1
|
Liu C, Zhou L, Chen Z. Construction of gastric cancer prognostic signature based on the E26 transcription factor and the identification of novel oncogene ELK3. Am J Cancer Res 2024; 14:1831-1849. [PMID: 38726274 PMCID: PMC11076248 DOI: 10.62347/rvbp7871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/11/2024] [Indexed: 05/12/2024] Open
Abstract
The aim of the present study was to investigate the function of 29 E26 (ETS) transcription factor families in gastric cancer (GC) and determine their association with prognosis. Our analysis of the expression of the ETS family revealed that 28 genes were dysregulated in GC, and that their expression was associated with multiple clinicopathological features (P<0.05). Based on the expression signature of the ETS family, consensus clustering was performed to generate two gastric cancer subtypes. These subtypes exhibited differences in overall survival (OS, P = 0.161), disease-free survival (DFS, P<0.05) and GC grade (P<0.01). Functional enrichment analysis of the target genes associated with the ETS family indicated that these genes primarily contribute to functions that facilitate tumor progression. A systematic statistical analysis was used to construct a prognostic model related to OS and DFS in association with the ETS family. This model demonstrated that the maximum area under the curve (AUC) values for predicting OS and DFS were 0.729 and 0.670, respectively, establishing ETS as an independent prognostic factor for GC Furthermore, a nomogram was created from the prognostic signature, and its predictive accuracy was confirmed by a calibration curve. Finally, the expression and prognostic significance of the six genes comprising the model were also examined. Among these, ELK3 was found to be significantly overexpressed in GC clinical samples. Subsequent in vitro and in vivo studies verified that ELK3 regulates GC proliferation and metastasis, highlighting its potential as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chenxi Liu
- School of Optometry, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Liqiang Zhou
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| | - Zhiqing Chen
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
2
|
Su H, Shu S, Tang W, Zheng C, Zhao L, Fan H. ETV4 facilitates angiogenesis in hepatocellular carcinoma by upregulating MMP14 expression. Biochem Biophys Res Commun 2023; 684:149137. [PMID: 37897911 DOI: 10.1016/j.bbrc.2023.149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Abnormal vascularization plays a crucial role in cell proliferation, tumor invasion and metastasis of hepatocellular carcinoma (HCC). It has been reported that ETV4 functions as an oncogenic gene in driving the carcinogenesis and progression, and promoting invasion and metastasis of HCC. However, the function of ETV4 on angiogenesis in HCC remains unclear. In the current study, immunohistochemistry showed that knockdown of ETV4 reduced angiogenesis in HCC xenograft tumor tissues. In vitro, tube formation assay verified that ETV4 expression promoted angiogenesis through simulating the angiogenic environment in HCC cells. Transcriptome sequencing indicated that MMP14 was one of the differentially expressed genes enriched in angiogenesis process. Subsequently, it was confirmed that MMP14 was regulated by ETV4 at the transcription level in HCC cells, clinical tissue samples and online databases. Further, we demonstrated that MMP14 induced angiogenesis in ETV4-mediated HCC microenvironment. Collectively, this research further reveals the biological mechanism of ETV4 in promoting the migration and invasion of HCC, and provides novel mechanistic insights and strategic guidance for anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Hongmeng Su
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| | - Shihui Shu
- School of Life Science and Technology, Southeast University, Nanjing, China.
| | - Wenqing Tang
- School of Life Science and Technology, Southeast University, Nanjing, China.
| | - Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| | - Luyu Zhao
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Yueyang M, Yaqin H, Guolian X, Wenjian Z, Yang J, Chen L, Haiyan C, Min C, Jianping D, Penggao D, Hongli Z, Liang W. Glioma angiogenesis is boosted by ELK3 activating the HIF-1
α
/VEGF-A signaling axis. BMC Cancer 2023; 23:662. [PMID: 37452291 PMCID: PMC10347878 DOI: 10.1186/s12885-023-11069-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Clinical studies have shown that first-line use of anti-angiogenetic therapy can prolong progression-free survival but little progress has been made in extending the overall survival of the patients. We explored the role of ELK3 in glioma angiogenesis to improve and design more efficacious therapies. METHODS A tissue microarray and immunohistochemistry analysis were used to determine the expression of ELK3 protein in 400 glioma patients. Cell proliferation, metastasis, cell cycle, and apoptosis were monitored in U87 and U251 cells using CCK-8, EdU, transwell assays, and flow cytometry. A tube-formation assay, a rat aorta ring sprouting assay, and a matrigel plug assay were performed to examine the antiangiogenic activity of ELK3. An ELISA, Western blot, and correlation analysis of the CGGA dataset were used to detect the association between ELK3 and VEGF-A or ELK3 and HIF-1α . Besides, orthotopic transplantation in nude mice and histopathological and immunological analysis of in vitro tumors were used to explore the effect of ELK3 on tumor progression and median survival. RESULTS ELK3 was upregulated in glioma tissues and associated with a poor prognosis. In vitro, ELK3 promoted cell proliferation and cell cycle progression, induced metastasis, and suppressed apoptosis. Then, silencing ELK3 inhibited VEGF-A expression and secretion by facilitating HIF-1α degradation via ubiquitination. Finally, knockdown ELK3 inhibited tumor progression and angiogenesis in vitro and in vivo, as well as prolonged nude mice's median survival. CONCLUSIONS Our findings first evidenced that ELK3 is crucial for glioma because it promotes angiogenesis by activating the HIF-1α /VEGF-A signaling axis. Therefore, we suggest that ELK3 is a prognostic marker with a great potential for glioma angiogenesis and ELK3-targeted therapeutic strategies might hold promise in improving the efficacy of anti-angiogenic therapies.
Collapse
Affiliation(s)
- Mou Yueyang
- College of Life Sciences, Northwest University, Xi’an, China
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Hu Yaqin
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xue Guolian
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhao Wenjian
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jiao Yang
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Li Chen
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cao Haiyan
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chao Min
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Deng Jianping
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Dai Penggao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhu Hongli
- College of Life Sciences, Northwest University, Xi’an, China
| | - Wang Liang
- Departments of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Wang C, Shi L, Yang S, Chang J, Liu W, Zeng J, Meng J, Zhang R, Xing D. Research progress on antitumor activity of XRP44X and analogues as microtubule targeting agents. Front Chem 2023; 11:1096666. [PMID: 36936533 PMCID: PMC10014799 DOI: 10.3389/fchem.2023.1096666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer threatens human health and life. Therefore, it is particularly important to develop safe and effective antitumor drugs. Microtubules, the main component of cytoskeleton, play an important role in maintaining cell morphology, mitosis, and signal transduction, which are one of important targets of antitumor drug research and development. Colchicine binding site inhibitors have dual effects of inhibiting proliferation and destroying blood vessels. In recent years, a series of inhibitors targeting this target have been studied and some progress has been made. XRP44X has a novel structure and overcomes some disadvantages of traditional inhibitors. It is also a multifunctional molecule that regulates not only the function of tubulin but also a variety of biological pathways. Therefore, the structure, synthesis, structure-activity relationship, and biological activity of XRP44X analogues reported in recent years were summarized in this paper, to provide a useful reference for the rational design of efficient colchicine binding site inhibitors.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| |
Collapse
|
5
|
Yu X, Du C, Cui Y, Jiang Y, Feng D. ELK3 Targeting AEG1 Promotes Migration and Invasion of Ovarian Cancer Cells under Hypoxia. Biol Pharm Bull 2023; 46:883-892. [PMID: 37394639 DOI: 10.1248/bpb.b22-00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Ovarian cancer (OC) is one of the most common tumors in female reproductive organs with a five-year survival rate of less than 45%. Metastasis is a crucial contributor to OC development. ETS transcription factor (ELK3), as a transcriptional factor, have been involved in multiple tumor development. However, its role in OC remains elusive. In this study, we observed high expression of ELK3 and AEG1 in human OC tissues. OVCAR-3 and SKOV3 cells were treated with hypoxia to mimic tumor microenvironment in vivo. We found that the expression of ELK3 was significantly increased in cells under hypoxia compared with normoxia. ELK3 knockdown inhibited cell migration and invasion abilities under hypoxia. Moreover, ELK3 knockdown decreased β-catenin expression and inhibited the activation of Wnt/β-catenin pathway in SKOV3 cells under hypoxia. Astrocyte-elevated gene-1 (AEG1) has been reported to promote OC progression. Our results showed that the mRNA level of AEG1 was decreased when ELK3 knockdown under hypoxia. Dural luciferase assay confirmed that ELK3 bound to gene AEG1 promoter (-2005-+15) and enhanced its transcriptional activity under hypoxia. Overexpression of AEG1 increased the migration and invasion abilities of SKOV3 cell with ELK3 knockdown. In the absence of ELK3, the activation of β-catenin was recovered by AEG1 overexpression. To sum up, we conclude that ELK3 promotes AEG1 expression by binding to its promoter. ELK3 could promote migration and invasion of OC cells by targeting AEG1, which provides a potential basis for therapeutic approaches to OC.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Chun Du
