1
|
Feng H, Banerjee AK, Guo W, Yuan Y, Duan F, Ng WL, Zhao X, Liu Y, Li C, Liu Y, Li L, Huang Y. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. PLANT DIVERSITY 2024; 46:476-490. [PMID: 39280974 PMCID: PMC11390703 DOI: 10.1016/j.pld.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 09/18/2024]
Abstract
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A . ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Fuyuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
| | - Xuming Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuting Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Chunmei Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linfeng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
2
|
Iwata H, Ito T, Park JS, Kokubugata G, Kakezawa A, Kurosawa T, Nishimura A, Noda H, Takayama K. Intraspecific divergence in a coastal plant, Euphorbia jolkinii, at a major biogeographic boundary in East Asia. AMERICAN JOURNAL OF BOTANY 2024; 111:e16327. [PMID: 38725176 DOI: 10.1002/ajb2.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 05/29/2024]
Abstract
PREMISE Quaternary climatic fluctuations and long-distance seed dispersal across the sea are critical factors affecting the distribution of coastal plants, but the spatiotemporal nature of population expansion and distribution change of East Asian coastal plants during this period are rarely examined. To explore this process, we investigated the genome-wide phylogenetic patterns of Euphorbia jolkinii Boiss. (Euphorbiaceae), which grows widely on littoral areas of Japan, Korea, and Taiwan. METHODS We used plastome sequences and genome-wide single nucleotide polymorphisms in samples across the species range to reveal phylogeographic patterns and spatiotemporal distributional changes. We conducted ecological niche modeling for the present and the last glacial maximum (LGM). RESULTS Genetic differentiation was observed between the northern and southern populations of E. jolkinii, separated by the major biogeographic boundary, the Tokara Gap. These two groups of populations differentiated during the glacial period and subsequently intermingled in the intermorainic areas of the central Ryukyu Islands after the LGM. Ecological niche models suggested that the potential range of E. jolkinii was restricted to southern Kyushu; however, it was widespread in the southern Ryukyu Islands and Taiwan during the LGM. CONCLUSIONS This study provides evidence of genetic differentiation among coastal plant populations separated by the prominent biogeographical boundary. Although coastal plants are typically expected to maintain population connectivity through sea-drifted seed dispersal, our findings suggest that genetic differences may arise because of a combination of limited gene flow and changes in climate during the glacial period.
Collapse
Affiliation(s)
- Hiroyuki Iwata
- Department of Botany, Faculty of Science, Kyoto University, Kyoto, Japan
| | - Takuro Ito
- Botanical Gardens, Tohoku University, Sendai, Japan
| | - Jong-Soo Park
- Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do, South Korea
| | - Goro Kokubugata
- Department of Botany, National Museum of Nature and Science, Amakubo, Tsukuba, Japan
| | | | - Takahide Kurosawa
- Faculty of Symbiotic System Science, Fukushima University, Fukushima, Japan
| | - Akihiro Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroshi Noda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Scherer BP, Mast A. Red Mangrove Propagule Bacterial Communities Vary With Geographic, But Not Genetic Distance. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02147-w. [PMID: 36441249 DOI: 10.1007/s00248-022-02147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Bacterial communities associated with plant propagules remain understudied, despite the opportunities that propagules represent as dispersal vectors for bacteria to new sites. These communities may be the product of a combination of environmental influence and inheritance from parent to offspring. The relative role of these mechanisms could have significant implications for our understanding of plant-microbe interactions. We studied the correlates of microbiome community similarities across an invasion front of red mangroves (Rhizophora mangle L.) in Florida, where the species is expanding northward. We collected georeferenced propagule samples from 110 individuals of red mangroves across 11 populations in Florida and used 16S rRNA gene (iTag) sequencing to describe their bacterial communities. We found no core community of bacterial amplicon sequence variants (ASVs) across the Florida range of red mangroves, though there were some ASVs shared among individuals within most populations. Populations differed significantly as measured by Bray-Curtis dissimilarity, but not Unifrac distance. We generated data from 6 microsatellite loci from 60 individuals across 9 of the 11 populations. Geographic distance was correlated with beta diversity, but genetic distance was not. We conclude that red mangrove propagule bacterial communities are likely influenced more by local environmental acquisition than by inheritance.
