1
|
Choudhary S, Singh MK, Kashyap S, Seth R, Singh L. Wnt/β-Catenin Signaling Pathway in Pediatric Tumors: Implications for Diagnosis and Treatment. CHILDREN (BASEL, SWITZERLAND) 2024; 11:700. [PMID: 38929279 PMCID: PMC11201634 DOI: 10.3390/children11060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved Wnt signaling has a significant and diverse role in maintaining cell homeostasis and tissue maintenance. It is necessary in the regulation of crucial biological functions such as embryonal development, proliferation, differentiation, cell fate, and stem cell pluripotency. The deregulation of Wnt/β-catenin signaling often leads to various diseases, including cancer and non-cancer diseases. The role of Wnt/β-catenin signaling in adult tumors has been extensively studied in literature. Although the Wnt signaling pathway has been well explored and recognized to play a role in the initiation and progression of cancer, there is still a lack of understanding on how it affects pediatric tumors. This review discusses the recent developments of this signaling pathway in pediatric tumors. We also focus on understanding how different types of variations in Wnt signaling pathway contribute to cancer development and provide an insight of tissue specific mutations that lead to clinical progression of these tumors.
Collapse
Affiliation(s)
- Sahar Choudhary
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | | | - Seema Kashyap
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | - Lata Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| |
Collapse
|
2
|
Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22:333-345. [PMID: 36448560 DOI: 10.1016/j.hbpd.2022.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern associated with significant morbidity and mortality. NAFLD is a spectrum of diseases originating from simple steatosis, progressing through nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis that may lead to hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is mediated by the triglyceride accumulation followed by proinflammatory cytokines expression leading to inflammation, oxidative stress, and mitochondrial dysfunction denoted as "two-hit hypothesis", advancing with a "third hit" of insufficient hepatocyte proliferation, leading to the increase in hepatic progenitor cells contributing to fibrosis and HCC. Wnt/β-catenin signaling is responsible for normal liver development, regeneration, hepatic metabolic zonation, ammonia and drug detoxification, hepatobiliary development, etc., maintaining the overall liver homeostasis. The key regulators of canonical Wnt signaling such as LRP6, Wnt1, Wnt3a, β-catenin, GSK-3β, and APC are abnormally regulated in NAFLD. Many experimental studies have shown the aberrated Wnt/β-catenin signaling during the NAFLD progression and NASH to hepatic fibrosis and HCC. Therefore, in this review, we have emphasized the role of Wnt/β-catenin signaling and its modulators that can potentially aid in the inhibition of NAFLD.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
3
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Chemical genomics with pyrvinium identifies C1orf115 as a regulator of drug efflux. Nat Chem Biol 2022; 18:1370-1379. [PMID: 35970996 DOI: 10.1038/s41589-022-01109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.
Collapse
|
5
|
Liu CT, Hsu SC, Hsieh HL, Chen CH, Chen CY, Sue YM, Chen TH, Hsu YH, Lin FY, Shih CM, Shiu YT, Huang PH. Inhibition of β-catenin signaling attenuates arteriovenous fistula thickening in mice by suppressing myofibroblasts. Mol Med 2022; 28:7. [PMID: 35062862 PMCID: PMC8783463 DOI: 10.1186/s10020-022-00436-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Arteriovenous fistula (AVF) is the most important vascular access for hemodialysis; however, preventive treatment to maintain the patency of AVFs has not been developed. In endothelium, β-catenin functions in both the intercellular adherens complex and signaling pathways that induce the transition of endothelial cells to myofibroblasts in response to mechanical stimuli. We hypothesize that mechanical disturbances in the AVF activate β-catenin signaling leading to the transition of endothelial cells to myofibroblasts, which cause AVF thickening. The present study aimed to test this hypothesis. Methods Chronic kidney disease in mice was induced by a 0.2% adenine diet. AVFs were created by aortocaval puncture. Human umbilical vein endothelial cells (HUVECs) were used in the cell experiments. A pressure-culture system was used to simulate mechanical disturbances of the AVF. Results Co-expression of CD31 and smooth muscle alpha-actin (αSMA), loss of cell–cell adhesions, and the expression of the myofibroblast marker, integrin subunit β6 (ITGB6), indicated transition to myofibroblasts in mouse AVF. Nuclear translocation of β-catenin, decreased axin2, and increased c-myc expression were also observed in the AVF, indicating activated β-catenin signaling. To confirm that β-catenin signaling contributes to AVF lesions, β-catenin signaling was inhibited with pyrvinium pamoate; β-catenin inhibition significantly attenuated AVF thickening and decreased myofibroblasts. In HUVECs, barometric pressure-induced nuclear localization of β-catenin and increased expression of the myofibroblast markers, αSMA and ITGB6. These changes were attenuated via pretreatment with β-catenin inhibition. Conclusions The results of this study indicate that mechanical disturbance in AVF activates β-catenin signaling to induce the transition of endothelial cells to myofibroblasts. This signaling cascade can be targeted to maintain AVF patency. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00436-1.