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Yifei Cui
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Yang Jiang
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Di Feng
- Department of Pathology, Harbin Medical University Cancer Hospital
| |
Collapse
|
6
|
Serrano-López EM, Coronado-Parra T, Marín-Vicente C, Szallasi Z, Gómez-Abellán V, López-Andreo MJ, Gragera M, Gómez-Fernández JC, López-Nicolás R, Corbalán-García S. Deciphering the Role and Signaling Pathways of PKCα in Luminal A Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232214023. [PMID: 36430510 PMCID: PMC9696894 DOI: 10.3390/ijms232214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Protein kinase C (PKC) comprises a family of highly related serine/threonine protein kinases involved in multiple signaling pathways, which control cell proliferation, survival, and differentiation. The role of PKCα in cancer has been studied for many years. However, it has been impossible to establish whether PKCα acts as an oncogene or a tumor suppressor. Here, we analyzed the importance of PKCα in cellular processes such as proliferation, migration, or apoptosis by inhibiting its gene expression in a luminal A breast cancer cell line (MCF-7). Differential expression analysis and phospho-kinase arrays of PKCα-KD vs. PKCα-WT MCF-7 cells identified an essential set of proteins and oncogenic kinases of the JAK/STAT and PI3K/AKT pathways that were down-regulated, whereas IGF1R, ERK1/2, and p53 were up-regulated. In addition, unexpected genes related to the interferon pathway appeared down-regulated, while PLC, ERBB4, or PDGFA displayed up-regulated. The integration of this information clearly showed us the usefulness of inhibiting a multifunctional kinase-like PKCα in the first step to control the tumor phenotype. Then allowing us to design a possible selection of specific inhibitors for the unexpected up-regulated pathways to further provide a second step of treatment to inhibit the proliferation and migration of MCF-7 cells. The results of this study suggest that PKCα plays an oncogenic role in this type of breast cancer model. In addition, it reveals the signaling mode of PKCα at both gene expression and kinase activation. In this way, a wide range of proteins can implement a new strategy to fine-tune the control of crucial functions in these cells and pave the way for designing targeted cancer therapies.
Collapse
Affiliation(s)
- Emilio M. Serrano-López
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Teresa Coronado-Parra
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Microscopy Core Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Consuelo Marín-Vicente
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Cardiovascular Proteomics and Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioinformatics, Semmelweis University, H-1092 Budapest, Hungary
| | - Victoria Gómez-Abellán
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Department of Cellular Biology and Histology, Biology School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
| | - María José López-Andreo
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Molecular Biology Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Marcos Gragera
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Centro Nacional Biotecnología, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Juan C. Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Rubén López-Nicolás
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Department of Bromatology and Nutrition, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| |
Collapse
|
7
|
Lee M, Cho HJ, Park KS, Jung HY. ELK3 Controls Gastric Cancer Cell Migration and Invasion by Regulating ECM Remodeling-Related Genes. Int J Mol Sci 2022; 23:ijms23073709. [PMID: 35409069 PMCID: PMC8998440 DOI: 10.3390/ijms23073709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Current therapeutic strategies for gastric cancer, including surgery and chemotherapy improve patient survival; however, the survival rate of patients with metastatic gastric cancer is very low. The molecular mechanisms underlying the dissemination of gastric cancer cells to distant organs are currently unknown. Here, we demonstrate that the E26 transformation-specific (ETS) transcription factor ELK3 (ELK3) gene is required for the migration and invasion of gastric cancer cells. The ELK3 gene modulates the expression of extracellular matrix (ECM) remodeling-related genes, such as bone morphogenetic protein (BMP1), lysyl oxidase like 2 (LOXL2), Snail family transcriptional repressor 1 (SNAI1), serpin family F member 1 (SERPINF1), decorin (DCN), and nidogen 1 (NID1) to facilitate cancer cell dissemination. Our in silico analyses indicated that ELK3 expression was positively associated with these ECM remodeling-related genes in gastric cancer cells and patient samples. The high expressions of ELK3 and other ECM remodeling-related genes were also closely associated with a worse prognosis of patients with gastric cancer. Collectively, these findings suggest that ELK3 acts as an important regulator of gastric cancer cell dissemination by regulating ECM remodeling.
