1
|
Bao P, Li P, Zhou X, Zhang H, You S, Xu Z, Wu Q. SMAR1 inhibits proliferation, EMT and Warburg effect of bladder cancer cells by suppressing the activity of the Wnt/β-catenin signaling pathway. Cell Cycle 2023; 22:229-241. [PMID: 35980125 PMCID: PMC9817122 DOI: 10.1080/15384101.2022.2112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the effects of scaffold matrix attachment region binding protein 1 (SMAR1) on the development of bladder cancer (BCa). SMAR1 expression in paired tumor and corresponding adjacent normal tissues from 55 BCa patients was detected by quantitative reverse transcription-polymerase chain reaction. BCa cells were transfected to regulate SMAR1 expression. BCa cells were treated with XAV-939, LiCl and 2-deoxyglucose. The effect of SMAR1 on the viability, proliferation, migration, invasion and Warburg effect of BCa cells was researched by counting kit-8, colony formation assay, Transwell and aerobic glycolysis assays. Western blot was performed to detect protein expression. BCa cell growth in vivo was recorded in nude mice. Immunohistochemical staining was performed for clinical and xenografted tumor tissue specimens. SMAR1 expression was down-regulated in BCa patients, associating with worse prognoses. SMAR1 knockdown enhanced the viability, proliferation, migration, invasion, EMT and Warburg effect of BCa cells. The opposite effect was found in the SMAR1 overexpression BCa cells. XAV-939 treatment reversed the elevation of β-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect in Bca cells post-SMAR1 knockdown. LiCl treatment abrogated the inhibition of β-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect proteins due to SMAR1 overexpression in BCa cells. SMAR1 overexpression inhibited the growth of BCa cells in vivo. SMAR1 might suppress the Wnt/β-catenin signaling pathway activity to inhibit the progression of BCa. It might be an effective treatment target for BCa.
Collapse
Affiliation(s)
- Pengfei Bao
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Peng Li
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Xiaoqing Zhou
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Huijiang Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Shengjie You
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Zhaoyu Xu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Qi Wu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| |
Collapse
|
2
|
Villar S, Ariceta B, Agirre X, Urribarri AD, Ayala R, Martínez-Cuadrón D, Bergua JM, Vives S, Algarra L, Tormo M, Martínez P, Serrano J, Simoes C, Herrera P, Calasanz MJ, Alfonso-Piérola A, Paiva B, Martínez-López J, San Miguel JF, Prósper F, Montesinos P. The transcriptomic landscape of elderly acute myeloid leukemia identifies B7H3 and BANP as a favorable signature in high-risk patients. Front Oncol 2022; 12:1054458. [PMID: 36505804 PMCID: PMC9729799 DOI: 10.3389/fonc.2022.1054458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) in the elderly remains a clinical challenge, with a five-year overall survival rate below 10%. The current ELN 2017 genetic risk classification considers cytogenetic and mutational characteristics to stratify fit AML patients into different prognostic groups. However, this classification is not validated for elderly patients treated with a non-intensive approach, and its performance may be suboptimal in this context. Indeed, the transcriptomic landscape of AML in the elderly has been less explored and it might help stratify this group of patients. In the current study, we analyzed the transcriptome of 224 AML patients > 65 years-old at diagnosis treated in the Spanish PETHEMA-FLUGAZA clinical trial in order to identify new prognostic biomarkers in this population. We identified a specific transcriptomic signature for high-risk patients with mutated TP53 or complex karyotype, revealing that low expression of B7H3 gene with high expression of BANP gene identifies a subset of high-risk AML patients surviving more than 12 months. This result was further validated in the BEAT AML cohort. This unique signature highlights the potential of transcriptomics to identify prognostic biomarkers in in elderly AML.