Collapse
Affiliation(s)
- Brendan P Scherer
- Department of Biological Science, Florida State University, King Life Sciences Building, 319 Stadium Drive, Tallahassee, Fl, 32304, USA.
| | - Austin Mast
- Department of Biological Science, Florida State University, King Life Sciences Building, 319 Stadium Drive, Tallahassee, Fl, 32304, USA
| |
Collapse
|
4
|
Ha YH, Gil HY, Kim SC, Choi K, Kim JH. Genetic structure and geneflow of Malus across the Korean Peninsula using genotyping-by-sequencing. Sci Rep 2022; 12:16262. [PMID: 36171257 PMCID: PMC9519971 DOI: 10.1038/s41598-022-20513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
This study was to understand the genetic structure and diversity of the Korean Malus species. We used genotyping-by-sequencing (GBS) technology to analyze samples of 112 individuals belonging to 18 populations of wild Malus spp. Using GBS, we identified thousands of single nucleotide polymorphisms in the species analyzed. M. baccata and M. toringo, two dominant mainland species of the Korean Peninsula, were distinguishable based on their genetic structure. However, M. toringo collected from Jeju Island exhibited a different genetic profile than that from the mainland. We identified M. cf. micromalus as a hybrid resulting from the Jeju Island M. toringo (pollen donor) and the mainland M. baccata, (pollen recipient). Putative M. mandshurica distributed on the Korean Peninsula showed a high structural and genetic similarity with M. baccata, indicating that it might be an ecotype. Overall, this study contributes to the understanding of the population history and genetic structure of Malus in the Korean Peninsula.
Collapse
Affiliation(s)
- Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Gyeonggi-do, 11186, Republic of Korea
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Hee-Young Gil
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Gyeonggi-do, 11186, Republic of Korea
| | - Sang-Chul Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Gyeonggi-do, 11186, Republic of Korea
| | - Kyung Choi
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Gyeonggi-do, 11186, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
5
|
Banerjee AK, Feng H, Guo W, Harms NE, Xie H, Liang X, Xing F, Lin Y, Shao H, Guo Z, Ng WL, Huang Y. Glacial vicariance and oceanic circulation shape population structure of the coastal legume Derris trifoliata in the Indo-West Pacific. AMERICAN JOURNAL OF BOTANY 2022; 109:1016-1034. [PMID: 35419829 DOI: 10.1002/ajb2.1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
PREMISE The phylogeography of coastal plant species is shaped by contemporary and historical biogeographic processes. In this study, we aim to decipher the phylogeography of Derris trifoliata, a woody legume of relatively recent origin and wide distribution, in coastal areas in the Indo-West Pacific (IWP) region. METHODS Genetic diversity and population structure were assessed by analyzing six nuclear and three chloroplast DNA sequences from 30 populations across the species' range. Phylogeography was inferred by estimating gene flow, divergence time, historical population size changes, and historical habitat suitability using paleoclimatic niche modeling. RESULTS High genetic diversity was observed at the species level. The populations of three oceanic regions included in this study (i.e., Indian Ocean, South China Sea, and Pacific Ocean) formed distinct clades and likely diverged during the late Pleistocene. Potential barriers to gene flow were identified, including the Sunda and Sahul shelves, geographic distance, and current patterns of oceanic circulation. Analysis of changes in population size supported the bottleneck model, which was strengthened by estimates of habitat suitability across paleoclimatic conditions. CONCLUSIONS The once widespread distribution of D. trifoliata was fragmented by changes in climatic suitability and biogeographic barriers that arose following sea-level changes during the Pleistocene. In addition, contemporary patterns of oceanic circulation and geographic distance between populations appear to maintain genetic differentiation across its distribution in the IWP.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Hui Feng
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Wuxia Guo
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
- Department of Bioengineering, Zunyi Medical University, Zhuhai, 519041 Guangdong, China
| | - Nathan E Harms
- US Army Engineer Research and Development Center, Lewisville, TX 75057, USA
| | - Hongxian Xie
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Xinru Liang
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Fen Xing
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Yuting Lin
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Huiyu Shao
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Zixiao Guo
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Yelin Huang
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| |
Collapse
|
6
|
Lyman RA, Edwards CE. Revisiting the comparative phylogeography of unglaciated eastern North America: 15 years of patterns and progress. Ecol Evol 2022; 12:e8827. [PMID: 35475178 PMCID: PMC9019306 DOI: 10.1002/ece3.8827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
