1
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S, Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, Tai YT, Patel J, Pal J, Mashimo H, Samur MK, Munshi NC, Shammas MA. Elevated APE1 Dysregulates Homologous Recombination and Cell Cycle Driving Genomic Evolution, Tumorigenesis, and Chemoresistance in Esophageal Adenocarcinoma. Gastroenterology 2023; 165:357-373. [PMID: 37178737 PMCID: PMC10524563 DOI: 10.1053/j.gastro.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND & AIMS The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jiangning Zhao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Leutz Buon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shidai Mu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Lakshmi B Potluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Chengcheng Liao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jialan Shi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Gabriel B Gonzalez
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jaymin Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jagannath Pal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Hiroshi Mashimo
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts.
| |
Collapse
|
2
|
Kumar S, Buon L, Talluri S, Roncador M, Liao C, Zhao J, Shi J, Chakraborty C, Gonzalez G, Tai YT, Prabhala R, Samur MK, Munshi NC, Shammas MA. Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Commun Biol 2021; 4:617. [PMID: 34031527 PMCID: PMC8144613 DOI: 10.1038/s42003-021-02125-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is associated with a marked genomic instability, which underlies disease progression and development of resistance to treatment. In this study, we used an integrated genomics approach to identify a genomic instability signature. Here we show that elevated expression of this signature correlates with poor survival in EAC as well as three other cancers. Knockout and overexpression screens establish the relevance of these genes to genomic instability. Indepth evaluation of three genes (TTK, TPX2 and RAD54B) confirms their role in genomic instability and tumor growth. Mutational signatures identified by whole genome sequencing and functional studies demonstrate that DNA damage and homologous recombination are common mechanisms of genomic instability induced by these genes. Our data suggest that the inhibitors of TTK and possibly other genes identified in this study have potential to inhibit/reduce growth and spontaneous as well as chemotherapy-induced genomic instability in EAC and possibly other cancers. Subodh Kumar et al. identify a gene signature correlated with genomic instability and poor survival in esophageal adenocarcinoma (EAC), using a combination of integrative genomic analysis of patient data and laboratory validation in cell line models and mice. They find that inhibitors of some of the identified proteins, including TTK, could be used to reduce genomic evolution as well as inhibit growth of EAC cells.
Collapse
Affiliation(s)
- Subodh Kumar
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Leutz Buon
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | | | - Chengcheng Liao
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Jiangning Zhao
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Jialan Shi
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Gabriel Gonzalez
- Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Rao Prabhala
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Nikhil C Munshi
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Masood A Shammas
- Dana Farber Cancer Institute, Boston, MA, USA. .,Veterans Administration Healthcare System, Boston, MA, USA.
| |
Collapse
|
3
|
