1
|
Rostami M, Farahani P, Esmaelian S, Bahman Z, Fadel Hussein A, A Alrikabi H, Hosseini Hooshiar M, Yasamineh S. The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage. Stem Cell Rev Rep 2024; 20:2062-2103. [PMID: 39150646 DOI: 10.1007/s12015-024-10770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.
Collapse
Affiliation(s)
- Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Farahani
- Doctor of Dental Surgery, Faculty of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Zahra Bahman
- Faculty of dentistry, Belarusian state medical university, Minsk, Belarus
| | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
2
|
Dai S, Qiu L, Veeraraghavan VP, Sheu CL, Mony U. Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy. Curr Stem Cell Res Ther 2024; 19:809-819. [PMID: 37291782 DOI: 10.2174/1574888x18666230608105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease are all incurable and can only be managed with drugs for the associated symptoms. Animal models of human illnesses help to advance our understanding of the pathogenic processes of diseases. Understanding the pathogenesis as well as drug screening using appropriate disease models of neurodegenerative diseases (NDs) are vital for identifying novel therapies. Human-derived induced pluripotent stem cell (iPSC) models can be an efficient model to create disease in a dish and thereby can proceed with drug screening and identifying appropriate drugs. This technology has many benefits, including efficient reprogramming and regeneration potential, multidirectional differentiation, and the lack of ethical concerns, which open up new avenues for studying neurological illnesses in greater depth. The review mainly focuses on the use of iPSC technology in neuronal disease modeling, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Sihan Dai
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Linhui Qiu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
3
|
Abdellateif MS, Zekri ARN. Stem cell therapy for hepatocellular carcinoma and end-stage liver disease. J Egypt Natl Canc Inst 2023; 35:35. [PMID: 37926787 DOI: 10.1186/s43046-023-00194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide, especially for patients who are suffering from end-stage liver disease (ESLD). The ESLD is considered a great challenge for clinicians due to the limited chance for liver transplantation, which is the only curative treatment for those patients. Stem cell-based therapy as a part of regenerative medicine represents a promising application for ESLD patients. Many clinical trials were performed to assess the utility of bone marrow-derived stem cells as a potential therapy for patients with liver diseases. The aim of the present study is to present and review the various types of stem cell-based therapy, including the mesenchymal stem cells (MSCs), BM-derived mononuclear cells (BM-MNCs), CD34 + hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and cancer stem cells.Though this type of therapy achieved promising results for the treatment of ESLD, however still there is a confounding data regarding its clinical application. A large body of evidence is highly required to evaluate the stem cell-based therapy after long-term follow-up, with respect to the incidence of toxicity, immunogenicity, and tumorigenesis that developed in many patients.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt.
| | - Abdel-Rahman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Cairo, 11976, Egypt
| |
Collapse
|
4
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
5
|
Chawla S, Das A. Preclinical-to-clinical innovations in stem cell therapies for liver regeneration. Curr Res Transl Med 2023; 71:103365. [PMID: 36427419 DOI: 10.1016/j.retram.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver diseases are the major cause of high morbidity and mortality globally. Liver transplantation is a widely used therapeutic option for liver failure. However, the shortage of availability of liver donors has encouraged research on the alternative approach to liver regeneration. Cell-based regenerative medicine is the best alternative therapy to cater to this need. To date, advanced preclinical approaches have been undertaken on stem cell differentiation and their use in liver tissue engineering for generating efficacious and promising regenerative therapies. Advancements in the bioengineering of stem cells, and organoid generation are the way forward to efficient therapies against liver injury. This review summarizes the recent approaches for stem cell therapy-based liver regeneration and their proof of concepts for clinical application, bioengineering liver organoids to alleviate the liver failure caused due to chronic liver diseases.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
6
|
Poorna MR, Jayakumar R, Chen JP, Mony U. Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids Surf B Biointerfaces 2021; 207:111991. [PMID: 34333302 DOI: 10.1016/j.colsurfb.2021.111991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be used to generate desired types of cells that belong to the three germ layers (i.e., ectoderm, endoderm and mesoderm). These cells possess great potential in regenerative medicine. Before iPSCs are used in various biomedical applications, the existing xenogeneic culture methods must be improved to meet the technical standards of safety, cost effectiveness, and ease of handling. In addition to commonly used 2D substrates, a culture system that mimics the native cellular environment in tissues will be a good choice when culturing iPS cells and differentiating them into different lineages. Hydrogels are potential candidates that recapitulate the native complex three-dimensional microenvironment. They possess mechanical properties similar to those of many soft tissues. Moreover, hydrogels support iPSC adhesion, proliferation and differentiation to various cell types. They are xeno-free and cost-effective. In addition to other substrates, such as mouse embryonic fibroblast (MEF), Matrigel, and vitronectin, the use of hydrogel-based substrates for iPSC culture and differentiation may help generate large numbers of clinical-grade cells that can be used in potential clinical applications. This review mainly focuses on the use of hydrogels for the culture and differentiation of iPSCs into various cell types and their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan, ROC; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan, ROC.
