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hang Yang
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Guoqing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Hu Y, Qian C, Sun H, Li Q, Wang J, Hua H, Dai Z, Li J, Li T, Ding Y, Yang X, Zhang W. Differences in epithelial-mesenchymal-transition in paraquat-induced pulmonary fibrosis in BALB/C and BALB/C (nu/nu) nude mice. Biomed Pharmacother 2021; 143:112153. [PMID: 34507117 DOI: 10.1016/j.biopha.2021.112153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Exposure to the toxic herbicide paraquat (PQ) can lead to the active absorption and enrichment of alveolar epithelial cells, resulting in pulmonary fibrosis and respiratory failure. At present, no effective clinical treatment is available. Notably, however, patients infected with human acquired immunodeficiency virus (HIV) (with T lymphocyte deficiency) do not show pulmonary fibrosis after PQ poisoning, suggesting that T lymphocytes may be involved in the occurrence and pathological development of lung fibers following PQ exposure, although relevant studies remain limited. Here, we found that the degree of pulmonary fibrosis induced by intragastric administration of PQ in congenital immunodeficiency BALB/C (nu/nu) nude (T lymphocyte loss) mice was lower than that in normal mice. However, pulmonary fibrosis was aggravated after transplantation of BALB/C (nu/nu) T lymphocytes into congenital immunodeficiency mice. This study is the first to report on the involvement of T lymphocytes in the occurrence and pathological development of lung fibers induced by PQ exposure. Thus, T cells may be an important cellular target for the clinical treatment of pulmonary fibrosis caused by PQ.
Collapse
Affiliation(s)
- Yegang Hu
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China
| | - Chuanyun Qian
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Qiankui Li
- School of Food and Drug, Shandong Institute of Commerce and Technology, 250014 Jinan, Shandong, China
| | - Jinde Wang
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Hairong Hua
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Zichao Dai
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Jintao Li
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Tao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014 Jinan, Shandong, China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medical University, 261000 Weifang, Shandong, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, 650500 Kunming, Yunnan, China.
| | - Wei Zhang
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China.
| |
Collapse
|
8
|
Wang LM, Jung S, Serban M, Chatterjee A, Lee S, Jeyaseelan K, El Naqa I, Seuntjens J, Ybarra N. Comparison of quantitative and qualitative scoring approaches for radiation-induced pulmonary fibrosis as applied to a preliminary investigation into the efficacy of mesenchymal stem cell delivery methods in a rat model. BJR Open 2021; 2:20210006. [PMID: 34381940 PMCID: PMC8320116 DOI: 10.1259/bjro.20210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 11/05/2022] Open
Abstract
Objectives Compare a quantitative, algorithm-driven, and qualitative, pathologist-driven, scoring of radiation-induced pulmonary fibrosis (RIPF). And using these scoring models to derive preliminary comparisons on the effects of different mesenchymal stem cell (MSC) administration modalities in reducing RIPF. Methods 25 rats were randomized into 5 groups: non-irradiated control (CG), irradiated control (CR), intraperitoneally administered granulocyte-macrophage colony stimulating factor or GM-CSF (Drug), intravascularly administered MSC (IV), and intratracheally administered MSC (IT). All groups, except CG, received an 18 Gy conformal dose to the right lung. Drug, IV and IT groups were treated immediately after irradiation. After 24 weeks of observation, rats were euthanized, their lungs excised, fixed and stained with Masson's Trichrome. Samples were anonymized and RIPF was scored qualitatively by a certified pathologist and quantitatively using ImageScope. An analysis of association was conducted, and two binary classifiers trained to validate the integrity of both qualitative and quantitative scoring. Differences between the treatment groups, as assessed by the pathologist score, were then tested by variance component analysis and mixed models for differences in RIPF outcomes. Results There is agreement between qualitative and quantitative scoring for RIPF grades from 4 to 7. Both classifiers performed similarly on the testing set (AUC = 0.923) indicating accordance between the qualitative and quantitative scoring. For comparisons between MSC infusion modalities, the Drug group had better outcomes (mean pathologist scoring of 3.96), correlating with significantly better RIPF outcomes than IV [lower by 0.97, p = 0.047, 95% CI = (0.013, 1.918)] and resulting in an improvement over CR [lower by 0.93, p = 0.037, 95% CI = (0.062, 1.800]. Conclusion Quantitative image analysis may help in the assessment of therapeutic interventions for RIPF and can serve as a scoring surrogate in differentiating between severe and mild cases of RIPF. Preliminary data demonstrate that the use of GM-CSF was best correlated with lower RIPF severity. Advances in knowledge Quantitative image analysis can be a viable supplemental system of quality control and triaging in situations where pathologist work hours or resources are limited. The use of different MSC administration methods can result in different degrees of MSC efficacy and study outcomes.