Liao C, Zhao J, Kumar S, Chakraborty C, Talluri S, Munshi NC, Shammas MA. RAD51 Inhibitor Reverses Etoposide-Induced Genomic Toxicity and Instability in Esophageal Adenocarcinoma Cells. ARCHIVES OF CLINICAL TOXICOLOGY 2020; 2:3-9. [PMID: 32968740 PMCID: PMC7508453 DOI: 10.46439/toxicology.2.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aim: In normal cells, homologous recombination (HR) is strictly regulated and precise and plays an important role in preserving genomic integrity by accurately repairing DNA damage. RAD51 is the recombinase which mediates homologous base pairing and strand exchange during DNA repair by HR. We have previously reported that HR is spontaneously elevated (or dysregulated) in esophageal adenocarcinoma (EAC) and contributes to ongoing genomic changes and instability. The purpose of this study was to evaluate the impact of RAD51 inhibitor on genomic toxicity caused by etoposide, a chemotherapeutic agent. Methods: EAC cell lines (FLO-1 and OE19) were cultured in the presence of RAD51 inhibitor and/or etoposide, and impact on cell viability, apoptosis and genomic integrity/stability investigated. Genomic integrity/stability was monitored by evaluating cells for γ-H2AX (a marker for DNA breaks), phosphorylated RPA32 (a marker of DNA end resection which is a distinct step in the initiation of HR) and micronuclei (a marker of genomic instability). Results: Treatment with etoposide, a chemotherapeutic agent, was associated with marked genomic toxicity (as evident from increase in DNA breaks) and genomic instability in both EAC cell lines. Consistently, the treatment was also associated with apoptotic cell death. A small molecule inhibitor of RAD51 increased cytotoxicity while reducing genomic toxicity and instability caused by etoposide, in both EAC cell lines. Conclusion: RAD51 inhibitors have potential to increase cytotoxicity while reducing harmful genomic impact of chemotherapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | | | - Subodh Kumar
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | | | - Srikanth Talluri
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | - Nikhil C Munshi
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA.,Harvard Medical School, USA
| | - Masood A Shammas
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| |
Collapse
|
4
|
Markoš P, Brčić I, Brčić L, Jakić-Razumović J, Pulanić R. Microsatellite instability in metaplasia-dysplasia-adenocarcinoma sequence of Barrett esophagus: a retrospective study. Croat Med J 2018; 59:100-107. [PMID: 29972732 PMCID: PMC6045894 DOI: 10.3325/cmj.2018.59.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
AIM To analyze the loss of mismatch repair (MMR) system protein expression in metaplasia-dysplasia-adenocarcinoma sequence of Barrett esophagus (BE). METHODS This study retrospectively analyzed the data from 70 patients with pathohistological diagnosis of BE or esophageal adenocarcinoma (EAC) treated at the Clinical Department of Pathology and Cytology, University Hospital Center Zagreb, from January 2009 to January 2011. Patients were divided into three groups: BE without dysplasia (22 patients), BE with dysplasia (37 patients), and EAC (11 patients). Immunohistochemical expression of MutL homologue 1 (MLH1), MutS homologue 2 (MSH2), postmeiotic segregation increased 2 (PMS2), and MutS homologue 6 (MSH6) of DNA MMR system was measured and compared with tumor protein p53 expression. RESULTS A total of 81.8% and 81.8% patients with EAC, 32.4% and 35.1% patients with dysplasia, and 50% and 54.5% patients without dysplasia had loss of MLH1 and PMS2 expression, respectively. Patients with EAC and patients with dysplasia did not have loss of MSH2 and MSH6 expression, and 18.2% patients without dysplasia had loss of MSH2 and MSH6 expression. There was a strong positive correlation between MLH1 and PMS2 expression (Spearman ρ 0.97; P<0.001) and between MSH2 and MSH6 expression (Spearman ρ 0.90, P<0.001) in the entire sample and in all BE groups. No significant correlations of MLH1 and PMS2 with p53 expression were found, except in dysplasia group (φ 0.402, P=0.030 for MSH1; φ 0.371, P=0.042 for PMS2). CONCLUSION Although we demonstrated considerable loss of MLH1 and PMS2 expression in BE-associated carcinoma sequence, due to the retrospective study design and low number of patients we cannot conclude that MLH1 and PMS2 can be used as biomarkers for patient surveillance and therapy-making decisions. Oxford Centre for Evidence-based Medicine level of evidence: 3.