Collapse
Affiliation(s)
| | | | - Kyung-Soon Park
- Correspondence: (K.-S.P.); (H.-Y.J.); Tel.: +82-31-881-7144 (K.-S.P.); Fax: +82-31-881-7249 (K.-S.P.)
| | - Hae-Yun Jung
- Correspondence: (K.-S.P.); (H.-Y.J.); Tel.: +82-31-881-7144 (K.-S.P.); Fax: +82-31-881-7249 (K.-S.P.)
| |
Collapse
|
8
|
Liu Z, Ren Z, Zhang C, Qian R, Wang H, Wang J, Zhang W, Liu B, Lian X, Wang Y, Guo Y, Gao Y. ELK3: A New Molecular Marker for the Diagnosis and Prognosis of Glioma. Front Oncol 2022; 11:608748. [PMID: 34976781 PMCID: PMC8716454 DOI: 10.3389/fonc.2021.608748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
ETS transcription factor ELK3 (ELK3), a novel oncogene, affects pathological processes and progression of many cancers in human tissues. However, it remains unclear whether ELK3, as a key gene, affects the pathological process of gliomas and the prognosis of patients with gliomas. This study aimed to comprehensively and systematically reveal the correlation between ELK3 and the malignant progression of gliomas by analyzing clinical sample information stored in multiple databases. We revealed the putative mechanism of ELK3 involvement in malignant gliomas progression and identified a new and efficient biomarker for glioma diagnosis and targeted therapy. Based on the sample data from multiple databases and real-time quantitative polymerase chain reaction (RT-qPCR), the abnormally high expression of ELK3 in gliomas was confirmed. Kaplan-Meier and Cox regression analyses demonstrated that a high ELK3 expression was markedly associated with low patient survival and served as an independent biomarker of gliomas. Wilcox and Kruskal-Wallis tests revealed that expression of ELK3 was positively correlated with several clinical characteristics of patients with gliomas, such as age, WHO classification, and recurrence. Moreover, Cell Counting Kit‐8 (CCK-8), immunofluorescence, and wound healing assays confirmed that ELK3 overexpression markedly promoted the proliferation and migration of glioma cells. Finally, gene set enrichment analysis (GSEA) and western blotting confirmed that overexpression of ELK3 regulated the JAK–STAT signaling pathway and upregulate the expression of signal transducer and activator of transcription 3 (STAT3) and phosphorylated STAT3 (P-STAT3) to promote the malignant transition of gliomas. Therefore, ELK3 may serve as an efficient biomarker for the diagnosis and prognosis of gliomas and it can also be used as a therapeutic target to improve the poor prognosis of patients with gliomas.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhishuai Ren
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Cheng Zhang
- North Broward Preparatory School, Nord Anglia Education, Coconut Creek, FL, United States
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongbo Wang
- People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jialin Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binfeng Liu
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyu Lian
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanbiao Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuqi Guo
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.,Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
9
|
Takenaga K, Ochiya T, Endo H. Inhibition of the invasion and metastasis of mammary carcinoma cells by NBD peptide targeting S100A4 via the suppression of the Sp1/MMP‑14 axis. Int J Oncol 2021; 58:397-408. [PMID: 33650647 PMCID: PMC7864152 DOI: 10.3892/ijo.2021.5173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
A synthetic peptide that blocks the interaction between the metastasis‑enhancing calcium‑binding protein, S100A4, and its effector protein, methionine aminopeptidase 2 (MetAP2) (the NBD peptide), was previously demonstrated to inhibit the angiogenesis of endothelial cells, leading to the regression of human prostate cancer in a xenograft model. However, the effects of the NBD peptide on the malignant properties of cancer cells that express S100A4 remain to be elucidated. The present study demonstrates that the NBD peptide inhibits the invasiveness and metastasis of highly metastatic human mammary carcinoma cells. The introduction of the peptide into MDA‑MB‑231 variant cells resulted in the suppression of matrix degradation in a gelatin invadopodia assay and invasiveness in a Matrigel invasion assay. In line with these results, the peptide significantly downregulated the expression of matrix metalloproteinase (MMP)‑14 (MT1‑MMP). Mechanistic analysis of the downregulation of MMP‑14 revealed the suppression of the expression of the transcription factor, specificity protein 1 (Sp1), but not that of nuclear factor (NF)‑κB, early growth response 1 (EGR1) or ELK3, all of which were reported to be involved in transcriptional regulation of the MMP‑14 gene. At the same time, evidence suggested that the NBD peptide also suppressed Sp1 and MMP‑14 expression levels in MDA‑MB‑468 cells. Importantly, the intravenous administration of the NBD peptide encapsulated in liposomes inhibited pulmonary metastasis from mammary gland tumors in mice with xenograft tumors. These results indicate that the NBD peptide can suppress malignant tumor growth through the suppression of the Sp1/MMP‑14 axis. Taken together, these results reveal that the NBD peptide acts on not only endothelial cells, but also on tumor cells in an integrated manner, suggesting that the peptide may prove to be a promising cancer therapeutic peptide drug.