In a landmark comparative phylogeographic study, “Comparative phylogeography of unglaciated eastern North America,” Soltis et al. (Molecular Ecology, 2006, 15, 4261) identified geographic discontinuities in genetic variation shared across taxa occupying unglaciated eastern North America and proposed several common biogeographical discontinuities related to past climate fluctuations and geographic barriers. Since 2006, researchers have published many phylogeographical studies and achieved many advances in genotyping and analytical techniques; however, it is unknown how this work has changed our understanding of the factors shaping the phylogeography of eastern North American taxa. We analyzed 184 phylogeographical studies of eastern North American taxa published between 2007 and 2019 to evaluate: (1) the taxonomic focus of studies and whether a previously detected taxonomic bias towards studies focused on vertebrates has changed over time, (2) the extent to which studies have adopted genotyping technologies that improve the resolution of genetic groups (i.e., NGS DNA sequencing) and analytical approaches that facilitate hypothesis‐testing (i.e., divergence time estimation and niche modeling), and (3) whether new studies support the hypothesized biogeographic discontinuities proposed by Soltis et al. (Molecular Ecology, 2006, 15, 4261) or instead support new, previously undetected discontinuities. We observed little change in taxonomic focus over time, with studies still biased toward vertebrates. Although many technological and analytical advances became available during the period, uptake was slow and they were employed in only a small proportion of studies. We found variable support for previously identified discontinuities and identified one new recurrent discontinuity. However, the limited resolution and taxonomic breadth of many studies hindered our ability to clarify the most important climatological or geographical factors affecting taxa in the region. Broadening the taxonomic focus to include more non‐vertebrate taxa, employing technologies that improve genetic resolution, and using analytical approaches that improve hypothesis testing are necessary to strengthen our inference of the forces shaping the phylogeography of eastern North America.
Collapse
Affiliation(s)
- Rachel Ann Lyman
- Ecology, Evolution, and Population Biology Program Washington University in St. Louis St. Louis Missouri USA
- Center for Conservation and Sustainable Development Missouri Botanical Garden St. Louis Missouri USA
| | - Christine E. Edwards
- Center for Conservation and Sustainable Development Missouri Botanical Garden St. Louis Missouri USA
| |
Collapse
|
7
|
Geng Q, Wang Z, Tao J, Kimura MK, Liu H, Hogetsu T, Lian C. Ocean Currents Drove Genetic Structure of Seven Dominant Mangrove Species Along the Coastlines of Southern China. Front Genet 2021; 12:615911. [PMID: 33763110 PMCID: PMC7982666 DOI: 10.3389/fgene.2021.615911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Mangrove forest ecosystems, which provide important ecological services for marine environments and human activities, are being destroyed worldwide at an alarming rate. The objective of our study was to use molecular data and analytical techniques to separate the effects of historical and contemporary processes on the distribution of mangroves and patterns of population genetic differentiation. Seven mangrove species (Acanthus ilicifolius, Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, Kandelia obovata, Lumnitzera racemosa, and Rhizophora stylosa), which are predominant along the coastlines of South China, were genotyped at nuclear (nSSR) and chloroplast (cpSSR) microsatellite markers. We estimated historical and contemporary gene flow, the genetic diversity and population structure of seven mangrove species in China. All of these seven species exhibited few haplotypes, low levels of genetic diversity (H E = 0.160-0.361, with the exception of K. obovata) and high levels of inbreeding (F IS = 0.104-0.637), which may be due to their marginal geographical distribution, human-driven and natural stressors on habitat loss and fragmentation. The distribution patterns of haplotypes and population genetic structures of seven mangrove species in China suggest historical connectivity between populations over a large geographic area. In contrast, significant genetic differentiation [F ST = 0.165-0.629 (nSSR); G ST = 0.173-0.923 (cpSSR)] indicates that populations of mangroves are isolated from one another with low levels of contemporary gene flow among populations. Our results suggest that populations of mangroves were historically more widely inter-connected and have recently been isolated, likely through a combination of ocean currents and human activities. In addition, genetic admixture in Beibu Gulf populations and populations surrounding Hainan Island and southern mainland China were attributed to asymmetric gene flow along prevailing oceanic currents in China in historical times. Even ocean currents promote genetic exchanges among mangrove populations, which are still unable to offset the effects of natural and anthropogenic fragmentation. The recent isolation and lack of gene flow among populations of mangroves may affect their long-term survival along the coastlines of South China. Our study enhances the understanding of oceanic currents contributing to population connectivity, and the effects of anthropogenic and natural habitat fragmentation on mangroves, thereby informing future conservation efforts and seascape genetics toward mangroves.