Collapse
Affiliation(s)
- Pave Markoš
- Pave Markoš, Division of Gastroenterology and Hepatology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia,
| | | | | | | | | |
Collapse
|
5
|
Pal J, Nanjappa P, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett's Adenocarcinoma Cells. ACTA ACUST UNITED AC 2017; 6:2286-2295. [PMID: 29399538 PMCID: PMC5796564 DOI: 10.17554/j.issn.2224-3992.2017.06.687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In normal cells, RAD51-mediated homologous recombination (HR) is a
precise DNA repair mechanism which plays a key role in the maintenance of
genomic integrity and stability. However, elevated (dysregulated) RAD51 is
implicated in genomic instability and is a potential target for treatment of
certain cancers, including Barrett’s adenocarcinoma (BAC). In this
study, we investigated genomic impact and translational significance of
moderate vs. strong suppression of RAD51 in BAC cells. METHODS BAC cells (FLO-1 and OE33) were transduced with non-targeting control
(CS) or RAD51-specific shRNAs, mediating a moderate (40–50%)
suppression or strong (80-near 100%) suppression of the gene. DNA
breaks, spontaneous or following exposure to DNA damaging agent, were
examined by comet assay and 53BP1 staining. Gene expression was monitored by
microarrays (Affymetrix). Homologous recombination (HR) and single strand
annealing (SSA) activities were measured using plasmid based assays. RESULTS We show that although moderate suppression consistenly
inhibits/reduces HR activity, the strong suppression is associated with
increase in HR activity (by ~15 – ≥ 50% in various
experiments), suggesting activation of RAD51-independent pathway. Contrary
to moderate suppression, a strong suppression of RAD51 is associated with a
significant induced DNA breaks as well as altered expression of genes
involved in detection/processing of DNA breaks and apoptosis. Stronger RAD51
suppression was also associated with mutagenic single strand annealing
mediated HR. Suppression of RAD51C inhibited RAD51-independent
(SSA-mediated) HR in BAC cells. CONCLUSION Elevated (dysregulated) RAD51 in BAC is implicated in both the repair
of DNA breaks as well as ongoing genomic rearrangements. Moderate
suppression of this gene reduces HR activity, whereas strong or near
complete suppression of this gene activates RAD51C-dependent HR involving a
mechanism known as single strand annealing (SSA). SSA-mediated HR, which is
a mutagenic HR pathway, further disrupts genomic integrity by increasing DNA
breaks in BAC cells.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Multi-disciplinary Research Units (MRUs), Pt J.N.M. Medical College, Raipur, CG, India
| | - Purushothama Nanjappa
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States
| | - Nikhil C Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States. Department of Medicine, Harvard Medical School, Boston, MA, the United States
| | - Masood A Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, the United States. VA Health Care System, West Roxbury, MA, the United States
| |
Collapse
|
6
|
Müller LB, Meurer L, Lopes AB, Antunes LCM, Vanazzi S, Fagundes RB. Stepwise expression of CDKN2A and RB1 proteins in esophageal mucosa from patients at high risk for squamous cell carcinoma. Appl Immunohistochem Mol Morphol 2014; 22:669-673. [PMID: 25046224 DOI: 10.1097/pai.0000000000000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Squamous cell carcinoma of the esophagus is a lethal cancer and carries a poor prognosis because of late diagnosis. Identification of molecular markers may aid early diagnosis. We assessed the expression of CDKN2A/RB1 in the esophageal mucosa and its association with the histology. Esophageal biopsies were collected from 38 patients with no esophageal lesion (group 1), from iodine-negative areas of 108 alcoholics/smokers (group 2), and from tumor and nontumor areas in 41 patients with squamous cell carcinoma (group 3). The histologic diagnosis was compared with immunoexpression of CDKN2A/RB1. In group 1, histology showed normal mucosa/mild esophagitis and no expression of CDKN2A/RB1. In groups 2 and 3, the diagnosis was: normal mucosa (38.4%), esophagitis (44.4%), dysplasia and carcinoma in situ (2.8%), and carcinoma (14.3%). The immunoexpression of CDKN2A/RB1 increased in a stepwise manner from the normal mucosa, to esophagitis, dysplasia/carcinoma in situ, and carcinoma (P<0.01). CDKN2A/RB1 was not expressed in the esophageal mucosa of patients without risk factors. p16/pRb expression increased in a stepwise manner, according to the severity of histologic lesions, in biopsies from patients exposed to risk factors or with carcinoma. Esophageal mucosa exposed to risk factors with the expression of those proteins may be at risk for malignant transformation.
