1
|
Shen J, Li P, Wang Y, Yang K, Li Y, Yao H, Wang Q, Xiao P, He C. Pharmacophylogenetic study of Scutellaria baicalensis and its substitute medicinal species based on the chloroplast genomics, metabolomics, and active ingredient. FRONTIERS IN PLANT SCIENCE 2022; 13:951824. [PMID: 36061787 PMCID: PMC9433114 DOI: 10.3389/fpls.2022.951824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The genetic relationships among the species in Scutellaria genus remain unclear because of the variation in the number of species and complex trait. The usage of S. baicalensis and its four substitute medicinal species (S. amoena, S. hypericifolia, S. likiangensis, and S. viscidula) in traditional medicines make their specialized metabolism important in China, but interspecific genetic and chemical differences have rarely been reported for these species. In this study, the chloroplast genomes of four substitute species for S. baicalensis were assembled, and comparative and phylogenetic analyses were performed with these species and other Scutellaria relatives. In addition, metabolomics analyses were performed and the contents of the main active compounds were determined to reveal the interspecific chemical diversity of S. baicalensis and its four substitute species. The full lengths of their chloroplast genomes ranged from 151,574 to 151,816 bp with an average GC content of 38.34%, and a total of 113 genes were annotated. In the chloroplast genomes of S. baicalensis and its four substitutes, one hypervariable region (petA-psbL) is proposed as a potential DNA barcode. Phylogenetic analysis showed that the subdivision of the genus Scutellaria should be reconsidered. The metabolomics and content determination analyses showed that the four species exhibit a metabolism similar to that of S. baicalensis in different parts. Except for the roots of S. likiangensis, all parts of the substitute species showed high contents of baicalin. Genetic and chemical analyses of four substitute medicinal species for S. baicalensis were performed here for the first time, and their pharmacophylogenetic relationships were further explored, providing a scientific basis for the subsequent development of the medicinal value and resource utilization of Scutellaria.
Collapse
Affiliation(s)
- Jie Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Pei Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kailing Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Gostel MR, Zúñiga JD, Kress WJ, Funk VA, Puente-Lelievre C. Microfluidic Enrichment Barcoding (MEBarcoding): a new method for high throughput plant DNA barcoding. Sci Rep 2020; 10:8701. [PMID: 32457375 PMCID: PMC7250904 DOI: 10.1038/s41598-020-64919-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/20/2020] [Indexed: 11/24/2022] Open
Abstract
DNA barcoding is a valuable tool to support species identification with broad applications from traditional taxonomy, ecology, forensics, food analysis, and environmental science. We introduce Microfluidic Enrichment Barcoding (MEBarcoding) for plant DNA Barcoding, a cost-effective method for high-throughput DNA barcoding. MEBarcoding uses the Fluidigm Access Array to simultaneously amplify targeted regions for 48 DNA samples and hundreds of PCR primer pairs (producing up to 23,040 PCR products) during a single thermal cycling protocol. As a proof of concept, we developed a microfluidic PCR workflow using the Fluidigm Access Array and Illumina MiSeq. We tested 96 samples for each of the four primary DNA barcode loci in plants: rbcL, matK, trnH-psbA, and ITS. This workflow was used to build a reference library for 78 families and 96 genera from all major plant lineages - many currently lacking in public databases. Our results show that this technique is an efficient alternative to traditional PCR and Sanger sequencing to generate large amounts of plant DNA barcodes and build more comprehensive barcode databases.
Collapse
Affiliation(s)
- Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, Texas, 76107-3400, USA.