Collapse
Affiliation(s)
- Li Ming Wang
- Research Institute of the McGill University Healthcare Centre, Montréal, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Healthcare Centre, Montréal, Canada
| | - Monica Serban
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Avishek Chatterjee
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Sangkyu Lee
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Krishinima Jeyaseelan
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Issam El Naqa
- Radiation Oncology, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Jan Seuntjens
- Medical Physics Unit, Cedars Cancer Centre, Montréal University Healthcare Centre, Montreal, Canada
| | - Norma Ybarra
- Research Institute of the McGill University Healthcare Centre & Medical Physics Unit, CedarsCancer Centre, McGill University Healthcare Centre, Montreal, Canada
| |
Collapse
|
9
|
Zhang L, Li Q, Liu W, Liu Z, Shen H, Zhao M. Mesenchymal Stem Cells Alleviate Acute Lung Injury and Inflammatory Responses Induced by Paraquat Poisoning. Med Sci Monit 2019; 25:2623-2632. [PMID: 30967525 PMCID: PMC6474293 DOI: 10.12659/msm.915804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) show anti-oxidative and anti-inflammatory effects that have prompted further research into their potential applications in treating paraquat (PQ) poisoning cases in emergency rooms. We assessed the protective effects, underlying mechanisms, and secondary inflammatory responses of MSCs on PQ-induced acute lung injury. Material/Methods Sprague-Dawley rats were injected intraperitoneally with PQ (20 μg per gram of body weight). MSCs were injected through the caudal vein 1 h after PQ treatment. The severity of lung injury and oxidative stress and levels of inflammatory mediators were examined with and without MSC grafting. Expression levels of TLR4, NF-κB, p65, Nrf2, HO-1, and activated caspase-3 protein were determined by Western blotting. Results Administration of MSCs significantly decreased the levels of TNF-α, IL-1β, and IL-6 and polymorphonuclear neutrophil (PMN) count in the bronchoalveolar lavage fluid (BALF) of rats with PQ-induced ALI. In addition, MSC also effectively reduced the wet-to-dry lung weight ratio, lung injury score, and the levels of MDA and 8-OHdG. Conversely, MSC increased SOD and GSH-PX activity in the lung tissue. Moreover, MSC significantly upregulated HO-1, Nrf-2 protein expression in the lung tissue. In contrast, the levels of TLR4, NF-κB p65 and activated caspase-3 protein were decreased in MSC-treated rats (P<0.05). Conclusions Treatment with MSCs overexpressed Nrf2 gene and activated downstream antioxidant HO-1, leading to inhibit oxidative stress, cell apoptosis and inflammatory response in lung tissue, thereby significantly improving PQ-induced acute lung injury in rats.