Collapse
Affiliation(s)
- Keizo Takenaga
- Department of Life Science, Faculty of Medicine, Shimane University, Shimane 690-0823
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023
| | - Hideya Endo
- Division of Cellular and Molecular Biology, Department of Cancer Biology
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
10
|
Mehta SD, Nannini DR, Otieno F, Green SJ, Agingu W, Landay A, Zheng Y, Hou L. Host Genetic Factors Associated with Vaginal Microbiome Composition in Kenyan Women. mSystems 2020; 5:e00502-20. [PMID: 32723796 PMCID: PMC7394359 DOI: 10.1128/msystems.00502-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial vaginosis (BV) affects 20% of women worldwide and is associated with adverse reproductive health outcomes and increased risk for HIV. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Persistent racial differences in BV and diverse vaginal microbiome composition overlap with racial disparities in risks for HIV and sexually transmitted infection, especially among women of African descent. Risk factors for BV and nonoptimal vaginal microbiome include sexual practices, yet racial differences persist when adjusted for behavioral factors, suggesting a host genetic component. Here, we perform a genome-wide association study on vaginal microbiome traits in Kenyan women. Linear regression and logistic regression were performed, adjusting for age and principal components of genetic ancestry, to evaluate the association between Lactobacillus crispatus, Lactobacillus iners, Gardnerella vaginalis, Shannon diversity index, and community state type (CST) with host genetic single nucleotide polymorphisms (SNPs). We identified novel genomic loci associated with the vaginal microbiome traits, though no SNP reached genome-wide significance. During pathway enrichment analysis, Toll-like receptors (TLRs), cytokine production, and other components of innate immune response were associated with L. crispatus, L. iners, and CST. Multiple previously reported genomic loci were replicated, including IL-8 (Shannon, CST), TIRAP (L. iners, Shannon), TLR2 (Shannon, CST), MBL2 (L. iners, G. vaginalis, CST), and MYD88 (L. iners, Shannon). These genetic associations suggest a role for the innate immune system and cell signaling in vaginal microbiome composition and susceptibility to nonoptimal vaginal microbiome.IMPORTANCE Globally, bacterial vaginosis (BV) is a common condition in women. BV is associated with poorer reproductive health outcomes and HIV risk. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Despite many women having similar exposures, the prevalence of BV and nonoptimal vaginal microbiome is increased for women of African descent, suggesting a possible role for host genetics. We conducted a genome-wide association study of important vaginal microbiome traits in Kenyan women. We identified novel genetic loci and biological pathways related to mucosal immunity, cell signaling, and infection that were associated with vaginal microbiome traits; we replicated previously reported loci associated with mucosal immune response. These results provide insight into potential host genetic influences on vaginal microbiome composition and can guide larger longitudinal studies, with genetic and functional comparison across microbiome sites within individuals and across populations.