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
7
|
Yin S, Cao Y. Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomater 2021; 128:1-20. [PMID: 33746032 DOI: 10.1016/j.actbio.2021.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Stem cells demonstrate considerable promise for various preclinical and clinical applications, including drug screening, disease treatments, and regenerative medicine. Producing high-quality and large amounts of stem cells is in demand for these applications. Despite challenges, as hydrogel-based cell culture technology has developed, tremendous progress has been made in stem cell expansion and directed differentiation. Hydrogels are soft materials with abundant water. Many hydrogel properties, including biodegradability, mechanical strength, and porosity, have been shown to play essential roles in regulating stem cell proliferation and differentiation. The biochemical and physical properties of hydrogels can be specifically tailored to mimic the native microenvironment that various stem cells reside in vivo. A few hydrogel-based systems have been developed for successful stem cell cultures and expansion in vitro. In this review, we summarize various types of hydrogels that have been designed to effectively enhance the proliferation of hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs), respectively. According to each stem cell type's preference, we also discuss strategies for fabricating hydrogels with biochemical and mechanical cues and other characteristics representing microenvironments of stem cells in vivo. STATEMENT OF SIGNIFICANCE: In this review article we summarize current progress on the construction of hydrogel systems for the culture and expansion of various stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs). The Significance includes: (1) Provide detailed discussion on the stem cell niches that should be considered for stem cell in vitro expansion. (2) Summarize various strategies to construct hydrogels that can largely recapture the microenvironment of native stem cells. (3) Suggest a few future directions that can be implemented to improve current in vitro stem cell expansion systems.
Collapse
Affiliation(s)
- Sheng Yin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057.
| |
Collapse
|
8
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
9
|
Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021; 12:2041731420986711. [PMID: 35003615 PMCID: PMC8733710 DOI: 10.1177/2041731420986711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Liver failure is a lethal condition with hepatocellular dysfunction, and liver transplantation is presently the only effective treatment. However, due to the limited availability of donors and the potential immune rejection, novel therapeutic strategies are actively sought to restore the normal hepatic architectures and functions, especially for livers with inherited metabolic dysfunctions or chronic diseases. Although the conventional cell therapy has shown promising results, the direct infusion of hepatocytes is hampered by limited hepatocyte sources, poor cell viability, and engraftment. Hence, this review mainly highlights the role of stem cells and progenitors as the alternative cell source and summarizes the potential approaches based on tissue engineering to improve the delivery efficiency of cells. Particularly, the underlying mechanisms for cell therapy using stem cells and progenitors are discussed in two main aspects: paracrine effect and cell differentiation. Moreover, tissue-engineering approaches using cell aggregates and decellularized liver scaffolds for bioengineering of functional hepatic constructs are discussed and compared in terms of the potential to replicate liver physiological structures. In the end, a potentially effective strategy combining the premium advantages of stem cell aggregates and decellularized liver scaffolds is proposed as the future direction of liver tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| |
Collapse
|
10
|
Dai L, Gao X, Ye Z, Li H, Yao X, Lu D, Wu N. The "Traditional Chinese medicine regulating liver regeneration" treatment plan for reducing mortality of patients with hepatitis B-related liver failure based on real-world clinical data. Front Med 2021; 15:495-505. [PMID: 33433899 PMCID: PMC7801774 DOI: 10.1007/s11684-020-0790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/17/2020] [Indexed: 12/04/2022]
Abstract
On the basis of real-world clinical data, the study aimed to explore the effect and mechanisms of the treatment plan of “traditional Chinese medicine (TCM) regulating liver regeneration.” A total of 457 patients with HBV-related liver failure were retrospectively collected. The patients were divided into three groups: the modern medicine control group (MMC group), patients treated with routine medical treatment; the control group combining traditional Chinese and Western medicine (CTW), patients treated with routine medical treatment plus the common TCM formula; and the treatment group of “TCM regulating liver regeneration” (RLR), patients treated with both routine medical treatment and the special TCM formula of RLR. After 8 weeks of treatment, the mortality of patients in the RLR group (12.31%) was significantly lower than those in the MMC (50%) and CTW (29.11%) groups. Total bilirubin level significantly decreased and albumin increased in the RLR group when compared with the MMC and CTW groups (P < 0.05). In addition, there were significant differences in the expression of several cytokines related to liver regeneration in the RLR group compared with the MMC group. RLR treatment can decrease jaundice, improve liver function, and significantly reduce the mortality in patients with HBV-related liver failure. The mechanism may be related to the role of RLR treatment in influencing cytokines related to liver regeneration.