Collapse
Affiliation(s)
- Lichun Zhang
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Qiuhe Li
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Wei Liu
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Zhenning Liu
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haitao Shen
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, shenyang, China (mainland)
| | - Min Zhao
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
10
|
Zhang H, Xiao B, Jiang L, Yao W, Shen H, Xiang X. Inhibition of mesenchymal stromal cells' chemotactic effect to ameliorate paraquat-induced pulmonary fibrosis. Toxicol Lett 2019; 307:1-10. [PMID: 30658152 DOI: 10.1016/j.toxlet.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/12/2018] [Accepted: 01/13/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Paraquat (PQ) poisoning is one of the leading causes of suicide attempts in China signature by acute onset of respiratory distress with massive matrix production resulting in progressive pulmonary fibrosis. There is no specific antidote and mortality remains high without effective treatment available. The cellular mechanisms underlying PQ-induced pulmonary fibrosis remain largely unknown. OBJECTIVES To determine the origin of mesenchymal stem cells (MSCs) migrated to the lung after PQ exposure and their roles in PQ-induced pulmonary fibrosis, to further explore the possible mechanisms involved in these processes, and to help finding novel therapies. METHODS We used a combination of lineage tracking techniques to investigate the contributions of several cells of MSCs, marked by Nestin or CXCL12, and traced their co-expression of α-smooth muscle actin (α-SMA), a marker for fibrosis, or their co-location with matrix production, marked by collagen-1 production (Col1-GFP) following PQ exposure. Then, we used a CXCL12flox/flox; Prx1-Cre mice and a pharmacologic agent AMD3100 to selectively deplete chemotactic mechanism of the MSCs, and tested pro-fibrotic pathways, fibrotic processes and survival of mice after PQ exposure. RESULTS Our results showed that after paraquat exposure, the residential Nestin + MSCs were quickly expanded and contributed to extracellular matrix production. Moreover, when we used a CXCL12flox/flox; Prx1-Cre mice to selectively deplete chemotactic mechanism of the MSC, we found that PQ exposure in these mice failed to activate pro-fibrotic pathways including TGF-β, Wnt and EGFR signaling. Furthermore, when the chemotactic effect of MSCs via CXCL12 was blocked by a pharmacologic agent, AMD3100, it alleviated the development of the fibrotic process and improved survival rate in mice exposed to PQ. CONCLUSION Collectively, our data suggest paraquat intoxication rapidly activated Nestin + MSCs and that blocking chemotactic effects of MSCs by perivascular CXCL12 inhibition may effectively protect pulmonary injury following paraquat exposure. Our results revealed a novel mechanism for post-PQ lung injury and indicated a novel therapeutic option to attenuate fibrosis induced by paraquat.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, PR China; Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Bing Xiao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, PR China
| | - Li Jiang
- Department of Emergency Medicine, Dalian Medical University, Dalian, Liaoning, PR China
| | - Wei Yao
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Xudong Xiang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
11
|
Zhang LC, Wang Y, Liu W, Zhang XM, Fan M, Zhao M. Protective effects of SOD2 overexpression in human umbilical cord mesenchymal stem cells on lung injury induced by acute paraquat poisoning in rats. Life Sci 2018; 214:11-21. [PMID: 30321544 DOI: 10.1016/j.lfs.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
AIMS To study the protective effects and mechanisms of human umbilical cord mesenchymal stem cells (hUCMSCs) and overexpression of antioxidant gene SOD2 on lung injury by establishing a rat model of paraquat (PQ)-induced lung injury. MAIN METHODS The hUCMSCs cell line overexpressed SOD2 was established. After intraperitoneal injection of PQ solution (24 mg/kg) 3 h later, the different groups of hUCMSCs cell lines were injected through the tail veins of rats. Bronchoalveolar lavage fluid (BALF) was obtained to determine the protein level of inflammatory cytokines. Lung tissues were collected to test the wet/dry weight ratios (W/D), oxidative stress index and lung injury scores. Western blotting was used to detect SOD1, SOD2, HO-1, Nrf2, NF-κBp65 subunit, and cleaved caspase-3. KEY FINDINGS After treatment with cells built on the basis of hUCMSCs, the protein levels of TNF-α, IL-8, and ICAM-1 in BALF decreased, and meanwhile in lung tissues, MDA content was reduced, GSH-Px activity was elevated, and lung W/D ratio decreased. Additionally, protein expression of NF-κB p65 subunit and activated caspase-3 in lung tissues was down-regulated, whereas expression of SOD1, SOD2, HO-1, and Nrf-2 were up-regulated. The results of HE staining showed that lung injury was significantly alleviated in the hUCMSC treated group. It is noticeable that hUCMSCs and SOD2-overexpressed hUCMSCs effectively reduced PQ-induced lung injury in rats, and moreover, hUCMSCs overexpressed SOD2 were more effective compared with hUCMSCs only. SIGNIFICANCE Evaluation of the efficacy and analysis of mechanism in the treatment of PQ induced ALI by appliance of SOD2-overexpressed hUCMSCs will provide the proof from bench to bedside.