Collapse
Affiliation(s)
- Supriya D Mehta
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, Illinois, USA
| | - Drew R Nannini
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Stefan J Green
- Genome Research Core, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | | - Alan Landay
- Department of Internal Medicine, Rush University College of Medicine, Chicago, Illinois, USA
| | - Yinan Zheng
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lifang Hou
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Functional Link between miR-200a and ELK3 Regulates the Metastatic Nature of Breast Cancer. Cancers (Basel) 2020; 12:cancers12051225. [PMID: 32414208 PMCID: PMC7281469 DOI: 10.3390/cancers12051225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) refers to breast cancer that does not have receptors for estrogen, progesterone, and HER2 protein. TNBC accounts for 10–20% of all cases of breast cancers and is characterized by its metastatic aggressiveness, poor prognosis, and limited treatment options. Here, we show that the metastatic nature of TNBC is critically regulated by a functional link between miR-200a and the transcription factor ELK3. We found that the expression levels of miR-200a and the ELK3 mRNA were negatively correlated in the luminal and TNBC subtypes of breast cancer cells. In vitro experiments revealed that miR-200a directly targets the 3’ untranslated region (UTR) of the ELK3 mRNA to destabilize the transcripts. Furthermore, ectopic expression of miR-200a impaired the migration and invasion of TNBC cells by reducing the expression level of the ELK3 mRNA. In in vivo studies, transfection of MDA-MB 231 cells (a claudin-low TNBC cell type) with exogenous miR-200a reduced their extravasation into the lung during 48 h after tail vein injection, and co-transfection of the cells with an expression plasmid harboring ELK3 that lacked an intact 3’UTR recovered their extravasation ability. Overall, our findings provide evidences that miR-200a and ELK3 is functionally linked to regulate invasive characteristics of breast cancers.
Collapse
|
12
|
Park JH, Park KS. SMAD3 promotes ELK3 expression following transforming growth factor β-mediated stimulation of MDA-MB231 cells. Oncol Lett 2020; 19:2749-2754. [PMID: 32218827 PMCID: PMC7068580 DOI: 10.3892/ol.2020.11375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 12/05/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a secreted cytokine whose aberrant spatiotemporal expression is related to cancer progression and metastasis. While TGFβ acts as a tumor suppressor in normal and premalignant stages, TGFβ functions as a tumor promoter during the malignant phases of tumor progression by prompting cancer cells to undergo epithelial-mesenchymal transition (EMT), which enhances tumor cell invasion and ultimately promotes metastasis to other organs. Extensive studies have been performed to uncover the molecular and cellular mechanisms underlying TGFβ inducing EMT in cancer cells. Here, we suggested that ELK3, which encodes a protein that orchestrates invasion and metastasis of triple negative breast cancer cells, is a downstream target of TGFβ-SMAD3 in MDA-MB231 cells. ELK3 expression was increased in a time-dependent manner upon TGFβ treatment. Chemical and molecular inhibition of the TGFβ receptor blocked the ability of TGFβ to induce ELK3 expression. Small interfering RNA-mediated suppression analysis revealed that SMAD3 induces TGFβ signaling to express ELK3. Moreover, the results of the luciferase reporter assay and chromatin immunoprecipitation analysis showed that SMAD3 directly binds to the SMAD-binding element on the promoter of ELK3 to activate gene expression following TGFβ stimulation. We concluded that ELK3 is a novel downstream target of TGFβ-SMAD3 signaling in aggressive breast cancer cells.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| |
Collapse
|
13
|
Silencing of ELK3 Induces S-M Phase Arrest and Apoptosis and Upregulates SERPINE1 Expression Reducing Migration in Prostate Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2406159. [PMID: 32104682 PMCID: PMC7040388 DOI: 10.1155/2020/2406159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
ELK3, an ETS domain-containing transcription factor, participates in various physiological and pathological processes including cell proliferation, migration, angiogenesis, and malignant progression. However, the role of ELK3 in prostate cancer cells and its mechanism are not fully understood. The contribution of ELK3 to prostate cancer progression was investigated in the present study. We showed that silencing of ELK3 by siRNA in prostate cancer cell DU145 induced S-M phase arrest, promoted apoptosis, inhibited cell proliferation and migration in vitro, and suppressed xenograft growth in mice in vivo. In accordance with its ability to arrest cells in S-M phase, the expression of cyclin A and cyclin B was downregulated. In addition, the expression of p53 was upregulated following ELK3 knockdown, while that of antiapoptotic Bcl-2 was decreased. The migration inhibition may partly due to upregulation of SERPINE1 (a serine protease inhibitor) followed ELK3 knockdown. Consistently, downregulation of SERPINE1 resulted in a modest elimination of migration inhibition resulted from ELK3 knockdown. Furthermore, we found that the AKT signaling was activated in ELK3 knockdown cells, and treatment these cells with AKT inhibitor attenuated SERPINE1 expression induced by ELK3 silencing, suggesting that activation of AKT pathway may be one of the reasons for upregulation of SERPINE1 after ELK3 knockdown. In conclusion, modulation of ELK3 expression may control the progression of prostate cancer partly by regulating cell growth, apoptosis, and migration.