Collapse
Affiliation(s)
- Ling Dai
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Institute of Basic Theory of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.,Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, 430074, China.,Key Laboratory of Treating Chronic Liver Diseases from Liver and Kidney, State Administration of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Xiang Gao
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Institute of Basic Theory of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.,Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, 430074, China.,Key Laboratory of Treating Chronic Liver Diseases from Liver and Kidney, State Administration of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Zhihua Ye
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Institute of Basic Theory of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.,Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, 430074, China.,Key Laboratory of Treating Chronic Liver Diseases from Liver and Kidney, State Administration of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China. .,Institute of Basic Theory of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China. .,Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, 430074, China. .,Key Laboratory of Treating Chronic Liver Diseases from Liver and Kidney, State Administration of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Xin Yao
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Institute of Basic Theory of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.,Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, 430074, China.,Key Laboratory of Treating Chronic Liver Diseases from Liver and Kidney, State Administration of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Dingbo Lu
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Institute of Basic Theory of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.,Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, 430074, China.,Key Laboratory of Treating Chronic Liver Diseases from Liver and Kidney, State Administration of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Na Wu
- Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Institute of Basic Theory of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.,Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Key Laboratory, Wuhan, 430074, China.,Key Laboratory of Treating Chronic Liver Diseases from Liver and Kidney, State Administration of Traditional Chinese Medicine, Wuhan, 430061, China
| |
Collapse
|
11
|
Jumelle C, Sani ES, Taketani Y, Yung A, Gantin F, Chauhan SK, Annabi N, Dana R. Growth factor-eluting hydrogels for management of corneal defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111790. [PMID: 33545916 PMCID: PMC7867677 DOI: 10.1016/j.msec.2020.111790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
With 1.5-2.0 million new cases annually worldwide, corneal injury represents a common cause of vision loss, often from irreversible scarring due to surface corneal defects. In this study, we assessed the use of hepatocyte growth factor (HGF) loaded into an in situ photopolymerizable transparent gelatin-based hydrogel for the management of corneal defects. In vitro release kinetics showed that, in regard to the total amount of HGF released over a month, 55 ± 11% was released during the first 24 h, followed by a slow release profile for up to one month. The effect of HGF was assessed using an ex vivo model of pig corneal defect. After three days of organ culture, epithelial defects were found to be completely healed for 89% of the corneas treated with HGF, compared to only 11% of the corneas that had fully re-epithelialized when treated with the hydrogel without HGF. The thickness of the epithelial layer was found to be significantly higher for the HGF-treated group compared to the group treated with hydrogel without HGF (p = 0.0012). Finally, histological and immunostaining assessments demonstrated a better stratification and adhesion of the epithelial layer in the presence of HGF. These results suggest that the HGF-loaded hydrogel system represents a promising solution for the treatment of persistent corneal defects at risk of scarring.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Ann Yung
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Fanny Gantin
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Nasim Annabi
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
12
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
13
|
α-Tocopherol liposome loaded chitosan hydrogel to suppress oxidative stress injury in cardiomyocytes. Int J Biol Macromol 2019; 125:1192-1202. [DOI: 10.1016/j.ijbiomac.2018.09.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/15/2018] [Indexed: 11/23/2022]
|
14
|
Velmurugan BK, Bharathi Priya L, Poornima P, Lee LJ, Baskaran R. Biomaterial aided differentiation and maturation of induced pluripotent stem cells. J Cell Physiol 2018; 234:8443-8454. [PMID: 30565686 DOI: 10.1002/jcp.27769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Lohanathan Bharathi Priya