Collapse
Affiliation(s)
- Qifang Geng
- School of Life Sciences, Nanjing University, Nanjing, China
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | | | - Jianmin Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Megumi K. Kimura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, Japan
| | - Hong Liu
- Department of Earth and Environment, Florida International University, Miami, FL, United States
| | - Taizo Hogetsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Fan XR, Wagutu GK, Wen XY, Chen SL, Liu YL, Chen YY. Decreasing genetic connectivity in the endangered tree Magnolia patungensis in fragmented forests. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Banerjee AK, Guo W, Qiao S, Li W, Xing F, Lin Y, Hou Z, Li S, Liu Y, Huang Y. Land masses and oceanic currents drive population structure of Heritiera littoralis, a widespread mangrove in the Indo-West Pacific. Ecol Evol 2020; 10:7349-7363. [PMID: 32760533 PMCID: PMC7391321 DOI: 10.1002/ece3.6460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Phylogeographic forces driving evolution of sea-dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo-West Pacific region and identify the phylogeographic factors influencing its present-day distribution. Analysis of five chloroplast DNA fragments' sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo-Malesia and Australasia was not so prominent. Long-distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wuxia Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
| | - Sitan Qiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Weixi Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Division of Ecology & BiodiversitySchool of Biological SciencesThe University of Hong KongHong KongChina
| | - Fen Xing
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuting Lin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhuangwei Hou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
10
|
Multiplex microsatellite PCR panels for the neotropical red mangrove, Rhizophora mangle: combining efforts towards a cost-effective and modifiable tool to better inform conservation and management. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractBetter-informed mangrove conservation and management practices are needed as the ecosystem services provided by these intertidal forests continue to be threatened by increasing anthropogenic pressures and climate change. Multiple layers of knowledge are required to achieve this goal, including insights into population genetics of mangrove species. Understanding the importance of population-genetic insights to conservation, multiple research groups have developed microsatellite loci for the widespread, neotropical red mangrove, Rhizophora mangle. However, although a wealth of genetic markers exist, empirical research is limited in the number of these loci employed. Here, we designed two multiplex PCR panels that combine seven novel loci developed for this work and eight previously-developed loci from three research groups to generate 15-locus genotypes, more than twice the average number of loci used in previous research, in only two PCR. We demonstrated utility in R. mangle from four sites across ~ 2500 km near this species’ northern latitudinal limits, and that these multiplex panels were better able to delineate populations than data subsets with numbers of loci comparable to previous research. We focus our discussion on how this tool is a more-informative, efficient (both in terms of time and resources), and easily-modifiable alternative to address many pressing conservation and management issues, such as the generation of baseline genetic data for areas not yet studied, better defining management units, and monitoring genetic effects of restoration projects. We also provide a quick protocol that outlines each step in this procedure to facilitate the use of this tool by others.
Collapse
|
11
|
Kennedy JP, Preziosi RF, Rowntree JK, Feller IC. Is the central-marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L. Mol Ecol 2020; 29:704-719. [PMID: 31990426 PMCID: PMC7065085 DOI: 10.1111/mec.15365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
The central-marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter-population genetic differentiation compared to range cores. CMH predictions are based on long-held "abundant-centre" assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying "abundant-centre" assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to "abundant-centre" assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.
