1
|
Kowala A, Boot J, Meng J, Mein CA, Pourquié O, Connelly JT, Morgan JE, Lin YY. Engineered human myogenic cells in hydrogels generate innervated vascularized myofibers within dystrophic mouse muscle on long-term engraftment. Cell Rep Med 2025; 6:102019. [PMID: 40056909 PMCID: PMC11970389 DOI: 10.1016/j.xcrm.2025.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 03/21/2025]
Abstract
Transplantation of human myogenic progenitor cells (MPCs) is a promising therapeutic strategy for treating muscle-wasting diseases, e.g., Duchenne muscular dystrophy (DMD). To increase engraftment efficiency of donor stem cells, modulation of host muscles is required, significantly limiting their clinical translation. Here, we develop a clinically relevant transplantation strategy synergizing hydrogel-mediated delivery and engineered human MPCs generated from CRISPR-corrected DMD patient-derived pluripotent stem cells. We demonstrate that donor-derived human myofibers produce full-length dystrophin at 4 weeks and 5-6 months (long-term) after transplantation in the unmodulated muscles of the dystrophin-deficient mouse model of DMD. Remarkably, human myofibers are innervated by mouse motor neurons forming neuromuscular junctions and supported by vascularization after long-term engraftment in dystrophic mice. PAX7+ cells of human origin populate the satellite cell niche. There was no evidence of tumorigenesis in mice engrafted with hydrogel-encapsulated human MPCs. Our results provide a proof of concept in developing hydrogel-based cell therapy for muscle-wasting diseases.
Collapse
Affiliation(s)
- Anna Kowala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, UK; Centre for Predictive in vitro Models, Queen Mary University of London, Mile End Road, London E1 4NS, UK; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - James Boot
- Barts and the London Genome Centre, Faculty of Medicine and Dentistry, Blizard Institute, London, UK
| | - Jinhong Meng
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Charles A Mein
- Barts and the London Genome Centre, Faculty of Medicine and Dentistry, Blizard Institute, London, UK
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, USA
| | - John T Connelly
- Centre for Predictive in vitro Models, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Jennifer E Morgan
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Yung-Yao Lin
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, UK; Centre for Predictive in vitro Models, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
2
|
Fujimoto K, Kanamoto T, Otani S, Miyazaki R, Ebina K, Nakata K. Basic research for ultrasound-guided injection into skeletal muscle lesions in an experimental animal model. Bone Joint Res 2025; 14:33-41. [PMID: 39819782 PMCID: PMC11739951 DOI: 10.1302/2046-3758.141.bjr-2024-0090.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Aims Ultrasound-guided injection techniques are expected to enhance therapeutic efficacy for skeletal muscle injuries and disorders, but basic knowledge is lacking. The purpose of this study was to examine the diagnostic accuracy of ultrasound for abnormal skeletal muscle lesions, and to examine the distribution patterns of solution and cells injected into abnormal muscle lesions under ultrasound guidance. Methods A cardiotoxin (CTX)-induced muscle injury model was used. Briefly, CTX was injected into tibialis anterior muscle in rats under ultrasound observation. First, the diagnostic accuracy of abnormal muscle lesions on ultrasound was examined by comparing ultrasound findings and histology. Next, Fast Green solution and green fluorescent protein (GFP)-labelled cells were simultaneously injected into the abnormal muscle lesions under ultrasound guidance, and their distribution was evaluated. Results Evaluation of short-axis ultrasound images and cross-sectional histological staining showed a strong correlation (r = 0.927; p < 0.001) between the maximum muscle damage area in ultrasound and haematoxylin and eosin (H&E) staining evaluations. Histological analysis showed that ultrasound-guided injection could successfully deliver Fast Green solution around the myofibres at the site of injury. In contrast, the distribution of injected cells was very localized compared to the area stained with Fast Green. Conclusion This experimental animal study demonstrated the potential of ultrasound to quantitatively visualize abnormalities of skeletal muscle. It also showed that ultrasound-guided injections allowed for highly accurate distribution of solution and cells in abnormal muscle tissue, but the patterns of solution and cell distribution were markedly different. Although future studies using a more clinically relevant model are necessary, these results are important findings when considering biological therapies for skeletal muscle injuries and disorders.
Collapse
Affiliation(s)
- Kiyomitsu Fujimoto
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Kanamoto
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunya Otani
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryo Miyazaki
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ken Nakata
- Department of Medicine for Sports and Performing Arts, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
3
|
Dohi K, Manabe Y, Fujii NL, Furuichi Y. Achieving myoblast engraftment into intact skeletal muscle via extracellular matrix. Front Cell Dev Biol 2025; 12:1502332. [PMID: 39877158 PMCID: PMC11772487 DOI: 10.3389/fcell.2024.1502332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025] Open
Abstract
Cell therapy of skeletal muscles is a promising approach for the prevention of muscular diseases and age-related muscle atrophy. However, cell transplantation to treat muscle atrophy that does not involve disease, such as sarcopenia, is considered impossible because externally injected cells rarely engraft into non-injured muscle tissue. Additionally, skeletal muscle-specific somatic stem cells, called satellite cells, lose their ability to adhere to tissue after being cultured in vitro and transforming into myoblasts. To overcome these hurdles, we explored using extracellular matrix (ECM) components to create a niche environment conducive for myoblasts during transplantation. We demonstrated that myoblasts mixed with ECM components can be engrafted into intact skeletal muscle and significantly increase muscle mass in a mouse model. These findings implicate cell transplantation therapy as a viable option for the treatment of sarcopenia. The findings will inform advancements in regenerative medicine for skeletal muscles.