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Paramasivan Poornima
- Molecular and Cellular Pharmacology Laboratory, School of Science, Engineering and Technology, University of Abertay, Dundee, UK
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Ding H, Wen Z. Overexpression of C‑sis inhibits H2O2‑induced Buffalo rat liver cell apoptosis in vitro and alleviates liver injury in a rat model of fulminant hepatic failure. Int J Mol Med 2018; 42:873-882. [PMID: 29786113 PMCID: PMC6034937 DOI: 10.3892/ijmm.2018.3684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/04/2018] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the role of the C‑sis gene in the apoptosis of hepatocytes in vitro and in the liver function of a rat model of fulminant hepatic failure (FHF). Buffalo rat liver (BRL) cells were treated with hydrogen peroxide (H2O2) to induce apoptosis and then transfected with a C‑sis overexpression vector. A rat model of FHF was established, and C‑sis was overexpressed. The mRNA and protein expression of C‑sis were examined using reverse transcription‑polymerase chain reaction and western blot analyses, respectively. Cell viability was assessed by CCK8, and a TUNEL assay was used to examine cell apoptosis. Flow cytometry was used for cell cycle detection. Hematoxylin and eosin staining was used for histological examination. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also examined in the rats. The results showed that C‑sis was successfully overexpressed in the cells and rat model. Compared with H2O2‑treated BRL cells, the overexpression of C‑sis significantly inhibited cell apoptosis, promoted cell viability, and decreased the expression of cleaved caspase-3. Similar results were observed in the FHF rats treated with the C‑sis overexpression plasmid, compared with those treated with empty plasmids. In addition, in the FHF rats overexpressing C‑sis, histological examination showed that liver injury was alleviated, the levels of ALT and AST were significantly decreased, and mortality rate was significantly decreased, compared with those observed in the rats treated with empty plasmids. In conclusion, the overexpression of C‑sis inhibited the H2O2‑induced apoptosis of BRL cells in vitro, and alleviated liver injury, improved liver function, and decreased mortality rates in rat models of FHF.
Collapse
Affiliation(s)
- Hao Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Heidariyan Z, Ghanian MH, Ashjari M, Farzaneh Z, Najarasl M, Rezaei Larijani M, Piryaei A, Vosough M, Baharvand H. Efficient and cost-effective generation of hepatocyte-like cells through microparticle-mediated delivery of growth factors in a 3D culture of human pluripotent stem cells. Biomaterials 2018; 159:174-188. [DOI: 10.1016/j.biomaterials.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
|
17
|
Chien KH, Chang YL, Wang ML, Chuang JH, Yang YC, Tai MC, Wang CY, Liu YY, Li HY, Chen JT, Kao SY, Chen HL, Lo WL. Promoting Induced Pluripotent Stem Cell-driven Biomineralization and Periodontal Regeneration in Rats with Maxillary-Molar Defects using Injectable BMP-6 Hydrogel. Sci Rep 2018; 8:114. [PMID: 29311578 PMCID: PMC5758833 DOI: 10.1038/s41598-017-18415-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
Periodontal disease may cause considerable destruction of alveolar bone, periodontal ligaments (PDLs) and cementum and even lead to progressive oral dysfunction. Periodontal tissue regeneration is the ultimate goal of periodontal disease treatment to reconstruct both structures and functions. However, the regenerative efficiency is low, possibly due to the lack of a proper periodontal microenvironment. In this study, we applied an injectable and thermosensitive chitosan/gelatin/glycerol phosphate hydrogel to provide a 3D environment for transplanted stem cells and to enhance stem cell delivery and engraftment. The iPSCs-BMP-6-hydrogel complex promoted osteogenesis and the differentiation of new connective tissue and PDL formation. In animal models of maxillary-molar defects, the iPSCs-BMP-6-hydrogel-treated group showed significant mineralization with increased bone volume, trabecular number and trabecular thickness. Synergistic effects of iPSCs and BMP-6 increased both bone and cementum formation. IPSCs-BMP-6-hydrogel-treated animals showed new bone synthesis (increased ALP- and TRAP-positive cells), new PDL regeneration (shown through Masson’s trichrome staining and a qualification assay), and reduced levels of inflammatory cytokines. These findings suggest that hydrogel-encapsulated iPSCs combined with BMP-6 provide a new strategy to enhance periodontal regeneration. This combination not only promoted stem cell-derived graft engraftment but also minimized the progress of inflammation, which resulted in highly possible periodontal regeneration.