Collapse
Affiliation(s)
- Li-Chun Zhang
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China.
| | - Yu Wang
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Wei Liu
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Xue-Min Zhang
- Eugenom Inc., Rm 310 No. 226 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Miao Fan
- Eugenom Inc., Rm 310 No. 226 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Min Zhao
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| |
Collapse
|
12
|
He F, Zhou A, Feng S, Li Y, Liu T. Mesenchymal stem cell therapy for paraquat poisoning: A systematic review and meta-analysis of preclinical studies. PLoS One 2018; 13:e0194748. [PMID: 29566055 PMCID: PMC5864035 DOI: 10.1371/journal.pone.0194748] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Paraquat (PQ) poisoning can cause multiple organ failure, in which the lung is the primary target organ. There is currently no treatment for PQ poisoning. Mesenchymal stem cells (MSCs), which differentiate into multiple cell types, have generated much enthusiasm regarding their use for the treatment of several diseases. The aim of this study was to systematically review and analyze published preclinical studies describing MSC administration for the treatment of PQ poisoning in animal models to provide a basis for cell therapy. Methods The electronic databases PubMed and CBMdisc were searched in this systematic review and meta-analysis. The MSC treatment characteristics of animal models of PQ poisoning were summarized. After quality assessment was performed, the effects of MSC transplantation were evaluated based on the survival rate, lung wet/dry weight, fibrosis scores, oxidative stress response, and inflammatory response. Publication bias was assessed. Results Eleven controlled preclinical studies involving MSC transplantation in animal models of PQ poisoning were included in this review. MSC therapy improved the survival rate and reduced the lung wet/dry weight and histopathological fibrosis changes in most studies. MSCs decreased serum or plasma malondialdehyde levels in the acute phase after 7 and 14 d and increased serum or plasma superoxide dismutase and glutathione levels at the same time points. IL-1β, TNF-α and TGF-β1 levels in blood or lung tissues were decreased to different degrees by MSCs. Lung hydroxyproline was decreased by MSCs after 14 d. No obvious evidence of publication bias was found. Conclusion MSCs showed anti-fibrosis therapeutic effects in animal models of lung injury caused by PQ poisoning, which may be related to reduced oxidative stress and inflammatory cytokine levels. Our review indicates a potential therapeutic role for MSC therapy to treat PQ poisoning and serves to augment the rationale for clinical studies.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, PR China
- * E-mail:
| | - Aiting Zhou
- Department of Spine Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, PR China
| | - Shou Feng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, PR China
| | - Yuxiang Li
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, PR China
| | - Tao Liu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, PR China
| |
Collapse
|
13
|
Nana-Sinkam SP, Acunzo M, Croce CM, Wang K. Extracellular Vesicle Biology in the Pathogenesis of Lung Disease. Am J Respir Crit Care Med 2017; 196:1510-1518. [PMID: 28678586 PMCID: PMC5754438 DOI: 10.1164/rccm.201612-2457pp] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Serge P. Nana-Sinkam
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Mario Acunzo
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, James Comprehensive Cancer Center, Ohio State University, Columbus, Ohio; and
| | - Kai Wang
- Institutes for Systems Biology, Seattle, Washington
| |
Collapse
|
14
|
Huang M, Wang YP, Zhu LQ, Cai Q, Li HH, Yang HF. MAPK pathway mediates epithelial-mesenchymal transition induced by paraquat in alveolar epithelial cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1407-1414. [PMID: 25873302 DOI: 10.1002/tox.22146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is believed to be involved in lung fibrosis process induced by paraquat (PQ); however, the molecular mechanism of this process has not been clearly established. The present study investigated the potential involvement of EMT after PQ poisoning. The expressions of EMT markers, such as E-cadherin and α-smooth muscle actin (α-SMA), at multiple time points after exposure to different concentrations of PQ were evaluated by western blot analysis. Following PQ treatment, EMT induction was observed under microscopy. Related fibrosis genes, including Matrix metalloproteinase 2 (MMP-2), Matrix metalloproteinase 9 (MMP-9), collagens type I (COL I), and type III (COL III), were also evaluated by measuring their mRNA levels using RT-PCR analysis. Signaling pathways were analyzed using selective pharmacological inhibitors for MAPK. Cell migration ability was evaluated by scratch wound and Transwell assays. The data showed that PQ-induced epithelial RLE-6NT cells to develop mesenchymal cell characteristics, as indicated by a significant decrease in the epithelial marker E-cadherin and a significant increase in the extracellular matrix (ECM) marker α-smooth muscle actin in a dose and time-dependent manner. Moreover, PQ-treated RLE-6NT cells had an EMT-like phenotype with elevated expression of MMP-2, MMP-9, and COL I and COL III and enhanced migration ability. Signal pathway analysis revealed that PQ-induced EMT led to ERK-1 and Smad2 phosphorylation through activation of the MAPK pathway. The results of the current study indicate that PQ-induced pulmonary fibrosis occurs via EMT, which is mediated by the MAPK pathway. This implies that the MAPK pathway is a promising therapeutic target in alveolar epithelial cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1407-1414, 2016.