Collapse
Affiliation(s)
| | | | | | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduated School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
4
|
Charrier M, Leroux I, Pichon J, Schleder C, Larcher T, Hamel A, Magot A, Péréon Y, Lamirault G, Tremblay JP, Skuk D, Rouger K. Human MuStem cells are competent to fuse with nonhuman primate myofibers in a clinically relevant transplantation context: A proof-of-concept study. J Neuropathol Exp Neurol 2024; 83:684-694. [PMID: 38752570 DOI: 10.1093/jnen/nlae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.
Collapse
Affiliation(s)
- Marine Charrier
- Oniris, INRAE, PAnTher, Nantes, France
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- Nantes Université, Nantes, France
| | | | | | | | | | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | - Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | | |
Collapse
|
5
|
Sabetkish S, Currie P, Meagher L. Recent trends in 3D bioprinting technology for skeletal muscle regeneration. Acta Biomater 2024; 181:46-66. [PMID: 38697381 DOI: 10.1016/j.actbio.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Baik J, Ortiz-Cordero C, Magli A, Azzag K, Crist SB, Yamashita A, Kiley J, Selvaraj S, Mondragon-Gonzalez R, Perrin E, Maufort JP, Janecek JL, Lee RM, Stone LH, Rangarajan P, Ramachandran S, Graham ML, Perlingeiro RCR. Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells. Cells 2023; 12:1147. [PMID: 37190056 PMCID: PMC10137227 DOI: 10.3390/cells12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.
Collapse
Affiliation(s)
- June Baik
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karim Azzag
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah B. Crist
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aline Yamashita
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Kiley
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Elizabeth Perrin
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - John P. Maufort
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Jody L. Janecek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachael M. Lee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
7
|
Frudinger A, Gauruder-Burmester A, Graf W, Lehmann JP, Gunnarsson U, Mihov M, Ihnát P, Kosorok P, Orhalmi J, Slauf P, Emmanuel A, Hristov V, Jungwirthova A, Lehur PA, Müller A, Amort M, Marksteiner R, Thurner M. Skeletal Muscle-Derived Cell Implantation for the Treatment of Fecal Incontinence: A Randomized, Placebo-Controlled Study. Clin Gastroenterol Hepatol 2023; 21:476-486.e8. [PMID: 35961517 DOI: 10.1016/j.cgh.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Fecal incontinence (FI) improvement following injection of autologous skeletal muscle-derived cells has been previously suggested. This study aimed to test the efficacy and safety of said cells through a multicenter, placebo-controlled study, to determine an appropriate cell dose, and to delineate the target patient population that can most benefit from cell therapy. METHODS Patients experiencing FI for at least 6 months were randomized to receive a cell-free medium or low or high dose of cells. All patients received pelvic floor electrical stimulation before and after treatment. Incontinence episode frequency (IEF), FI quality of life, FI burden assessed on a visual analog scale, Wexner score, and parameters reflecting anorectal physiological function were all assessed for up to 12 months. RESULTS Cell therapy improved IEF, FI quality of life, and FI burden, reaching a preset level of statistical significance in IEF change compared with the control treatment. Post hoc exploratory analyses indicated that patients with limited FI duration and high IEF at baseline are most responsive to cells. Effects prevailed or increased in the high cell count group from 6 to 12 months but plateaued or diminished in the low cell count and control groups. Most physiological parameters remained unaltered. No unexpected adverse events were observed. CONCLUSIONS Injection of a high dose of autologous skeletal muscle-derived cells followed by electrical stimulation significantly improved FI, particularly in patients with limited FI duration and high IEF at baseline, and could become a valuable tool for treatment of FI, subject to confirmatory phase 3 trial(s). (ClinicalTrialRegister.eu; EudraCT Number: 2010-021463-32).