Collapse
Affiliation(s)
- Sara Villar
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Beñat Ariceta
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Centro de Investigación Médica Aplicada (CIMA) LAB Diagnostics, Universidad de Navarra, Pamplona, Spain,Program of Hematology-Oncology, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Program of Hematology-Oncology, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | - Rosa Ayala
- Hospital Universitario 12 de octubre, Madrid, Spain
| | | | | | - Susana Vives
- ICO Badalona- Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Mar Tormo
- Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Josefina Serrano
- Hospital Universitario Reina Sofía, Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Catia Simoes
- Program of Hematology-Oncology, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | - Maria José Calasanz
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Centro de Investigación Médica Aplicada (CIMA) LAB Diagnostics, Universidad de Navarra, Pamplona, Spain
| | - Ana Alfonso-Piérola
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Bruno Paiva
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,Centro de Investigación Médica Aplicada (CIMA) LAB Diagnostics, Universidad de Navarra, Pamplona, Spain
| | | | - Jesús F. San Miguel
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Felipe Prósper
- Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain,CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain,*Correspondence: Felipe Prósper, ; Pau Montesinos,
| | - Pau Montesinos
- Hospital Universitario y Politécnico la Fe, Valencia, Spain,*Correspondence: Felipe Prósper, ; Pau Montesinos,
| |
Collapse
|
3
|
Babu S, Takeuchi Y, Masai I. Banp regulates DNA damage response and chromosome segregation during the cell cycle in zebrafish retina. eLife 2022; 11:74611. [PMID: 35942692 PMCID: PMC9363121 DOI: 10.7554/elife.74611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Btg3-associated nuclear protein (Banp) was originally identified as a nuclear matrix-associated region (MAR)-binding protein and it functions as a tumor suppressor. At the molecular level, Banp regulates transcription of metabolic genes via a CGCG-containing motif called the Banp motif. However, its physiological roles in embryonic development are unknown. Here, we report that Banp is indispensable for the DNA damage response and chromosome segregation during mitosis. Zebrafish banp mutants show mitotic cell accumulation and apoptosis in developing retina. We found that DNA replication stress and tp53-dependent DNA damage responses were activated to induce apoptosis in banp mutants, suggesting that Banp is required for regulation of DNA replication and DNA damage repair. Furthermore, consistent with mitotic cell accumulation, chromosome segregation was not smoothly processed from prometaphase to anaphase in banp morphants, leading to a prolonged M-phase. Our RNA- and ATAC-sequencing identified 31 candidates for direct Banp target genes that carry the Banp motif. Interestingly, a DNA replication fork regulator, wrnip1, and two chromosome segregation regulators, cenpt and ncapg, are included in this list. Thus, Banp directly regulates transcription of wrnip1 for recovery from DNA replication stress, and cenpt and ncapg for chromosome segregation during mitosis. Our findings provide the first in vivo evidence that Banp is required for cell-cycle progression and cell survival by regulating DNA damage responses and chromosome segregation during mitosis. In order for a cell to divide, it must progress through a series of carefully controlled steps known as the cell cycle. First, the cell replicates its DNA and both copies get segregated to opposite ends. The cell then splits into two and each new cell receives a copy of the duplicated genetic material. If any of the stages in the cell cycle become disrupted or mis-regulated this can lead to uncontrolled divisions that may result in cancer. Researchers have often used a structure within the eye known as the retina to study the cell cycle in zebrafish and other animals as cells in the retina rapidly divide in a highly controlled manner. A protein called Banp is known to help stop tumors from growing in humans and mice, but its normal role in the body, particularly the cell cycle, has remained unclear. To investigate, Babu et al. studied the retina of mutant zebrafish that were unable to make the Banp protein. The experiments revealed that two stress responses indicating DNA damage or defects in copying DNA were active in the retinal cells of the mutant zebrafish. This suggested that Banp allows cell to progress through the cell cycle by repairing any DNA damage that may arise during replication. Banp does this by activating the gene for another protein called Wrnip1. Babu et al. also found that Banp helps segregate the two copies of DNA during cell division by promoting the activation of two other proteins called Cenpt and Ncapg. Further experiments identified 31 genes that were directly regulated by Banp. These findings demonstrate that Banp is required for zebrafish cells to be able to accurately copy their DNA and divide in to two new cells. In the future, the work of Babu et al. will provide a useful resource to investigate how tumors grow and spread around the body, and may contribute to the development of new treatments for cancer.