Collapse
|
14
|
Cho HJ, Oh N, Park JH, Kim KS, Kim HK, Lee E, Hwang S, Kim SJ, Park KS. ZEB1 Collaborates with ELK3 to Repress E-Cadherin Expression in Triple-Negative Breast Cancer Cells. Mol Cancer Res 2019; 17:2257-2266. [PMID: 31511359 DOI: 10.1158/1541-7786.mcr-19-0380] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/15/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
ZEB1 has intrinsic oncogenic functions that control the epithelial-to-mesenchymal transition (EMT) of cancer cells, impacting tumorigenesis from its earliest stages. By integrating microenvironment signals and being implicated in feedback regulatory loops, ZEB1 appears to be a central switch that determines EMT and metastasis of cancer cells. Here, we found that ZEB1 collaborates with ELK3, a ternary complex factor belonging to the ETS family, to repress E-cadherin expression. ZEB1 functions as a transcriptional activator of ELK3. We first identified that ELK3 and ZEB1 have a positively correlated expression in breast cancer cells by using multiple databases for correlation analysis. Molecular analysis revealed that ZEB1 functions as a transcriptional activator of ELK3 expression. GST pull-down assay and coimmunoprecipitation analysis of wild-type or domain deletion mutants of ZEB1 and ELK3 showed that these 2 proteins directly bound each other. Furthermore, we demonstrated that ZEB1 and ELK3 collaborate to repress the expression of E-cadherin, a representative protein that initiates EMT. Our finding suggested that ELK3 is a novel factor of the ZEB1/E-cadherin axis in triple-negative breast cancer cells. IMPLICATIONS: ELK3 is a novel factor in the ZEB1/E-cadherin axis and ZEB1 has a dual role in ELK3 as a transcriptional activator and as a collaborator to repress E-cadherin expression in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Hyeon-Ju Cho
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Hyung-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Eunbyeol Lee
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea
| | - Seong-Jin Kim
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Bundang-gu, Republic of Korea.
| |
Collapse
|
15
|
Kim KS, Kim J, Oh N, Kim MY, Park KS. ELK3-GATA3 axis modulates MDA-MB-231 metastasis by regulating cell-cell adhesion-related genes. Biochem Biophys Res Commun 2018; 498:509-515. [PMID: 29510139 DOI: 10.1016/j.bbrc.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 10/25/2022]
Abstract
GATA3 is a master regulator that drives mammary epithelial cell differentiation, and the suppression of GATA3 expression is associated with the development of aggressive breast cancer. However, the mechanism through which GATA3 loss drives cancer development is poorly understood. Previously, we reported that ELK3 suppression in MDA-MB-231 (ELK3 KD) resulted in the reprogramming of these cells from a basal to luminal subtype, which was associated with the induction of GATA3 expression, and that the ELK3-GATA3 axis orchestrated the metastatic characteristics of MDA-MB-231. Here, we show that GATA3 suppression in ELK3 knockdown MDA-MB-231 cells (ELK3/GATA3 DKD) restores the metastatic ability comparably to that of control MDA-MB-231 cells, even though the epithelial cell morphology and TGF-β signaling of ELK3 KD are not recovered in ELK3/GATA3 DKD. The expression of E-cadherin and tight junctional proteins, including occludin, claudin and ZO-1, which is activated in ELK3 KD, is suppressed in ELK3/GATA3 DKD. These results reveal the possibility that the ELK3-GATA3 axis determines the metastatic characteristics of MDA-MB-231 by regulating the expression of cell-cell adhesion factors.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Jiewan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Mi-Young Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea.