Collapse
Affiliation(s)
- Andrea Frudinger
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | | | - Wilhelm Graf
- Department of Surgery, Akademiska Sjukhuset, Uppsala, Sweden
| | | | - Ulf Gunnarsson
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Minko Mihov
- Medical Center Unimed EOOD, Sevlievo, Bulgaria
| | - Peter Ihnát
- Department of Surgical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavle Kosorok
- Department of Proctology, Iatros Medical Centre, Ljubljana, Slovenia
| | - Julius Orhalmi
- Department of Surgery, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Petr Slauf
- Surgical Clinic 1, Faculty of Medicine, University Hospital Bulovka, Charles University, Prague, Czech Republic
| | - Anton Emmanuel
- Gastrointestinal Physiology Unit, University College Hospital, London, United Kingdom
| | | | - Anna Jungwirthova
- Department of Gastroenterology, St. Anna Clinic, Prague, Czech Republic
| | - Paul-Antoine Lehur
- Clinique de Chirurgie Digestive et Endocrinienne, Institut des Maladies de l'Appareil Digestif, University Hospital of Nantes, Nantes, France
| | - Andreas Müller
- GastroZentrum Hirslanden, Klinik Hirslanden, Zürich, Switzerland
| | | | | | | |
Collapse
|
8
|
Meng J, Moore M, Counsell J, Muntoni F, Popplewell L, Morgan J. Optimized lentiviral vector to restore full-length dystrophin via a cell-mediated approach in a mouse model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2022; 25:491-507. [PMID: 35615709 PMCID: PMC9121076 DOI: 10.1016/j.omtm.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the DMD gene. Restoration of full-length dystrophin protein in skeletal muscle would have therapeutic benefit, but lentivirally mediated delivery of such a large gene in vivo has been hindered by lack of tissue specificity, limited transduction, and insufficient transgene expression. To address these problems, we developed a lentiviral vector, which contains a muscle-specific promoter and sequence-optimized full-length dystrophin, to constrain dystrophin expression to differentiated myotubes/myofibers and enhance the transgene expression. We further explored the efficiency of restoration of full-length dystrophin in vivo, by grafting DMD myoblasts that had been corrected by this optimized lentiviral vector intramuscularly into an immunodeficient DMD mouse model. We show that these lentivirally corrected DMD myoblasts effectively reconstituted full-length dystrophin expression in 93.58% ± 2.17% of the myotubes in vitro. Moreover, dystrophin was restored in 64.4% ± 2.87% of the donor-derived regenerated muscle fibers in vivo, which were able to recruit members of the dystrophin-glycoprotein complex at the sarcolemma. This study represents a significant advance over existing cell-mediated gene therapy strategies for DMD that aim to restore full-length dystrophin expression in skeletal muscle.
Collapse
Affiliation(s)
- Jinhong Meng
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Marc Moore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - John Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- UCL Division of Surgery and Interventional Science, Charles Bell House, 43-45 Foley Street, London W1W 7TY, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
9
|
The miR151 and miR5100 Transfected Bone Marrow Stromal Cells Increase Myoblast Fusion in IGFBP2 Dependent Manner. Stem Cell Rev Rep 2022; 18:2164-2178. [PMID: 35190967 PMCID: PMC9391248 DOI: 10.1007/s12015-022-10350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Background Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100. Methods Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed. Results We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner. Conclusions Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s12015-022-10350-y.
Collapse
|
10
|
Minai L, Yelin D. Plasmonic fusion between fibroblasts and skeletal muscle cells for skeletal muscle regeneration. BIOMEDICAL OPTICS EXPRESS 2022; 13:608-619. [PMID: 35284171 PMCID: PMC8884231 DOI: 10.1364/boe.445290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Normal regeneration of skeletal muscle takes place by the differentiation of muscle-specific stem cells into myoblasts that fuse with existing myofibers for muscle repair. This natural repair mechanism could be ineffective in some cases, for example in patients with genetic muscular dystrophies or massive musculoskeletal injuries that lead to volumetric muscle loss. In this study we utilize the effect of plasmonic cell fusion, i.e. the fusion between cells conjugated by gold nanospheres and irradiated by resonant femtosecond laser pulses, for generating human heterokaryon cells of myoblastic and fibroblastic origin, which further develop into viable striated myotubes. The heterokaryon cells were found to express the myogenic transcription factors MyoD and Myogenin, as well as the Desmin protein that is essential in the formation of sarcomeres, and could be utilized in various therapeutic approaches that involve transplantation of cells or engineered tissue into the damaged muscle.
Collapse
|
11
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Messner F, Thurner M, Müller J, Blumer M, Hofmann J, Marksteiner R, Couillard-Despres S, Troppmair J, Öfner D, Schneeberger S, Hautz T. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem Cell Res Ther 2021; 12:146. [PMID: 33627196 PMCID: PMC7905585 DOI: 10.1186/s13287-021-02208-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Muscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration. Methods A clamping model of murine (C57b/6 J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 h (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1 × 106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration. Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI. Conclusion WIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02208-w.
Collapse
Affiliation(s)
- Franka Messner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Marco Thurner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria.,Innovacell Biotechnologie AG, Innsbruck, Austria
| | - Jule Müller
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Michael Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hofmann
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | | | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration, Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Dietmar Öfner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Stefan Schneeberger
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria. .,Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Theresa Hautz
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Biressi S, Filareto A, Rando TA. Stem cell therapy for muscular dystrophies. J Clin Invest 2021; 130:5652-5664. [PMID: 32946430 DOI: 10.1172/jci142031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic diseases, characterized by progressive degeneration of skeletal and cardiac muscle. Despite the intense investigation of different therapeutic options, a definitive treatment has not been developed for this debilitating class of pathologies. Cell-based therapies in muscular dystrophies have been pursued experimentally for the last three decades. Several cell types with different characteristics and tissues of origin, including myogenic stem and progenitor cells, stromal cells, and pluripotent stem cells, have been investigated over the years and have recently entered in the clinical arena with mixed results. In this Review, we do a roundup of the past attempts and describe the updated status of cell-based therapies aimed at counteracting the skeletal and cardiac myopathy present in dystrophic patients. We present current challenges, summarize recent progress, and make recommendations for future research and clinical trials.