| | - Jose D Zúñiga
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - W John Kress
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Vicki A Funk
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | | |
Collapse
|
3
|
Zhao F, Li B, Drew BT, Chen YP, Wang Q, Yu WB, Liu ED, Salmaki Y, Peng H, Xiang CL. Leveraging plastomes for comparative analysis and phylogenomic inference within Scutellarioideae (Lamiaceae). PLoS One 2020; 15:e0232602. [PMID: 32379799 PMCID: PMC7205251 DOI: 10.1371/journal.pone.0232602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Scutellaria, or skullcaps, are medicinally important herbs in China, India, Japan, and elsewhere. Though Scutellaria is the second largest and one of the more taxonomically challenging genera within Lamiaceae, few molecular systematic studies have been undertaken within the genus; in part due to a paucity of available informative markers. The lack of informative molecular markers for Scutellaria hinders our ability to accurately and robustly reconstruct phylogenetic relationships, which hampers our understanding of the diversity, phylogeny, and evolutionary history of this cosmopolitan genus. Comparative analyses of 15 plastomes, representing 14 species of subfamily Scutellarioideae, indicate that plastomes within Scutellarioideae contain about 151,000 nucleotides, and possess a typical quadripartite structure. In total, 590 simple sequence repeats, 489 longer repeats, and 16 hyper-variable regions were identified from the 15 plastomes. Phylogenetic relationships among the 14 species representing four of the five genera of Scutellarioideae were resolved with high support values, but the current infrageneric classification of Scutellaria was not supported in all analyses. Complete plastome sequences provide better resolution at an interspecific level than using few to several plastid markers in phylogenetic reconstruction. The data presented here will serve as a foundation to facilitate DNA barcoding, species identification, and systematic research within Scutellaria, which is an important medicinal plant resource worldwide.
Collapse
Affiliation(s)
- Fei Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- Research Centre of Ecological Sciences, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Bryan T. Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, United States of America
| | - Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qiang Wang
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - En-De Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yasaman Salmaki
- Center of Excellence in Phylogeny of Living Organisms and Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Morales-Briones DF, Tank DC. Extensive allopolyploidy in the neotropical genus Lachemilla (Rosaceae) revealed by PCR-based target enrichment of the nuclear ribosomal DNA cistron and plastid phylogenomics. AMERICAN JOURNAL OF BOTANY 2019; 106:415-437. [PMID: 30882906 DOI: 10.1002/ajb2.1253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Polyploidy has been long recognized as an important force in plant evolution. Previous studies had suggested widespread occurrence of polyploidy and the allopolyploid origin of several species in the diverse neotropical genus Lachemilla (Rosaceae). Nonetheless, this evidence has relied mostly on patterns of cytonuclear discordance, and direct evidence from nuclear allelic markers is still needed. METHODS Here we used PCR target enrichment in combination with high throughput sequencing to obtain multiple copies of the nuclear ribosomal (nr) DNA cistron and 45 regions of the plastid genome (cpDNA) from 219 accessions representing 48 species of Lachemilla and to explore the allopolyploid origin of species in this group. KEY RESULTS We were able to identify multiple nrDNA ribotypes and establish clear evidence of allopolyploidy in 33 species of Lachemilla, showing that this condition is common and widespread in the genus. Additionally, we found evidence for three autopolyploid species. We also established multiple, independent origins of several allopolyploid species. Finally, based solely on the cpDNA phylogeny, we identified that the monotypic genus Farinopsis is the sister group of Lachemilla and allied genera within subtribe Fragariinae. CONCLUSIONS Our study demonstrates the utility of the nuclear ribosomal DNA cistron to detect allopolyploidy when concerted evolution of this region is not complete. Additionally, with a robust chloroplast phylogeny in place, the direction of hybridization events can be established, and multiple, independent origins of allopolyploid species can be identified.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
5
|
McKain MR, Johnson MG, Uribe‐Convers S, Eaton D, Yang Y. Practical considerations for plant phylogenomics. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1038. [PMID: 29732268 PMCID: PMC5895195 DOI: 10.1002/aps3.1038] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 05/10/2023]
Abstract
The past decade has seen a major breakthrough in our ability to easily and inexpensively sequence genome-scale data from diverse lineages. The development of high-throughput sequencing and long-read technologies has ushered in the era of phylogenomics, where hundreds to thousands of nuclear genes and whole organellar genomes are routinely used to reconstruct evolutionary relationships. As a result, understanding which options are best suited for a particular set of questions can be difficult, especially for those just starting in the field. Here, we review the most recent advances in plant phylogenomic methods and make recommendations for project-dependent best practices and considerations. We focus on the costs and benefits of different approaches in regard to the information they provide researchers and the questions they can address. We also highlight unique challenges and opportunities in plant systems, such as polyploidy, reticulate evolution, and the use of herbarium materials, identifying optimal methodologies for each. Finally, we draw attention to lingering challenges in the field of plant phylogenomics, such as reusability of data sets, and look at some up-and-coming technologies that may help propel the field even further.