Collapse
Affiliation(s)
- Swathy Babu
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuki Takeuchi
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
4
|
Xu S, Xiong Y, Yao R, Tian R, Meng Z, Zaky MY, Fu B, Guo D, Wang L, Lin F, Lin X, Wu H. A Novel ERK2 Degrader Z734 Induces Apoptosis of MCF–7 Cells via the HERC3/p53 Signaling Pathway. Molecules 2022; 27:molecules27144337. [PMID: 35889210 PMCID: PMC9319741 DOI: 10.3390/molecules27144337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the leading causes of death worldwide, and synthetic chemicals targeting specific proteins or various molecular pathways for tumor suppression, such as ERK inhibitors and degraders, have been intensively investigated. The targets of ERK participate in the regulation of critical cellular mechanisms and underpin the progression of anticancer therapy. In this study, we identified a novel small molecule, which we named Z734, as a new mitogen–activated protein kinase 1 (ERK2) degrader and demonstrated that Z734 inhibits cell growth by inducing p53–mediated apoptotic pathways in human breast cancer cells. Treatment with Z734 resulted in the inhibition of cancer cell proliferation, colony formation and migration invasion, as well as cancer cell death via apoptosis. In addition, the Co–IP and GST pulldown assays indicated that the HECT and RLD domains containing E3 ubiquitin protein ligase 3 (HERC3) could directly interact with ERK2 through the HECT domain, promoting ERK2 ubiquitination. We also observed a strong link between HERC3 and p53 for the modulation of apoptosis. HERC3 can increase the protein and phosphorylation levels of p53, which further promotes apoptotic activity. In a xenograft mouse model, the effect was obtained in a treatment group that combined Z734 with lapatinib compared with that of the single–treatment groups. In summary, our results indicated that Z734 actively controls the development of breast cancer through apoptosis, and HERC3 may mediate ERK2 and p53 signaling, which offers new potential targets for clinical therapy.
Collapse
Affiliation(s)
- Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing 401331, China; (R.Y.); (R.T.)
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing 401331, China; (R.Y.); (R.T.)
| | - Zhuqing Meng
- Department of Pharmacy, Mianyang Fulin Hospital, Mianyang 621000, China;
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Lulu Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Feng Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
- Correspondence: (X.L.); (H.W.)
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (S.X.); (Y.X.); (B.F.); (D.G.); (L.W.); (F.L.)
- Correspondence: (X.L.); (H.W.)
| |
Collapse
|
5
|
Nies HW, Mohamad MS, Zakaria Z, Chan WH, Remli MA, Nies YH. Enhanced Directed Random Walk for the Identification of Breast Cancer Prognostic Markers from Multiclass Expression Data. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1232. [PMID: 34573857 PMCID: PMC8472068 DOI: 10.3390/e23091232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
Artificial intelligence in healthcare can potentially identify the probability of contracting a particular disease more accurately. There are five common molecular subtypes of breast cancer: luminal A, luminal B, basal, ERBB2, and normal-like. Previous investigations showed that pathway-based microarray analysis could help in the identification of prognostic markers from gene expressions. For example, directed random walk (DRW) can infer a greater reproducibility power of the pathway activity between two classes of samples with a higher classification accuracy. However, most of the existing methods (including DRW) ignored the characteristics of different cancer subtypes and considered all of the pathways to contribute equally to the analysis. Therefore, an enhanced DRW (eDRW+) is proposed to identify breast cancer prognostic markers from multiclass expression data. An improved weight strategy using one-way ANOVA (F-test) and pathway selection based on the greatest reproducibility power is proposed in eDRW+. The experimental results show that the eDRW+ exceeds other methods in terms of AUC. Besides this, the eDRW+ identifies 294 gene markers and 45 pathway markers from the breast cancer datasets with better AUC. Therefore, the prognostic markers (pathway markers and gene markers) can identify drug targets and look for cancer subtypes with clinically distinct outcomes.