Collapse
Affiliation(s)
- Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO) and.,Dulbecco Telethon Institute, University of Trento, Povo, Italy
| | - Antonio Filareto
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Conneticut, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences and.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
14
|
Kono Y, Takegaki J, Ohba T, Matsuda K, Negoro R, Fujita S, Fujita T. Magnetization of mesenchymal stem cells using magnetic liposomes enhances their retention and immunomodulatory efficacy in mouse inflamed skeletal muscle. Int J Pharm 2021; 596:120298. [PMID: 33529784 DOI: 10.1016/j.ijpharm.2021.120298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
Sarcopenia, an age-related reduction in skeletal muscle mass and strength, is mainly caused by chronic inflammation. Because mesenchymal stem cells (MSCs) have the capacity to both promote myogenic cell differentiation and suppress inflammation, they are a promising candidate for sarcopenia treatment. In this study, to achieve the long-term retention of MSCs in skeletal muscle, we prepared magnetized MSCs using magnetic anionic liposome/atelocollagen complexes that we had previously developed, and evaluated their retention efficiency and immunomodulatory effects in mouse inflamed skeletal muscle. Mouse MSCs were efficiently magnetized by incubation with magnetic anionic liposome/atelocollagen complexes for 30 min under a magnetic field. The magnetized MSCs differentiated normally into osteoblasts and adipocytes. Additionally, non-magnetized MSCs and magnetized MSCs increased IL-6 and inducible nitric oxide synthase mRNA expression and decreased TNF-α and IL-1β mRNA expression in C2C12 mouse skeletal muscle myotubes through paracrine effects. Moreover, magnetized MSCs were significantly retained in cell culture plates and mouse skeletal muscle after their local injection in the presence of a magnetic field. Furthermore, magnetized MSCs significantly increased IL-6 and IL-10 mRNA expression and decreased TNF-α and IL-1β mRNA expression in inflamed skeletal muscle. These results suggest that magnetized MSCs may be useful for effective sarcopenia treatment.
Collapse
Affiliation(s)
- Yusuke Kono
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan.
| | - Junya Takegaki
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takeshi Ohba
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Koji Matsuda
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Satoshi Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takuya Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|
15
|
Skuk D, Tremblay JP. Human Muscle Precursor Cells Form Human-Derived Myofibers in Skeletal Muscles of Nonhuman Primates: A Potential New Preclinical Setting to Test Myogenic Cells of Human Origin for Cell Therapy of Myopathies. J Neuropathol Exp Neurol 2020; 79:1265-1275. [PMID: 33094339 DOI: 10.1093/jnen/nlaa110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study aimed to verify if human myogenic cells could participate in muscle regeneration in macaques. This experimental setting would grant researchers a model that could better evaluate the effects of cell therapies in myopathies with a better translation to human patients. Human muscle precursor cells (MPCs) were cultured in vitro and transduced with ß-galactosidase. The cells were subsequently injected into 1-cm3 muscle regions of 6 macaques immunosuppressed with tacrolimus and dexamethasone. Allogeneic ß-galactosidase+ MPCs were injected in other regions as positive controls. Some cell-grafted regions were electroporated to induce extensive muscle regeneration. MPC-grafted regions were sampled 1 month later and analyzed by histology. There were ß-galactosidase+ myofibers in both the regions grafted with human and macaque MPCs. Electroporation increased the engraftment of human MPCs in the same way as in macaque allografts. The histological analysis (hematoxylin and eosin, CD8, and CD4 immunodetection) demonstrated an absence of cellular rejection in most MPC-grafted regions, as well as minimal lymphocytic infiltration in the regions transplanted with human MPCs in the individual with the lowest tacrolimus levels. Circulating de novo anti-donor antibodies were not detected. In conclusion, we report the successful engraftment of human myogenic cells in macaques, which was possible using tacrolimus-based immunosuppression.
Collapse
Affiliation(s)
- Daniel Skuk
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| | - Jacques P Tremblay
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| |
Collapse
|
16
|
Testa S, Riera CS, Fornetti E, Riccio F, Fuoco C, Bernardini S, Baldi J, Costantini M, Foddai ML, Cannata S, Gargioli C. Skeletal Muscle-Derived Human Mesenchymal Stem Cells: Influence of Different Culture Conditions on Proliferative and Myogenic Capabilities. Front Physiol 2020; 11:553198. [PMID: 33041857 PMCID: PMC7526461 DOI: 10.3389/fphys.2020.553198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle tissue is characterized by restrained self-regenerative capabilities, being ineffective in relation to trauma extension both in time span (e.g., chronic diseases) and in size (e.g., large trauma). For these reasons, tissue engineering and/or cellular therapies represent a valuable solution in the cases where the physiological healing process failed. Satellite cells, the putative skeletal muscle stem cells, have been the first solution explored to remedy the insufficient self-regeneration capacity. Nevertheless, some limitation related to donor age, muscle condition, expansion hitch, and myogenic potentiality maintenance have limited their use as therapeutic tool. To overcome this hindrance, different stem cells population with myogenic capabilities have been investigated to evaluate their real potentiality for therapeutic approaches, but, as of today, the perfect cell candidate has not been identified yet. In this work, we analyze the characteristics of skeletal muscle-derived human Mesenchymal Stem Cells (hMSCs), showing the maintenance/increment of myogenic activity upon differential culture conditions. In particular, we investigate the influence of a commercial enriched growth medium (Cyto-Grow), and of a medium enriched with either human-derived serum (H.S.) or human Platelet-rich Plasma (PrP), in order to set up a culture protocol useful for employing this cell population in clinical therapeutic strategies. The presented results reveal that both the enriched medium (Cyto-Grow) and the human-derived supplements (H.S. and PrP) have remarkable effects on hMSCs proliferation and myogenic differentiation compared to standard condition, uncovering the real possibility to exploit these human derivatives to ameliorate stem cells yield and efficacy.