Collapse
Affiliation(s)
- Ke-Hung Chien
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Pharmacology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Mong-Lien Wang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jen-Hua Chuang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Ya-Chi Yang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Chien-Ying Wang
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Yung-Yang Liu
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Chest, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Hsin-Yang Li
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Jiang-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Hen-Li Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Wen-Liang Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, 112, Taiwan. .,Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan. .,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
18
|
Cao XF, Jin SZ, Sun L, Zhan YB, Lin F, Li Y, Zhou YL, Wang XM, Gao L, Zhang B. Therapeutic effects of hepatocyte growth factor-overexpressing dental pulp stem cells on liver cirrhosis in a rat model. Sci Rep 2017; 7:15812. [PMID: 29150644 PMCID: PMC5693919 DOI: 10.1038/s41598-017-14995-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is the terminal stage of hepatic diseases and is prone to develop into hepatocyte carcinoma. Increasing evidence suggests that the transplantation of dental pulp stem cells (DPSCs) may promote recovery from cirrhosis, but the key regulatory mechanisms involved remain to be determined. In this study, we overexpressed human hepatocyte growth factor (hHGF) in primary rat DPSCs and evaluated the effects of HGF overexpression on the biological behaviors and therapeutic efficacy of grafted DPSCs in cirrhosis. Liver cirrhosis was induced via the intraperitoneal injection of CCl4 twice weekly for 12 weeks and was verified through histopathological and serological assays. HGF was overexpressed in DPSCs via transduction with a hHGF-lentiviral vector and confirmed based on the elevated expression and secretion of HGF. The HGF-overexpressing DPSCs were transplanted into rats intravenously. The HGF-overexpressing DPSCs showed increased survival and hepatogenic differentiation in host liver tissue at 6 weeks after grafting. They also exhibited a significantly greater repair potential in relation to cirrhosis pathology and impaired liver function than did DPSCs expressing HGF at physiological levels. Our study may provide an experimental basis for the development of novel methods for the treatment of liver cirrhosis in clinical practice.
Collapse
Affiliation(s)
- Xiao-Fang Cao
- Department of Dentistry, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Shi-Zhu Jin
- Department of Gastrointestinal and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Liang Sun
- Department of Human Anatomy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yuan-Bo Zhan
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Feng Lin
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ying-Lian Zhou
- Department of neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Xiu-Mei Wang
- Department of Dentistry, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Li Gao
- Department of Dentistry, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
19
|
Shiota G, Itaba N. Progress in stem cell-based therapy for liver disease. Hepatol Res 2017; 47:127-141. [PMID: 27188253 DOI: 10.1111/hepr.12747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
Liver transplantation has been accepted as a useful therapeutic approach for patients with end-stage liver disease. However, the mismatch between the great demand for liver transplants and the number of available donor organs underscores the urgent need for alternative therapeutic strategies for patients with acute and chronic liver failure. The rapidly growing knowledge on stem cell biology has opened new avenues toward stem cell-based therapy for liver disease. As stem cells have capacity for high proliferation and multipotent differentiation, the characteristics of stem cells fit the cell therapy. Several types of cells have been investigated as possible sources of liver regeneration: mesenchymal stem cells, hematopoietic stem cells, liver progenitor cells, induced pluripotent stem cells, and bone marrow mononuclear cells. In vitro and in vivo experiments revealed that these cells have great potential as candidates of stem cell therapy. We reviewed the reports on clinical trials of cell therapy for liver disease that have been recently undertaken using mesenchymal stem cells, hematopoietic stem cells, bone marrow mononuclear cells, and liver progenitor cells. These reports have heterogeneity of description of trial design, types of infused cells, patient population, and efficacy of therapies. We addressed these reports from these viewpoints and clarified their significance. We hope that this review article will provide a perspective on the available approaches based on stem cell-based therapy for liver disease.