Collapse
Affiliation(s)
- John Paul Kennedy
- Smithsonian Marine StationSmithsonian InstitutionFort PierceFLUSA
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Richard F. Preziosi
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Jennifer K. Rowntree
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Ilka C. Feller
- Smithsonian Environmental Research CenterSmithsonian InstitutionEdgewaterMDUSA
| |
Collapse
|
12
|
Genetic Structure and Connectivity of the Red Mangrove at Different Geographic Scales through a Complex Transverse Hydrological System from Freshwater to Marine Ecosystems. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mangrove forests are ecologically and economically valuable resources composed of trees morphologically and physiologically adapted to thrive across a range of habitats. Although, mangrove trees have high dispersion capacity, complexity of hydrological systems may lead to a fine-scale genetic structure (FSGS). The Transverse Coastal Corridor (TCC) is an interesting case of hydrological systems from fresh to marine waters where mangrove forests dominate. We evaluated genetic diversity and structure of Rhizophora mangle across a range of hydrological conditions within the TCC using inter-simple sequence repeat molecular markers. Sampling included four hydrological systems, two localities inside each system, and fringe and dwarf trees. Genetic differentiation was evaluated at local (<100 km) and fine (<10 km) scales through a set of analyses, and genetic diversity was evaluated at all scale levels and between fringe and dwarf physiognomic types. Rhizophora mangle exhibited a high genetic structure at both scales with high genetic diversity. The genetic structure observed among hydrological systems likely reflects the historical dispersion of mangroves, whereas the FSGS reflect contemporary processes such as seed dispersal restriction, habitat fragmentation, and local water flow regimes. A higher genetic diversity for dwarf than for fringe trees and differentiation between both physiognomic types at a fine-scale were observed and discussed.
Collapse
|
13
|
Nair RR, Karumathil S, Udayan PS, Prakashkumar RP, Sérsic AN. Evolutionary history of Kingiodendron pinnatum(Fabaceae: Caesalpinoideae), an endangered species of the Western Ghats, India: a phylogeographical approach. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore District, Tamil Nadu, India
| | - Sudeesh Karumathil
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore District, Tamil Nadu, India
| | | | | | - Alicia N Sérsic
- Laboratorio de Ecología Evolutiva – Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
14
|
Parallel colonization of subalpine habitats in the central European mountains by Primula elatior. Sci Rep 2019; 9:3294. [PMID: 30824749 PMCID: PMC6397301 DOI: 10.1038/s41598-019-39669-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The island-like distribution of subalpine habitats across mountain ranges can trigger the parallel evolution of locally adapted ecotypes. Such naturally replicated scenarios allow testing hypotheses on how elevational differentiation structures genetic diversity within species. Nevertheless, the parallel colonization of subalpine habitats across different mountain ranges has only rarely been documented with molecular data. We chose Primula elatior (Primulaceae), naturally spanning entire elevation range in multiple mountain regions of central Europe, to test for the origin of its scattered subalpine populations. Nuclear microsatellite variation revealed three genetic groups corresponding with the distinct study regions. We found that genetic differentiation between foothill and subalpine populations within each region was relatively low, suggesting that the colonization of subalpine habitats occurred independently within each mountain range. Furthermore, the strongest differentiation was usually found between the subalpine populations suggesting that mountain ridges may act as migration barriers that can reduce gene flow more strongly than elevational differences between foothill and subalpine populations. Finally, we found that subalpine colonization did not result in a loss of genetic diversity relative to foothill populations in agreement with the high migration rates that we document here between the subalpine and the foothill populations. In summary, our study shows subalpine Primula elatior populations are genetically diverse and distinct results of parallel colonization events from multiple foothill gene pools.