Collapse
Affiliation(s)
- Chung-Te Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chang Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ling Hsieh
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chun-You Chen
- Department of Radiation Oncology, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Feng-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ming Shih
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah, 295 Chipeta Way, Suite 4000, Salt Lake City, UT, 84109, USA. .,Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
6
|
Booij TH, Leonhard WN, Bange H, Yan K, Fokkelman M, Plugge AJ, Veraar KAM, Dauwerse JG, van Westen GJP, van de Water B, Price LS, Peters DJM. In vitro 3D phenotypic drug screen identifies celastrol as an effective in vivo inhibitor of polycystic kidney disease. J Mol Cell Biol 2021; 12:644-653. [PMID: 31065693 PMCID: PMC7683017 DOI: 10.1093/jmcb/mjz029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 02/05/2019] [Accepted: 03/10/2019] [Indexed: 01/09/2023] Open
Abstract
Polycystic kidney disease (PKD) is a prevalent genetic disorder, characterized by the formation of kidney cysts that progressively lead to kidney failure. The currently available drug tolvaptan is not well tolerated by all patients and there remains a strong need for alternative treatments. The signaling rewiring in PKD that drives cyst formation is highly complex and not fully understood. As a consequence, the effects of drugs are sometimes difficult to predict. We previously established a high throughput microscopy phenotypic screening method for quantitative assessment of renal cyst growth. Here, we applied this 3D cyst growth phenotypic assay and screened 2320 small drug-like molecules, including approved drugs. We identified 81 active molecules that inhibit cyst growth. Multi-parametric phenotypic profiling of the effects on 3D cultured cysts discriminated molecules that showed preferred pharmacological effects above genuine toxicological properties. Celastrol, a triterpenoid from Tripterygium Wilfordii, was identified as a potent inhibitor of cyst growth in vitro. In an in vivo iKspCre-Pkd1lox,lox mouse model for PKD, celastrol inhibited the growth of renal cysts and maintained kidney function.
Collapse
Affiliation(s)
- Tijmen H Booij
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.,NEXUS Personalized Health Technologies, ETH Zürich, Switzerland
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Kuan Yan
- OcellO B.V., Leiden, The Netherlands
| | - Michiel Fokkelman
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Anna J Plugge
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Kimberley A M Veraar
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Johannes G Dauwerse
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Leo S Price
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.,OcellO B.V., Leiden, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
7
|
El-Derany MO, El-Demerdash E. Pyrvinium pamoate attenuates non-alcoholic steatohepatitis: Insight on hedgehog/Gli and Wnt/β-catenin signaling crosstalk. Biochem Pharmacol 2020; 177:113942. [PMID: 32240652 DOI: 10.1016/j.bcp.2020.113942] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a devastating form of non-alcoholic fatty liver disease (NAFLD). Pyrvinium pamoate (PP) has been recently introduced as anti-adipogenic compound. We aimed to investigate the effects of PP on high fat diet (HFD)-induced NASH in rats and examine the underlying mechanisms. NASH was induced by exposing rats to HFD for 16 weeks and a single dose of streptozotocin (STZ) 35 mg/kg at the fifth week. At the tenth week, PP was given orally at a dose of 60 µg/kg, day after day for 6 weeks. HFD/STZ induced significant steatohepatitis and insulin resistance as was evident by the elevated transaminases activity, NAFLD activity score and HOMA-IR level. Also, HFD induced serum hyperlipidemia and hepatic lipid accumulation. In addition, HFD induced an imbalance in the oxidative status of the liver via upregulating lipid peroxides and mitochondrial oxidative stress markers (MnSOD, UCP-2), together with marked decrease in anti-oxidant glutathione level, glutathione peroxidase activity and expression of mitophagy related markers (PINK1, Parkin, ULK1) and increase in SQSTM1/p62 and LC3II/LC3I. Upregulation of inflammatory mediators (TNF-α, IL-6, IL-1β) and apoptotic marker (caspase 3) were observed. Those events all together precipitated in initiation of liver fibrosis as confirmed by elevation of transforming growth factor-β1 (TGF-β1), alpha-smooth muscle actin (α-SMA) and liver collagen content. Co-treatment with PP protected against HFD-induced NASH and liver fibrosis via downregulating the expression of key factors in Hedgehog and Wnt/ β-catenin signaling pathway. These findings imply that PP can attenuate the progression of NASH and its associated sequela of liver fibrosis.