Collapse
Affiliation(s)
- Stefano Testa
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Ersilia Fornetti
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Federica Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Jacopo Baldi
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Stefano Cannata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Vilquin JT, Braun S. [Cell therapy in muscular disorders: the future lies in comparisons of progenitors]. Med Sci (Paris) 2019; 35 Hors série n° 2:7-10. [PMID: 31859623 DOI: 10.1051/medsci/2019188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell therapy approaches dedicated to the treatment of dystrophinopathies and involving essentially myoblasts and mesoangioblasts have produced mitigated clinical results. If several types of alternative progenitors have been developed, no standardized comparison has been carried out yet to investigate their regenerative efficacy in vivo, at least at a local level. A comparative study has therefore been designed recently aiming at giving a new impetus to this therapeutic field.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Sorbonne Université, Inserm UMRS 974, AIM, CNRS, Centre de Recherche en Myologie, Hôpital Pitié Salpêtrière, Faculté de Médecine, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Serge Braun
- AFM-Téléthon, 1 rue de l'Internationale, 91000 Évry, France
| |
Collapse
|
19
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
20
|
Davoudi S, Chin CY, Cooke MJ, Tam RY, Shoichet MS, Gilbert PM. Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials 2018; 173:34-46. [DOI: 10.1016/j.biomaterials.2018.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
|
21
|
Errico V, Arrabito G, Fornetti E, Fuoco C, Testa S, Saggio G, Rufini S, Cannata S, Desideri A, Falconi C, Gargioli C. High-Density ZnO Nanowires as a Reversible Myogenic-Differentiation Switch. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14097-14107. [PMID: 29619824 DOI: 10.1021/acsami.7b19758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically expressed in skeletal muscle tissue and differentiated myogenic progenitors, is completely absent. Remarkably, NWs do not induce any damage while they reversibly block differentiation, so that the differentiation capabilities are completely recovered upon cell removal from the NW-functionalized substrate and replating on standard culture glass. This is the first evidence of a reversible myogenic-differentiation switch that does not affect the viability. These results can be the first step toward for the in vitro growth of a large number of undifferentiated stem/progenitor cells and therefore can represent a breakthrough for cell-based therapy and tissue engineering.
Collapse
Affiliation(s)
- Vito Errico
- Department of Electronic Engineering , University of Rome Tor Vergata , Via del Politecnico 1 , 00133 Rome , Italy
| | - Giuseppe Arrabito
- Department of Electronic Engineering , University of Rome Tor Vergata , Via del Politecnico 1 , 00133 Rome , Italy
| | - Ersilia Fornetti
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Claudia Fuoco
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Stefano Testa
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Giovanni Saggio
- Department of Electronic Engineering , University of Rome Tor Vergata , Via del Politecnico 1 , 00133 Rome , Italy
| | - Stefano Rufini
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Stefano Cannata
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Desideri
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Christian Falconi
- Department of Electronic Engineering , University of Rome Tor Vergata , Via del Politecnico 1 , 00133 Rome , Italy
| | - Cesare Gargioli
- Department of Biology , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
22
|
Skuk D, Tremblay JP. The Process of Engraftment of Myogenic Cells in Skeletal Muscles of Primates: Understanding Clinical Observations and Setting Directions in Cell Transplantation Research. Cell Transplant 2018; 26:1763-1779. [PMID: 29338383 PMCID: PMC5784521 DOI: 10.1177/0963689717724798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We studied in macaques the evolution of the intramuscular transplantation of muscle precursor cells between the time of administration and the time at which the graft is considered stable. Satellite cell–derived myoblasts labeled with ß-galactosidase were transplanted into 1 cm3 muscle regions following cell culture and transplantation protocols similar to our last clinical trials. These regions were biopsied 1 h, 1, 3, 7 d, and 3 wk later and analyzed by histology. We observed that the cell suspension leaks from the muscle bundles during injection toward the epimysium and perimysium, where most cells accumulate after transplantation. We observed evidence of necrosis, apoptosis, and mitosis in the accumulations of grafted cells, and of potential migration to participate in myofiber regeneration in the surrounding muscle bundles. After 3 wk, the compact accumulations of grafted cells left only some graft-derived myotubes and small myofibers in the perimysium. Hybrid myofibers were abundant in the muscle fascicles at 3 wk posttransplantation, and they most likely occur by grafted myoblasts that migrated from the peripheral accumulations than by the few remaining within the fascicles immediately after injection. These observations explain the findings in clinical trials of myoblast transplantation and provide information for the future research in cell therapy in myology.