Collapse
|
15
|
Hodel RGJ, Knowles LL, McDaniel SF, Payton AC, Dunaway JF, Soltis PS, Soltis DE. Terrestrial species adapted to sea dispersal: Differences in propagule dispersal of two Caribbean mangroves. Mol Ecol 2018; 27:4612-4626. [DOI: 10.1111/mec.14894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Richard G. J. Hodel
- Department of Biology; University of Florida; Gainesville Florida
- Florida Museum of Natural History; University of Florida; Gainesville Florida
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann Arbor Michigan
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann Arbor Michigan
| | - Stuart F. McDaniel
- Department of Biology; University of Florida; Gainesville Florida
- The Genetics Institute; University of Florida; Gainesville Florida
| | - Adam C. Payton
- Department of Biology; University of Florida; Gainesville Florida
| | | | - Pamela S. Soltis
- Florida Museum of Natural History; University of Florida; Gainesville Florida
- The Genetics Institute; University of Florida; Gainesville Florida
- The Biodiversity Institute; University of Florida; Gainesville Florida
| | - Douglas E. Soltis
- Department of Biology; University of Florida; Gainesville Florida
- Florida Museum of Natural History; University of Florida; Gainesville Florida
- The Genetics Institute; University of Florida; Gainesville Florida
- The Biodiversity Institute; University of Florida; Gainesville Florida
| |
Collapse
|
16
|
Fontanella FM, Garner Y, Starnes J, Whitaker M. Evidence for panmixia despite barriers to gene flow in the hooked mussel, Ischadium recurvum (Mytilidae; Brachidontinae) along the North American coastline. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:75-81. [PMID: 29580117 DOI: 10.1080/24701394.2018.1455191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The discovery of phylogeographic patterns within broadly distributed marine species can be particularly challenging because absolute physical barriers to dispersal can be inconspicuous. Genetic boundaries often lie where ocean currents meet, forming sharp physical and ecological gradients, which may act as barriers to successful migrants. In eastern North America, coastal species often show phylogeographic differentiation associated with two recognized genetic barriers: the Gulf/Atlantic and the Virginia/Carolina discontinuities. We examined 185 specimens of the intertidal hooked mussel Ischadium recurvum collected from 15 locations along the eastern coastline of North America to examine phylogeographic, migration and historical demographic patterns associated climate change associated with Pleistocene glacial patterns. Hypothesis testing using Bayes factors in Migrate-n rejected the presence of phylogeographic breaks consistent with either maritime discontinuity and favoured a panmictic population model. The migration rate from the Gulf to the Atlantic was approximately three times higher than the migration from the Atlantic to the Gulf whereas the Carolina-Virginia migration rates were nearly equal. The summary statistics (Tajima's D, Fu's Fs) were significant and the demographic analyses (mismatch distributions, Bayesian skyline plot) were consistent with patterns of population expansion following glacial retreat during the Pleistocene epoch.
Collapse
Affiliation(s)
- Frank M Fontanella
- a Department of Biology , University of West Georgia , Carrollton , GA , USA
| | - Yvette Garner
- a Department of Biology , University of West Georgia , Carrollton , GA , USA
| | - Jasmine Starnes
- a Department of Biology , University of West Georgia , Carrollton , GA , USA
| | - Megan Whitaker
- a Department of Biology , University of West Georgia , Carrollton , GA , USA
| |
Collapse
|
17
|
Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Sci Rep 2017; 7:17598. [PMID: 29242627 PMCID: PMC5730610 DOI: 10.1038/s41598-017-16810-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
The widespread adoption of RAD-Seq data in phylogeography means genealogical relationships previously evaluated using relatively few genetic markers can now be addressed with thousands of loci. One challenge, however, is that RAD-Seq generates complete genotypes for only a small subset of loci or individuals. Simulations indicate that loci with missing data can produce biased estimates of key population genetic parameters, although the influence of such biases in empirical studies is not well understood. Here we compare microsatellite data (8 loci) and RAD-Seq data (six datasets ranging from 239 to 25,198 loci) from red mangroves (Rhizophora mangle) in Florida to evaluate how different levels of data filtering influence phylogeographic inferences. For all datasets, we calculated population genetic statistics and evaluated population structure, and for RAD-Seq datasets, we additionally examined population structure using coalescence. We found higher FST using microsatellites, but that RAD-Seq-based estimates approached those based on microsatellites as more loci with more missing data were included. Analyses of RAD-Seq datasets resolved the classic Gulf-Atlantic coastal phylogeographic break, which was not significant in the microsatellite analyses. Applying multiple levels of filtering to RAD-Seq datasets can provide a more complete picture of potential biases in the data and elucidate subtle phylogeographic patterns.
Collapse
|