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Shen C, Li B, Astudillo L, Deutscher MP, Cobb MH, Capobianco AJ, Lee E, Robbins DJ. The CK1α Activator Pyrvinium Enhances the Catalytic Efficiency ( kcat/ Km) of CK1α. Biochemistry 2019; 58:5102-5106. [PMID: 31820934 DOI: 10.1021/acs.biochem.9b00891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The serine/threonine protein kinase casein kinase 1α (CK1α) functions as a negative regulator of Wnt signaling, phosphorylating β-catenin at serine 45 (P-S45) to initiate its eventual ubiquitin-mediated degradation. We previously showed that the repurposed, FDA-approved anthelminthic drug pyrvinium potently inhibits Wnt signaling in vitro and in vivo. Moreover, we proposed that pyrvinium's Wnt inhibitory activity was the result of its function as an activator of CK1α. An understanding of the mechanism by which pyrvinium activates CK1α is important because pyrvinium was given an orphan drug designation by the FDA to treat familial adenomatous polyposis, a precancerous condition driven by constitutive Wnt signaling. In the current study, we show that pyrvinium stimulates the phosphorylation of S45 β-catenin, a known CK1α substrate, in a cell-based assay, and does so in a dose- and time-dependent manner. Alternative splicing of CK1α results in four forms of the protein with distinct biological properties. We evaluated these splice products and identified the CK1α splice variant, CK1αS, as the form that exhibits the most robust response to pyrvinium in cells. Kinetic studies indicate that pyrvinium also stimulates the kinase activity of purified, recombinant CK1αS in vitro, increasing its catalytic efficiency (kcat/Km) toward substrates. These studies provide strong and clear mechanistic evidence that pyrvinium enhances CK1α kinase activity.
Collapse
Affiliation(s)
- Chen Shen
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States.,The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
| | - Bin Li
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
| | - Luisana Astudillo
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
| | - Murray P Deutscher
- Department of Biochemistry and Molecular Biology, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
| | - Melanie H Cobb
- Department of Pharmacology , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States.,Sylvester Cancer Center, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
| | - Ethan Lee
- Department of Cell and Developmental Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States.,Sylvester Cancer Center, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States.,Department of Biochemistry and Molecular Biology, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
| |
Collapse
|
9
|
Barbarino M, Cesari D, Intruglio R, Indovina P, Namagerdi A, Bertolino FM, Bottaro M, Rahmani D, Bellan C, Giordano A. Possible repurposing of pyrvinium pamoate for the treatment of mesothelioma: A pre-clinical assessment. J Cell Physiol 2018; 233:7391-7401. [PMID: 29659015 DOI: 10.1002/jcp.26579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/17/2023]
Abstract
Malignant mesothelioma (MM) is a very aggressive asbestos-related cancer, whose incidence is increasing worldwide. Unfortunately, no effective therapies are currently available and the prognosis is extremely poor. Recently, the anti-helminthic drug pyrvinium pamoate has attracted a strong interest for its anti-cancer activity, which has been demonstrated in many cancer models. Considering the previously established inhibitory effect of pyrvinium pamoate on the Wnt/β-catenin pathway and given the important role of this pathway in MM, we investigated the potential anti-tumor activity of this drug in MM cell lines. We observed that pyrvinium pamoate significantly impairs MM cell proliferation, cloning efficiency, migration, and tumor spheroid formation. At the molecular level, our data show that pyrvinium pamoate down-regulates the expression of β-catenin and Wnt-regulates genes. Overall, our study suggests that the repurposing of pyrvinium pamoate for MM treatment could represent a new promising therapeutic approach.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Daniele Cesari
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Riccardo Intruglio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Asadoor Namagerdi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Maria Bottaro
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Delaram Rahmani
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|