Collapse
Affiliation(s)
- Daniel Skuk
- 1 Axe Neurosciences, Research Center of the CHU de Quebec-CHUL, Quebec, Canada
| | - Jacques P Tremblay
- 1 Axe Neurosciences, Research Center of the CHU de Quebec-CHUL, Quebec, Canada
| |
Collapse
|
23
|
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018; 15:20170380. [PMID: 29343633 PMCID: PMC5805959 DOI: 10.1098/rsif.2017.0380] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
24
|
Skuk D, Tremblay JP. Cell Therapy in Myology: Dynamics of Muscle Precursor Cell Death after Intramuscular Administration in Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:232-240. [PMID: 28573152 PMCID: PMC5447384 DOI: 10.1016/j.omtm.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/14/2023]
Abstract
Cell therapy could be useful for the treatment of myopathies. A problem observed in mice, with different results and interpretations, is a significant death among the transplanted cells. We analyzed this problem in non-human primates, the animal model more similar to humans. Autologous or allogeneic myoblasts (with or without a reporter gene) were proliferated in vitro, labeled with [14C]thymidine, and intramuscularly injected in macaques. Some monkeys were immunosuppressed for long-term follow-up. Cell-grafted regions were biopsied at different intervals and analyzed by radiolabel quantification and histology. Most radiolabel was lost during the first week after injection, regardless of whether the cells were allogeneic or autologous, the culture conditions, and the use or not of immunosuppression. There was no significant difference between 1 hr and 1 day post-transplantation, a significant decrease between days 1 and 3 (45% to 83%), a significant decrease between days 3 and 7 (80% to 92%), and no significant differences between 7 days and 3 weeks. Our results confirmed in non-human primates a progressive and significant death of the grafted myoblasts during the first week after administration, relatively similar to some observations in mice but with different kinetics.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| |
Collapse
|
25
|
Ostrovidov S, Shi X, Sadeghian RB, Salehi S, Fujie T, Bae H, Ramalingam M, Khademhosseini A. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Rev Rep 2016; 11:866-84. [PMID: 26323256 DOI: 10.1007/s12015-015-9618-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction & School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Ramin Banan Sadeghian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Christian Medical College Bagayam Campus, Centre for Stem Cell Research, Vellore, 632002, India
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea.
- Division of Biomedical Engineering, Department of Medicine, Harvard Medical School, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Boston, MA, 02139, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
26
|
The Mutual Interactions between Mesenchymal Stem Cells and Myoblasts in an Autologous Co-Culture Model. PLoS One 2016; 11:e0161693. [PMID: 27551730 PMCID: PMC4994951 DOI: 10.1371/journal.pone.0161693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Both myoblasts and mesenchymal stem cells (MSC) take part in the muscle tissue regeneration and have been used as experimental cellular therapy in muscular disorders treatment. It is possible that co-transplantation approach could improve the efficacy of this treatment. However, the relations between those two cell types are not clearly defined. The aim of this study was to determine the reciprocal interactions between myoblasts and MSC in vitro in terms of the features important for the muscle regeneration process. Primary caprine muscle-derived cells (MDC) and bone marrow-derived MSC were analysed in autologous settings. We found that MSC contribute to myotubes formation by fusion with MDC when co-cultured directly, but do not acquire myogenic phenotype if exposed to MDC-derived soluble factors only. Experiments with exposure to hydrogen peroxide showed that MSC are significantly more resistant to oxidative stress than MDC, but a direct co-culture with MSC does not diminish the cytotoxic effect of H2O2 on MDC. Cell migration assay demonstrated that MSC possess significantly greater migration ability than MDC which is further enhanced by MDC-derived soluble factors, whereas the opposite effect was not found. MSC-derived soluble factors significantly enhanced the proliferation of MDC, whereas MDC inhibited the division rate of MSC. To conclude, presented results suggest that myogenic precursors and MSC support each other during muscle regeneration and therefore myoblasts-MSC co-transplantation could be an attractive approach in the treatment of muscular disorders.
Collapse
|
27
|
Menasché P, Vanneaux V. Stem cells for the treatment of heart failure. Curr Res Transl Med 2016; 64:97-106. [PMID: 27316393 DOI: 10.1016/j.retram.2016.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to standard clinical practice. To answer this question, it is helpful to capitalize on the three main lessons drawn from the accumulated experience, both in the laboratory and in the clinics. Regarding the cell type, the best outcomes seem to be achieved by cells the phenotype of which closely matches that of the target tissue. This argues in favor of the use of cardiac-committed cells among which the pluripotent stem cell-derived cardiac progeny is particularly attractive. Regarding the mechanism of action, there has been a major paradigm shift whereby cells are no longer expected to structurally integrate within the recipient myocardium but rather to release biomolecules that foster endogenous repair processes. This implies to focus on early cell retention, rather than on sustained cell survival, so that the cells reside in the target tissue long enough and in sufficient amounts to deliver the factors underpinning their action. Biomaterials are here critical adjuncts to optimize this residency time. Furthermore, the paracrine hypothesis gives more flexibility for using allogeneic cells in that targeting an only transient engraftment requires to delay, and no longer to avoid, rejection, which, in turn, should simplify immunomodulation regimens. Regarding manufacturing, a broad dissemination of cardiac cell therapy requires the development of automated systems allowing to yield highly reproducible cell products. This further emphasizes the interest of allogeneic cells because of their suitability for industrially-relevant and cost-effective scale-up and quality control procedures. At the end, definite confirmation that the effects of cells can be recapitulated by the factors they secrete could lead to acellular therapies whereby factors alone (possibly clustered in extracellular vesicles) would be delivered to the patient. The production process of these cell-derived biologics would then be closer to that of a pharmaceutical compound, which could streamline the manufacturing and regulatory paths and thereby facilitate an expended clinical use.
