1
|
Shi H, Ma J, Wang J, Luo J, Ji M, Xu T, Shen Y, Zhou C. Association of COL4A2 indel polymorphism with the development of stomach adenocarcinoma in Chinese populations. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-12. [PMID: 39340310 DOI: 10.1080/15257770.2024.2409888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/09/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE The objective of the study was to assess the potential association between the indel polymorphism (rs34802628) located within the intron of the collagen type ⅳ alpha 2 gene (COL4A2) and the susceptibility to stomach adenocarcinoma (STAD) within a Chinese population. METHODS Peripheral venous blood samples were collected from a total of 497 STAD patients and 804 healthy control individuals to extract genomic DNA. The genotyping of the COL4A2 rs34802628 polymorphism was carried out using a polymerase chain reaction assay. Additionally, statistical analyses were conducted on the expression levels of COL4A2 mRNA using the GEPIA database. Meanwhile, the expression of COL4A2 mRNA was also validated by Real-time PCR using STAD tissue samples. Then, based on an analysis of patient tumor RNA seq data available from the Cancer Genome Atlas (TCGA), we assessed the prognostic value of mRNA expression of the COL4A2 gene in STAD patients using K-M plotter. RESULTS The study presented compelling evidence supporting an association between the rs34802628 polymorphism in the COL4A2 gene and susceptibility to STAD. Logistic regression analysis revealed that both the heterozygote and homozygote 4-bp del/del genotypes were significantly associated with a decreased risk of STAD, even after controlling for other variables (adjusted odds ratio [OR] = 0.663, 95% confidence interval [CI] 0.519-0.848, p = 0.037; OR = 0.422, 95% CI 0.290-0.614, p = 0.000005, respectively). Importantly, individuals carrying the 4-bp deletion allele demonstrated a notably lower risk of developing the disease (OR = 0.696, 95% CI 0.591-0.820, p = 0.000014). Furthermore, Genotype-phenotype correlation studies in human STAD tissue samples demonstrated that the higher mRNA expression levels of COL4A2 were associated with the ins allele of rs34802628. Bioinformatics analysis revealed that higher expression of the COL4A2 gene was significant with development and poor prognosis of STAD. CONCLUSION The results of our study provide strong evidence indicating a potential involvement of genetic variants in the COL4A2 gene in the development of STAD. Nonetheless, to validate and consolidate these findings, additional investigations incorporating larger sample sizes and functional experiments are necessary.
Collapse
Affiliation(s)
- Huihai Shi
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jialin Ma
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jing Wang
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jiale Luo
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mengyue Ji
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ting Xu
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yingxiao Shen
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chunxiao Zhou
- Department of Gastroenterology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Iftikhar A, Shepherd S, Jones S, Ellis I. Effect of Mifepristone on Migration and Proliferation of Oral Cancer Cells. Int J Mol Sci 2024; 25:8777. [PMID: 39201464 PMCID: PMC11354386 DOI: 10.3390/ijms25168777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Glucocorticoid receptor (GR) overexpression has been linked to increased tumour aggressiveness and treatment resistance. GR antagonists have been shown to enhance treatment effectiveness. Emerging research has investigated mifepristone, a GR antagonist, as an anticancer agent with limited research in the context of oral cancer. This study investigated the effect of mifepristone at micromolar (µM) concentrations of 1, 5, 10 and 20 on the proliferation and migration of oral cancer cells, at 24 and 48 h. Scratch and scatter assays were utilised to assess cell migration, MTT assays were used to measure cell proliferation, Western blotting was used to investigate the expression of GR and the activation of underlying Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signalling pathways, and immunofluorescence (IF) was used to determine the localisation of proteins in HaCaT (immortalised human skin keratinocytes), TYS (oral adeno squamous cell carcinoma), and SAS-H1 cells (squamous cell carcinoma of human tongue). Mifepristone resulted in a dose-dependent reduction in the proliferation of HaCaT, TYS, and SAS-H1 cells. Mifepristone at a concentration of 20 µM effectively reduced collective migration and scattering of oral cancer cells, consistent with the suppression of the PI3K-Akt and MAPK signalling pathways, and reduced expression of N-Cadherin. An elongated cell morphology was, however, observed, which may be linked to the localisation pattern of E-Cadherin in response to mifepristone. Overall, this study found that a high concentration of mifepristone was effective in the suppression of migration and proliferation of oral cancer cells via the inhibition of PI3K-Akt and MAPK signalling pathways. Further investigation is needed to define its impact on epithelial-mesenchymal transition (EMT) markers.