Collapse
Affiliation(s)
- Min Huang
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Ya-Peng Wang
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Ling-Qin Zhu
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Qian Cai
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Hong-Hui Li
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Hui-Fang Yang
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
15
|
Marashi SM, Raji H, Nasri-Nasrabadi Z, Majidi M, Vasheghani-Farahani M, Abbaspour A, Ghorbani A, Vasigh S. One-lung circumvention, an interventional strategy for pulmonary salvage in acute paraquat poisoning: An evidence-based review. Tzu Chi Med J 2015. [DOI: 10.1016/j.tcmj.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Tang X, Sun B, He H, Li H, Hu B, Qiu Z, Li J, Zhang C, Hou S, Tong Z, Dai H. Successful extracorporeal membrane oxygenation therapy as a bridge to sequential bilateral lung transplantation for a patient after severe paraquat poisoning. Clin Toxicol (Phila) 2015; 53:908-13. [PMID: 26314316 DOI: 10.3109/15563650.2015.1082183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Paraquat is a widely used herbicide that can cause severe to fatal poisoning in humans. The irreversible and rapid progression of pulmonary fibrosis associated with respiratory failure is the main cause of death in the later stages of poisoning. There are infrequent reports of successful lung transplants for cases of severe paraquat poisoning. We expect that this successful case will provide a reference for other patients in similar circumstances. CASE DETAILS A 24-year-old female was sent to the hospital approximately 2 hours after ingesting 50 ml of paraquat. She experienced rapidly aggravated pulmonary fibrosis and severe respiratory failure. On the 34th day after ingestion, she underwent intubation and invasive mechanical ventilation. The patient was evaluated for lung transplantation, and veno-venous extracorporeal membrane oxygenation (ECMO) was established as a bridge to lung transplantation on the 44th day. On the 56th day, she successfully underwent a bilateral sequential lung transplantation. Through respiratory and physical rehabilitation and nutrition support, the patient was weaned from mechanical ventilation and extubated on the 66th day. On the 80th day, she was discharged. During the 1-year follow-up, the patient was found to be in good condition, and her pulmonary function improved gradually. CONCLUSION We suggest that lung transplantation may be an effective treatment in the end stages of paraquat-induced pulmonary fibrosis and consequential respiratory failure. For patients experiencing a rapid progression to a critical condition in whom lung transplantation cannot be performed immediately (e.g., while awaiting a viable donor or toxicant clearance), ECMO should be a viable bridge to lung transplantation.
Collapse
Affiliation(s)
- Xiao Tang
- a Department of Respiratory and Critical Care Medicine , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Bing Sun
- a Department of Respiratory and Critical Care Medicine , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Hangyong He
- a Department of Respiratory and Critical Care Medicine , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Hui Li
- b Department of Thoracic Surgery , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Bin Hu
- b Department of Thoracic Surgery , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Zewu Qiu
- c Department of Poisoning , The 307 Hospital of the Chinese People's Liberation Army , Beijing , China
| | - Jie Li
- a Department of Respiratory and Critical Care Medicine , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Chunyan Zhang
- a Department of Respiratory and Critical Care Medicine , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Shengcai Hou
- b Department of Thoracic Surgery , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Zhaohui Tong
- a Department of Respiratory and Critical Care Medicine , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| | - Huaping Dai
- a Department of Respiratory and Critical Care Medicine , Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine , Beijing , China
| |
Collapse
|
17
|
Abd El Salam NF, Hafez MS, Omar SM, el Sayed HF. The role of bone marrow-derived mesenchymal stem cells in a rat model of paraquat-induced lung fibrosis. THE EGYPTIAN JOURNAL OF HISTOLOGY 2015; 38:389-401. [DOI: 10.1097/01.ehx.0000464786.52906.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Conese M, Carbone A, Castellani S, Di Gioia S. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 2013; 197:445-73. [PMID: 23652321 DOI: 10.1159/000348831] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | |
Collapse
|