Collapse
Affiliation(s)
- P Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75010 Paris, France; INSERM U 970, 75010 Paris, France.
| | - V Vanneaux
- INSERM UMR1160, Institut Universitaire d'Hématologie, 75475 Paris cedex 10, France; Assistance publique-Hôpitaux de Paris, Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| |
Collapse
|
28
|
Negroni E, Gidaro T, Bigot A, Butler-Browne GS, Mouly V, Trollet C. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathol Appl Neurobiol 2015; 41:270-87. [PMID: 25405809 DOI: 10.1111/nan.12198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.
Collapse
Affiliation(s)
- Elisa Negroni
- Institut de Myologie, CNRS FRE3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, 47 bd de l'Hôpital, Paris, 75013, France
| | | | | | | | | | | |
Collapse
|
29
|
Skuk D, Tremblay JP. Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients. Expert Opin Biol Ther 2015; 15:1307-19. [PMID: 26076715 DOI: 10.1517/14712598.2015.1057564] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Muscular dystrophies (MDs) are genetic diseases that produce progressive loss of skeletal muscle fibers. Cell therapy (CT) is an experimental approach to treat MD. The first clinical trials of CT in MD conducted in the 1990s were based on myoblast transplantation (MT). Since they did not yield the expected results, several researchers sought to discover other cells with more advantageous properties than myoblasts whereas others sought to improve MT. AREAS COVERED We explain the properties that are required for a cell to be used in CT of MD. We briefly review most of the cells that were proposed for this CT, and to what extent these properties were met not only in laboratory animals but also in clinical trials. EXPERT OPINION Although the repertoire of cells proposed for CT of MD has been expanded since the 1990s, only myoblasts have currently demonstrated unequivocally to significantly engraft in humans. Indeed, MT for MD involves significant technical challenges that need be solved. While it would be ideal to find cells involving less technical challenges for CT of MD, there is so far no clinical evidence that this is possible and therefore the work to improve MT should continue.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, P-09300, Centre Hospitalier de l'Université Laval , 2705 boulevard Laurier, Québec (QC), G1V 4G2 , Canada +1 418 654 2186 ; +1 418 654 2207 ;
| | | |
Collapse
|
30
|
Abujarour R, Valamehr B. Generation of skeletal muscle cells from pluripotent stem cells: advances and challenges. Front Cell Dev Biol 2015; 3:29. [PMID: 26029693 PMCID: PMC4429629 DOI: 10.3389/fcell.2015.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 01/07/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) possess unlimited proliferative potential while maintaining the ability to differentiate into any cell type including skeletal muscle cells (SMCs). hPSCs are amenable to genetic editing and can be derived from patient somatic cells, and thus represent a promising option for cell therapies for the treatment of degenerative diseases such as muscular dystrophies. There are unresolved challenges however associated with the derivation and scale-up of hPSCs and generation of differentiated cells in large quantity and high purity. Reported myogenic differentiation protocols are long, require cell sorting and/or rely on ectopic expression of myogenic master regulators. More recent advances have been made with the application of small molecules to enhance the myogenic differentiation efficiency and the identification of more selective markers for the enrichment of myogenic progenitors with enhanced regenerative potential. Here we review the field of myogenic differentiation and highlight areas requiring further research.
Collapse
|
31
|
|
32
|
Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy. J Clin Med 2015; 4:243-59. [PMID: 26239126 PMCID: PMC4470123 DOI: 10.3390/jcm4020243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/03/2014] [Indexed: 01/01/2023] Open
Abstract
The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP) made from induced pluripotent stem cells (iPSCs) are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.