Collapse
Affiliation(s)
- Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Noriko Itaba
- Departments of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
20
|
Marquardt LM, Heilshorn SC. Design of Injectable Materials to Improve Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2016; 2:207-220. [PMID: 28868235 PMCID: PMC5576562 DOI: 10.1007/s40778-016-0058-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell-based therapies are steadily gaining traction for regenerative medicine approaches to treating disease and injury throughout the body. While a significant body of work has shown success in preclinical studies, results often fail to translate in clinical settings. One potential cause is the massive transplanted cell death that occurs post injection, preventing functional integration with host tissue. Therefore, current research is focusing on developing injectable hydrogel materials to protect cells during delivery and to stimulate endogenous regeneration through interactions of transplanted cells and host tissue. This review explores the design of targeted injectable hydrogel systems for improving the therapeutic potential of stem cells across a variety of tissue engineering applications with a focus on hydrogel materials that have progressed to the stage of preclinical testing.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
21
|
Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7960386. [PMID: 27143995 PMCID: PMC4842075 DOI: 10.1155/2016/7960386] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022]
Abstract
Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system.
Collapse
|
22
|
Frisch RN, Curtis KM, Aenlle KK, Howard GA. Hepatocyte growth factor and alternative splice variants - expression, regulation and implications in osteogenesis and bone health and repair. Expert Opin Ther Targets 2016; 20:1087-98. [PMID: 26941128 DOI: 10.1517/14728222.2016.1162293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into multiple cell types, including osteoblasts, chondrocytes, and adipocytes. These pluripotent cells secrete hepatocyte growth factor (HGF), which regulates cell growth, survival, motility, migration, mitogenesis and is important for tissue development/regeneration. HGF has four splice variants, NK1, NK2, NK3, and NK4 which have varying functions and affinities for the HGF receptor, cMET. HGF promotes osteoblastic differentiation of MSCs into bone forming cells, playing a role in bone development, health and repair. AREAS COVERED This review will focus on the effects of HGF in osteogenesis, bone repair and bone health, including structural and functional insights into the role of HGF in the body. EXPERT OPINION Approximately 6.2 million Americans experience a fracture annually, with 5-10% being mal- or non-union fractures. HGF is important in priming MSCs for osteogenic differentiation in vitro and is currently being studied to assess its role during bone repair in vivo. Due to the high turnover rate of systemic HGF, non-classic modes of HGF-treatment, including naked-plasmid HGF delivery and the use of HGF splice variants (NK1 & NK2) are being studied to find safe and efficacious treatments for bone disorders, such as mal- or non-union fractures.
Collapse
Affiliation(s)
- Rachel N Frisch
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA
| | - Kevin M Curtis
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA.,b Biochemistry & Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Kristina K Aenlle
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA
| | - Guy A Howard
- a Geriatric Research, Education, and Clinical Center, and Research Service , Bruce W. Carter Veterans Affairs Medical Center , Miami , FL , USA.,b Biochemistry & Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA.,c Medicine , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
23
|
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21:12334-12350. [PMID: 26604641 PMCID: PMC4649117 DOI: 10.3748/wjg.v21.i43.12334] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Collapse
|
24
|
Hu C, Li L. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell 2015; 6:562-74. [PMID: 26088193 PMCID: PMC4506286 DOI: 10.1007/s13238-015-0180-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
Various liver diseases result in terminal hepatic failure, and liver transplantation, cell transplantation and artificial liver support systems are emerging as effective therapies for severe hepatic disease. However, all of these treatments are limited by organ or cell resources, so developing a sufficient number of functional hepatocytes for liver regeneration is a priority. Liver regeneration is a complex process regulated by growth factors (GFs), cytokines, transcription factors (TFs), hormones, oxidative stress products, metabolic networks, and microRNA. It is well-known that the function of isolated primary hepatocytes is hard to maintain; when cultured in vitro, these cells readily undergo dedifferentiation, causing them to lose hepatocyte function. For this reason, most studies focus on inducing stem cells, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), hepatic progenitor cells (HPCs), and mesenchymal stem cells (MSCs), to differentiate into hepatocyte-like cells (HLCs) in vitro. In this review, we mainly focus on the nature of the liver regeneration process and discuss how to maintain and enhance in vitro hepatic function of isolated primary hepatocytes or stem cell-derived HLCs for liver regeneration. In this way, hepatocytes or HLCs may be applied for clinical use for the treatment of terminal liver diseases and may prolong the survival time of patients in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, China
| | | |
Collapse
|