Collapse
Affiliation(s)
- Hui Wen Nies
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (Z.Z.); (W.H.C.)
| | - Mohd Saberi Mohamad
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Zalmiyah Zakaria
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (Z.Z.); (W.H.C.)
| | - Weng Howe Chan
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (Z.Z.); (W.H.C.)
| | - Muhammad Akmal Remli
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu 16100, Malaysia;
| | - Yong Hui Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
6
|
Wang Z, Mao JW, Liu GY, Wang FG, Ju ZS, Zhou D, Wang RY. MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway. Cancer Med 2019; 8:712-728. [PMID: 30656832 PMCID: PMC6382924 DOI: 10.1002/cam4.1924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common cancer found in the nasopharynx, which plagues countless NPC patients. MicroRNA‐372 (miR‐372) has been reported to be involved in various tumors. Here, we explored the important role of miR‐372 in radiosensitivity, invasion, and metastasis of NPC. Microarray analysis was conducted to search the NPC‐related differentially expressed genes (DEGs) and predict the miRs regulating PBK, which suggested that miR‐372 could influence the development of NPC via PBK and the p53 signaling pathway. Importantly, miR‐372 was observed to target PBK, thus down‐regulating its expression. Then, NPC 5‐8F and C666‐1 cells were selected, and treated with ionization radiation and alteration of miR‐372 and PBK expression to explore the functional role of miR‐372 in NPC. The expression of miR‐372, PBK, Bcl‐2, p53, and Bax as well as the extent of Akt phosphorylation were measured. In addition, cell colony formation, cell cycle, proliferation, apoptosis, migration, and invasion were detected. At last, tumor growth and the effect of miR‐372 on radiosensitivity of NPC were evaluated. Besides, over‐expressed miR‐372 down‐regulated Bcl‐2 and PBK expression and the extent of Akt phosphorylation while up‐regulated the expression of p53 and Bax. Additionally, miR‐372 over‐expression and radiotherapy inhibited cell clone formation, proliferation, tumor growth, migration, invasion, and cell cycle entry, but promoted cell apoptosis. However, the restoration of PBK in NPC cells expressing miR‐372 reversed the anti‐tumor effect of miR‐372 and activation of the p53 signaling pathway. In conclusion, the study shows that up‐regulated miR‐372 promotes radiosensitivity by activating the p53 signaling pathway via inhibition of PBK.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Ji-Wei Mao
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Guang-Yan Liu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Fu-Guang Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zai-Shuang Ju
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Dong Zhou
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruo-Yu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| |
Collapse
|
7
|
Zhou ZR, Yang ZZ, Yu XL, Guo XM. Highlights on molecular targets for radiosensitization of breast cancer cells: Current research status and prospects. Cancer Med 2018; 7:3110-3117. [PMID: 29856131 PMCID: PMC6051209 DOI: 10.1002/cam4.1588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
In the past, searching for effective radiotherapy sensitization molecular targets and improving the radiation sensitivity of malignant tumors was the hot topic for the oncologists, but with little achievements. We will summarize the research results about breast cancer irradiation sensitization molecular targets over the past two decades; we mainly focus on the following aspects: DNA damage repair and radiation sensitization, cell cycle regulation and radiation sensitization, cell autophagy regulation and radiation sensitization, and radiation sensitivity prediction and breast cancer radiotherapy scheme making. And based on this summary, we will put forward some of our viewpoints.