Collapse
Affiliation(s)
- Michael R. McKain
- Department of Biological SciencesThe University of AlabamaBox 870344TuscaloosaAlabama35487USA
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech University2901 Main Street, Box 43131LubbockTexas79409USA
| | - Simon Uribe‐Convers
- Department of Ecology and Evolutionary BiologyUniversity of Michigan830 North UniversityAnn ArborMichigan48109USA
| | - Deren Eaton
- Department of Ecology, Evolution, and Environmental BiologyColumbia University1200 Amsterdam AvenueNew YorkNew York10027USA
| | - Ya Yang
- Department of Plant and Microbial BiologyUniversity of Minnesota–Twin Cities1445 Gortner AvenueSt. PaulMinnesota55108USA
| |
Collapse
|
6
|
Latvis M, Jacobs SJ, Mortimer SME, Richards M, Blischak PD, Mathews S, Tank DC. Primers for Castilleja and their utility across Orobanchaceae: II. Single-copy nuclear loci. APPLICATIONS IN PLANT SCIENCES 2017; 5:apps.1700038. [PMID: 28989822 PMCID: PMC5628026 DOI: 10.3732/apps.1700038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/20/2017] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY We developed primers targeting nuclear loci in Castilleja with the goal of reconstructing the evolutionary history of this challenging clade. These primers were tested across other major clades in Orobanchaceae to assess their broader utility. METHODS AND RESULTS We assembled low-coverage genomes for three taxa in Castilleja and developed primer combinations for the single-copy conserved ortholog set (COSII) and the pentatricopeptide repeat (PPR) gene family. These primer combinations were designed to take advantage of the Fluidigm microfluidic PCR platform and are well suited for high-throughput sequencing applications. Eighty-seven primers were designed for Castilleja, and 27 were found to have broader utility in Orobanchaceae. CONCLUSIONS These results demonstrate the utility of these primers, not only across Castilleja, but for other lineages within Orobanchaceae as well. This expanded molecular toolkit will be an asset to future phylogenetic studies in Castilleja and throughout Orobanchaceae.
Collapse
Affiliation(s)
- Maribeth Latvis
- Department of Natural Resource Management, South Dakota State University, 1390 College Avenue, Brookings, South Dakota 57007 USA
| | - Sarah J. Jacobs
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
| | - Sebastian M. E. Mortimer
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA
| | - Melissa Richards
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
| | - Paul D. Blischak
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 318 W. 12th Avenue, Columbus, Ohio 43210 USA
| | - Sarah Mathews
- Australian National Herbarium, CSIRO National Research Collections, Canberra, Australia
| | - David C. Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
| |
Collapse
|
7
|
Latvis M, Jacobs SJ, Mortimer SME, Richards M, Blischak PD, Mathews S, Tank DC. Primers for Castilleja and their utility across Orobanchaceae: II. Single-copy nuclear loci. APPLICATIONS IN PLANT SCIENCES 2017. [PMID: 28989822 DOI: 10.5061/dryad.52v62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY We developed primers targeting nuclear loci in Castilleja with the goal of reconstructing the evolutionary history of this challenging clade. These primers were tested across other major clades in Orobanchaceae to assess their broader utility. METHODS AND RESULTS We assembled low-coverage genomes for three taxa in Castilleja and developed primer combinations for the single-copy conserved ortholog set (COSII) and the pentatricopeptide repeat (PPR) gene family. These primer combinations were designed to take advantage of the Fluidigm microfluidic PCR platform and are well suited for high-throughput sequencing applications. Eighty-seven primers were designed for Castilleja, and 27 were found to have broader utility in Orobanchaceae. CONCLUSIONS These results demonstrate the utility of these primers, not only across Castilleja, but for other lineages within Orobanchaceae as well. This expanded molecular toolkit will be an asset to future phylogenetic studies in Castilleja and throughout Orobanchaceae.
Collapse
Affiliation(s)
- Maribeth Latvis
- Department of Natural Resource Management, South Dakota State University, 1390 College Avenue, Brookings, South Dakota 57007 USA
| | - Sarah J Jacobs
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
| | - Sebastian M E Mortimer
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA
| | - Melissa Richards
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
| | - Paul D Blischak
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 318 W. 12th Avenue, Columbus, Ohio 43210 USA
| | - Sarah Mathews
- Australian National Herbarium, CSIRO National Research Collections, Canberra, Australia
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, Idaho 83844-1133 USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho 83844-3051 USA
| |
Collapse
|