Collapse
|
33
|
Skuk D, Tremblay JP. First study of intra-arterial delivery of myogenic mononuclear cells to skeletal muscles in primates. Cell Transplant 2014; 23 Suppl 1:S141-50. [PMID: 25303080 DOI: 10.3727/096368914x685032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The main challenge of cell transplantation as a treatment of myopathies is the large amount of tissue to treat. Intravascular delivery of cells may be an ideal route if proven to be effective and safe. Given the importance of nonhuman primates for preclinical research in transplantation, we tested the intra-arterial injection of β-galactosidase (β-Gal)-labeled myoblasts in macaques. Cells were injected into one of the femoral arteries in seven monkeys. Some muscle sites were damaged concomitantly in three monkeys. Various organs and muscles were sampled 1 h, 1 day, 12 days, 3 weeks, and 5 weeks after transplantation. Samples were analyzed by histology. Most β-Gal(+) cells were observed in the capillaries and arterioles of muscles and other tissues of the leg homolateral to the cell injection. Groups of necrotic myofibers in the proximity of an arteriole plugged by a β-Gal(+) embolus were interpreted as microinfarcts. Scarce β-Gal(+) cells were observed in the lungs 1 h and 1 day posttransplantation. No β-Gal(+) cells were observed in other organs or muscles. β-Gal(+) myofibers were observed 12 days, 3 weeks, and 5 weeks after transplantation in muscles of the leg after the cell injection, in sites that were damaged at the time of cell injection. In conclusion, most intra-arterially injected myoblasts were retained in vessels of the leg homolateral to the cell injection site, and they fused with myofibers in regions in which there was a process of myofiber regeneration. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Collapse
Affiliation(s)
- Daniel Skuk
- Neurosciences Division-Human Genetics, CHUQ Research Center-CHUL, Quebec, QC, Canada
| | | |
Collapse
|
34
|
The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; 56:56-65. [PMID: 25242742 DOI: 10.1016/j.biocel.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
35
|
Grounds MD. Therapies for sarcopenia and regeneration of old skeletal muscles: more a case of old tissue architecture than old stem cells. BIOARCHITECTURE 2014; 4:81-7. [PMID: 25101758 DOI: 10.4161/bioa.29668] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Age related loss of skeletal muscle mass and function (sarcopenia) reduces independence and the quality of life for individuals, and leads to falls and fractures with escalating health costs for the rapidly aging human population. Thus there is much interest in developing interventions to reduce sarcopenia. One area that has attracted recent attention is the proposed use of myogenic stem cells to improve regeneration of old muscles. This mini-review challenges the fundamental need for myogenic stem cell therapy for sarcopenia. It presents evidence that demonstrates the excellent capacity of myogenic stem cells from very old rodent and human muscles to form new muscles after experimental myofiber necrosis. The many factors required for successful muscle regeneration are considered with a strong focus on integration of components of old muscle bioarchitecture. The fundamental role of satellite cells in homeostasis of normal aging muscles and the incidence of endogenous regeneration in old muscles is questioned. These issues, combined with problems for clinical myogenic stem cell therapies for severe muscle diseases, raise fundamental concerns about the justification for myogenic stem cell therapy for sarcopenia.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Anatomy, Physiology and Human Biology; University of Western Australia; Crawley, Australia
| |
Collapse
|
36
|
Lim HJ, Joo S, Oh SH, Jackson JD, Eckman DM, Bledsoe TM, Pierson CR, Childers MK, Atala A, Yoo JJ. Syngeneic Myoblast Transplantation Improves Muscle Function in a Murine Model of X-Linked Myotubular Myopathy. Cell Transplant 2014; 24:1887-900. [PMID: 25197964 DOI: 10.3727/096368914x683494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is an isogenic muscle disease characterized by progressive wasting of skeletal muscle, weakness, and premature death of affected male offspring. Recently, the XLMTM gene knock-in mouse, Mtm1 p.R69C, was found to have a similar phenotype as the Mtm1 gene mutation in humans (e.g., central nucleation of small myofibers, attenuated muscle strength, and motor unit potentials). Using this rodent model, we investigated whether syngeneic cell therapy could mitigate muscle weakness. Donor skeletal muscle-derived myoblasts were isolated from C57BL6 wild-type (WT) and Mtm1 p.R69C (KI) mice for transplantation into the gastrocnemius muscle of recipient KI mice. Initial experiments demonstrated that donor skeletal muscle-derived myoblasts from WT and KI mice remained in the gastrocnemius muscle of the recipient KI mouse for up to 4 weeks posttransplantation. KI mice receiving syngeneic skeletal muscle-derived myoblasts displayed an increase in skeletal muscle mass, augmented force generation, and increased nerve-evoked skeletal muscle action potential amplitude. Taken together, these results support our hypothesis that syngeneic cell therapy may potentially be used to ameliorate muscle weakness and delay the progression of XLMTM, as application expands to other muscles.
Collapse
Affiliation(s)
- Hyun Ju Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Electroporation as a method to induce myofiber regeneration and increase the engraftment of myogenic cells in skeletal muscles of primates. J Neuropathol Exp Neurol 2013; 72:723-34. [PMID: 23860026 DOI: 10.1097/nen.0b013e31829bac22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Engraftment of intramuscularly transplanted myogenic cells in mice can be optimized after induction of massive myofiber damage that triggers myofiber regeneration and recruitment of grafted cells; this generally involves either myotoxin injection or cryodamage. There are no effective methods to produce a similar process in the muscles of large mammals such as primates. In this study, we tested the use of intramuscular electroporation for this purpose in 11 macaques. The test sites were 1 cm of skeletal muscle. Each site was treated with 3 penetrations of a 2-needle electrode with 1 cm spacing, applying 3 pulses of 400 V/cm, for a duration of 5 milliseconds and a delay of 200 milliseconds during each penetration. Transplantation of β-galactosidase-labeled myoblasts was done in electroporated and nonelectroporated sites. Electroporation induced massive myofiber necrosis that was followed by efficient muscle regeneration. Myoblast engraftment was substantially increased in electroporated compared with nonelectroporated sites. This suggests that electroporation may be a useful tool to study muscle regeneration in primates and other large mammals and as a method for increasing the engraftment of myoblasts and other myogenic cells in intramuscular transplantation.
Collapse
|
38
|
Ward CL, Corona BT, Yoo JJ, Harrison BS, Christ GJ. Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PLoS One 2013; 8:e72485. [PMID: 23991116 PMCID: PMC3753241 DOI: 10.1371/journal.pone.0072485] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022] Open
Abstract
Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1-2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1α, depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following ∼30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval <0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N2-5% CO2, 37°C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2-5% CO2, 37°C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1-2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under hypoxic conditions.
Collapse
Affiliation(s)
- Catherine L. Ward
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Benjamin T. Corona
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Benjamin S. Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - George J. Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|