Collapse
Affiliation(s)
- Zhi-Rui Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Zhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Li Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Mao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Programming of Cell Resistance to Genotoxic and Oxidative Stress. Biomedicines 2018; 6:biomedicines6010005. [PMID: 29301323 PMCID: PMC5874662 DOI: 10.3390/biomedicines6010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022] Open
Abstract
Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Collapse
|
9
|
Li CY, Xiong DD, Huang CQ, He RQ, Liang HW, Pan DH, Wang HL, Wang YW, Zhu HW, Chen G. Clinical Value of miR-101-3p and Biological Analysis of its Prospective Targets in Breast Cancer: A Study Based on The Cancer Genome Atlas (TCGA) and Bioinformatics. Med Sci Monit 2017; 23:1857-1871. [PMID: 28416776 PMCID: PMC5404822 DOI: 10.12659/msm.900030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background MiR-101-3p can promote apoptosis and inhibit proliferation, invasion, and metastasis in breast cancer (BC) cells. However, its mechanisms in BC are not fully understood. Therefore, a comprehensive analysis of the target genes, pathways, and networks of miR-101-3p in BC is necessary. Material/Methods The miR-101 profiles for 781 patients with BC from The Cancer Genome Atlas (TCGA) were analyzed. Gene expression profiling of GSE31397 with miR-101-3p transfected MCF-7 cells and scramble control cells was downloaded from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified. The potential genes targeted by miR-101-3p were also predicted. Gene Ontology (GO) and pathway and network analyses were constructed for the DEGs and predicted genes. Results In the TCGA data, a low level of miR-101-2 expression might represent a diagnostic (AUC: 0.63) marker, and the miR-101-1 was a prognostic (HR=1.79) marker. MiR-101-1 was linked to the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), and miR-101-2 was associated with the tumor (T), lymph node (N), and metastasis (M) stages of BC. Moreover, 427 genes were selected from the 921 DEGs in GEO and the 7924 potential target genes from the prediction databases. These genes were related to transcription, metabolism, biosynthesis, and proliferation. The results were also significantly enriched in the VEGF, mTOR, focal adhesion, Wnt, and chemokine signaling pathways. Conclusions MiR-101-1 and miR-101-2 may be prospective biomarkers for the prognosis and diagnosis of BC, respectively, and are associated with diverse clinical parameters. The target genes of miR-101-3p regulate the development and progression of BC. These results provide insight into the pathogenic mechanism and potential therapies for BC.
Collapse
Affiliation(s)
- Chun-Yao Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chun-Qin Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Deng-Hua Pan
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Han-Lin Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yi-Wen Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hua-Wei Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
10
|
Zhang X, Zhang M, Hou Y, Xu L, Li W, Zou Z, Liu C, Xu A, Wu S. Single-cell analyses of transcriptional heterogeneity in squamous cell carcinoma of urinary bladder. Oncotarget 2016; 7:66069-66076. [PMID: 27602771 PMCID: PMC5323215 DOI: 10.18632/oncotarget.11803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
Cell-to-cell expression heterogeneity within a single tumor is a common phenotype among various cancer types including squamous cell carcinoma. To further study the fundamentals and importance of heterogeneity of cell functions and its potential mechanisms, we performed single-cell RNA-seq (scRNA-seq) on human squamous cell carcinoma of the bladder (SCCB) and its corresponding physiologically normal epithelia. Extensive differentially expressed genes were uncovered by comparing cancer and normal single cells, which were preferentially enriched in cancer-correlated pathways, such as p53 signaling and bladder cancer pathway. Furthermore, the most diversely expressed genes were particularly enriched in MAPK signaling pathway, such as CACNG4, CACNA1E and CACNA1H, which involve in cancer evolution and heterogeneity formation. Co-expression network and hub-gene analyses revealed several remarkable "hub genes" of each regulatory module. Some of them are cancer related, such as POU2F3, NKD1 and CYP2C8, while LINC00189, GCC2 and OR9Q1 genes are rarely reported in human diseases. The genes within an interesting module are highly correlated with others, which could be treated as potential targets for SCCB patients. Our findings have fundamental implications for SCCB biology and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, China
- Shenzhen Gene Detection Public Service Platform of Clinical Application, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Meng Zhang
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, China
- Shenzhen Gene Detection Public Service Platform of Clinical Application, Shenzhen Luohu Hospital Group, Shenzhen, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | - Weidong Li
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Zhihui Zou
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Song Wu
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, China
- Shenzhen Gene Detection Public Service Platform of Clinical Application, Shenzhen Luohu Hospital Group, Shenzhen, China
| |
Collapse
|