Collapse
Affiliation(s)
- Leandro B Müller
- *Programa de Pós Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul †Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul ‡Serviço de Patologia, Hospital de Clínicas de Porto Alegre §Hospital de Clínicas de Porto Alegre ∥Departamento de Clínica Médica da Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Poehlmann A, Kuester D, Malfertheiner P, Guenther T, Roessner A. Inflammation and Barrett's carcinogenesis. Pathol Res Pract 2012; 208:269-80. [PMID: 22541897 DOI: 10.1016/j.prp.2012.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Barrett's esophagus (BE) is one of the most common premalignant lesions in which normal squamous epithelium of the esophagus is replaced by metaplastic columnar epithelium. Esophageal adenocarcinoma (EA) develops through progression from BE to low- and high-grade dysplasia (LGD/HGD) and to adenocarcinoma. It is widely accepted that inflammation can increase cancer risk, promoting tumor progression. Therefore, inflammation is regarded as the seventh hallmark of cancer. In recent years, the inflammation-cancer connection of Barrett's carcinogenesis has been intensively studied, unraveling genetic abnormalities. Besides genetic alterations, inflammation is also epigenetically linked to loss of protein expression through transcriptional silencing via promoter methylation. Key mediators linking inflammation and Barrett's carcinogenesis include reactive oxygen species (ROS), NFκB, inflammatory cytokines, prostaglandins, and specific microRNAs (miRNAs). Therefore, the decipherment of molecular pathways that contain these and novel inflammatory key mediators is of major importance for diagnosis, therapy, and prognosis. The detailed elucidation of the signaling molecules involved in Barrett's carcinogenesis will be important for the development of pharmaceutical inhibitors. We herein give an overview of the current knowledge of the inflammation-mediated genetic and epigenetic alterations involved in Barrett's carcinogenesis. We highlight the role of oxidative stress and deregulated DNA damage checkpoints besides the NFκB pathway.
Collapse
Affiliation(s)
- A Poehlmann
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
8
|
Pal J, Fulciniti M, Nanjappa P, Buon L, Tai YT, Tassone P, Munshi NC, Shammas MA. Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics Proteomics 2012; 9:55-66. [PMID: 22399496 PMCID: PMC5536098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling in cancer is implicated in various survival pathways including regulation of recombinase (RAD51). In this study, we evaluated PI3K and RAD51 as targets in Barrett's adenocarcinoma (BAC) cells both in vitro and in vivo. BAC cell lines (OE19, OE33, and FLO-1) were cultured in the presence of PI3K inhibitor (wortmannin) and the impact on growth and expression of AKT, phosphorylated-AKT (P-AKT), and RAD51 was determined. Wortmannin induced growth arrest and apoptosis in two BAC cell lines (OE33 and OE19), which had relatively higher expression of AKT. FLO-1 cells, with lower AKT expression, were less sensitive to treatment and investigated further. In FLO-1 cells, wortmannin suppressed ataxia telangiectasia and Rad3-related protein (ATR)-checkpoint kinase 1 (CHK1)-mediated checkpoint and multiple DNA repair genes, whereas RAD51 and CHK2 were not affected. Western blotting confirmed that RAD51 was suppressed by wortmannin in OE33 and OE19 cells, but not in FLO-1 cells. Suppression of RAD51 in FLO-1 cells down-regulated the expression of CHK2 and CHK1, and reduced the proliferative potential. Finally, the suppression of RAD51 in FLO-1 cells, significantly increased the anticancer activity of wortmannin in these cells, both in vitro and in vivo. We show that PI3K signaling and hsRAD51, through distinct roles in DNA damage response and repair pathways, provide survival advantage to BAC cells. In cells with inherent low expression of AKT, RAD51 is unaffected by PI3K suppression and provides an additional survival pathway. Simultaneous suppression of PI3K and RAD51, especially in cells with lower AKT expression, can significantly reduce their proliferative potential.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pal J, Bertheau R, Buon L, Qazi A, Batchu RB, Bandyopadhyay S, Ali-Fehmi R, Beer DG, Weaver DW, Shmookler Reis RJ, Goyal RK, Huang Q, Munshi NC, Shammas MA. Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome. Oncogene 2011; 30:3585-98. [PMID: 21423218 PMCID: PMC3406293 DOI: 10.1038/onc.2011.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity (P<0.02) in several independent experiments employing single-nucleotide polymorphism arrays. The reduction in copy-number changes, following shRNA treatment, was confirmed by Comparative Genome Hybridization analyses of the same DNA samples. Moreover, the chromosomal distributions of mutations correlated strongly with frequencies and locations of Alu interspersed repetitive elements on individual chromosomes. We conclude that the hsRAD51 protein level is systematically elevated in BAC, contributes significantly to genomic evolution during serial propagation of these cells and correlates with disease progression. Alu sequences may serve as substrates for elevated HR during cell proliferation in vitro, as they have been reported to do during the evolution of species, and thus may provide additional targets for prevention or treatment of this disease.
Collapse
Affiliation(s)
- J Pal
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA 02132, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|