| |
Collapse
|
16
|
The ELK3-GATA3 axis orchestrates invasion and metastasis of breast cancer cells in vitro and in vivo. Oncotarget 2018; 7:65137-65146. [PMID: 27556500 PMCID: PMC5323143 DOI: 10.18632/oncotarget.11427] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/13/2016] [Indexed: 12/03/2022] Open
Abstract
Triple-negative breast cancer is a highly aggressive tumor subtype that lacks effective therapeutic targets. Here, we show that ELK3 is overexpressed in a subset of breast cancers, in particular basal-like and normal-like/claudin-low cell lines. Suppression of ELK3 in MDA-MB-231 cells led to transdifferentiation from an invasive mesenchymal phenotype to a non-invasive epithelial phenotype both in vitro and in vivo. Suppression of ELK3 resulted in extensive changes in genome expression profiles. Among these, GATA3, a master suppressor of metastasis, was epigenetically activated. Also, suppression of GATA3 led to the restoration of migration and invasion. These results suggest that the ELK3-GATA3 axis is a major pathway that promotes metastasis of MDA-MB-231 cells.
Collapse
|
17
|
Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017; 17:337-351. [PMID: 28450705 DOI: 10.1038/nrc.2017.20] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.
Collapse
Affiliation(s)
- Gina M Sizemore
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Subhasree Balakrishnan
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Kohnz RA, Roberts LS, DeTomaso D, Bideyan L, Yan P, Bandyopadhyay S, Goga A, Yosef N, Nomura DK. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity. ACS Chem Biol 2016; 11:2131-9. [PMID: 27380425 PMCID: PMC4994060 DOI: 10.1021/acschembio.6b00433] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Many mechanisms have been proposed
for how heightened aerobic glycolytic
metabolism fuels cancer pathogenicity, but there are still many unexplored
pathways. Here, we have performed metabolomic profiling to map glucose
incorporation into metabolic pathways upon transformation of mammary
epithelial cells by 11 commonly mutated human oncogenes. We show that
transformation of mammary epithelial cells by oncogenic stimuli commonly
shunts glucose-derived carbons into synthesis of sialic acid, a hexosamine
pathway metabolite that is converted to CMP-sialic acid by cytidine
monophosphate N-acetylneuraminic acid synthase (CMAS)
as a precursor to glycoprotein and glycolipid sialylation. We show
that CMAS knockdown leads to elevations in intracellular sialic acid
levels, a depletion of cellular sialylation, and alterations in the
expression of many cancer-relevant genes to impair breast cancer pathogenicity.
Our study reveals the heretofore unrecognized role of sialic acid
metabolism and protein sialylation in regulating the expression of
genes that maintain breast cancer pathogenicity.
Collapse
Affiliation(s)
- Rebecca A. Kohnz
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lindsay S. Roberts
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - David DeTomaso
- Department
of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lara Bideyan
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peter Yan
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sourav Bandyopadhyay
- Division
of Hematology/Oncology, Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue HSW616, San Francisco, California 94143, United States
- University of California, San Francisco Helen Diller
Family Comprehensive Cancer Center, Box
0128, San Francisco, California 94143, United States
| | - Andrei Goga
- Division
of Hematology/Oncology, Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue HSW616, San Francisco, California 94143, United States
- University of California, San Francisco Helen Diller
Family Comprehensive Cancer Center, Box
0128, San Francisco, California 94143, United States
| | - Nir Yosef
- Department
of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Departments
of Chemistry, Molecular and Cell Biology, and Nutritional Sciences
and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
PI3K/Akt/mTOR activation by suppression of ELK3 mediates chemosensitivity of MDA-MB-231 cells to doxorubicin by inhibiting autophagy. Biochem Biophys Res Commun 2016; 477:277-82. [DOI: 10.1016/j.bbrc.2016.06.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022]
|
20
|
Semenchenko K, Wasylyk C, Cheung H, Tourrette Y, Maas P, Schalken JA, van der Pluijm G, Wasylyk B. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice. PLoS One 2016; 11:e0159531. [PMID: 27427904 PMCID: PMC4948895 DOI: 10.1371/journal.pone.0159531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy.
Collapse
Affiliation(s)
- Kostyantyn Semenchenko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Henry Cheung
- Leiden University Medical Center, Leiden, The Netherlands
| | - Yves Tourrette
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Peter Maas
- SPECS, Kluyverweg 6, 2629 HT Delft, The Netherlands
| | - Jack A Schalken
- Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | | | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|