Collapse
Affiliation(s)
| | | | | | - Ian Ellis
- School of Dentistry, University of Dundee, Dundee DD1 4HR, UK; (A.I.); (S.S.); (S.J.)
| |
Collapse
|
3
|
Ritch SJ, Noman ASM, Goyeneche AA, Telleria CM. The metastatic capacity of high-grade serous ovarian cancer cells changes along disease progression: inhibition by mifepristone. Cancer Cell Int 2022; 22:397. [PMID: 36494669 PMCID: PMC9733158 DOI: 10.1186/s12935-022-02822-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Simplistic two-dimensional (2D) in vitro assays have long been the standard for studying the metastatic abilities of cancer cells. However, tri-dimensional (3D) organotypic models provide a more complex environment, closer to that seen in patients, and thereby provide a more accurate representation of their true capabilities. Our laboratory has previously shown that the antiprogestin and antiglucocorticoid mifepristone can reduce the growth, adhesion, migration, and invasion of various aggressive cancer cells assessed using 2D assays. In this study, we characterize the metastatic capabilities of high-grade serous ovarian cancer cells generated along disease progression, in both 2D and 3D assays, and the ability of cytostatic doses of mifepristone to inhibit them. METHODS High-grade serous ovarian cancer cells collected from two separate patients at different stages of their disease were used throughout the study. The 2D wound healing and Boyden chamber assays were used to study migration, while a layer of extracellular matrix was added to the Boyden chamber to study invasion. A 3D organotypic model, composed of fibroblasts embedded in collagen I and topped with a monolayer of mesothelial cells was used to further study cancer cell adhesion and mesothelial displacement. All assays were studied in cells, which were originally harvested from two patients at different stages of disease progression, in the absence or presence of cytostatic doses of mifepristone. RESULTS 2D in vitro assays demonstrated that the migration and invasive rates of the cells isolated from both patients decreased along disease progression. Conversely, in both patients, cells representing late-stage disease demonstrated a higher adhesion capacity to the 3D organotypic model than those representing an early-stage disease. This adhesive behavior is associated with the in vivo tumor capacity of the cells. Regardless of these differences in adhesive, migratory, and invasive behavior among the experimental protocols used, cytostatic doses of mifepristone were able to inhibit the adhesion, migration, and invasion rates of all cells studied, regardless of their basal capabilities over simplistic or organotypic metastatic in vitro model systems. Finally, we demonstrate that when cells acquire the capacity to grow spontaneously as spheroids, they do attach to a 3D organotypic model system when pre-incubated with conditioned media. Of relevance, mifepristone was able to cause dissociation of these multicellular structures. CONCLUSION Differences in cellular behaviours were observed between 2 and 3D assays when studying the metastatic capabilities of high-grade serous ovarian cancer cells representing disease progression. Mifepristone inhibited these metastatic capabilities in all assays studied.
Collapse
Affiliation(s)
- Sabrina J. Ritch
- grid.14709.3b0000 0004 1936 8649Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - Abu Shadat M. Noman
- grid.413089.70000 0000 9744 3393Department of Biochemistry and Molecular Biology, Chittagong University, Chittagong, Bangladesh
| | - Alicia A. Goyeneche
- grid.14709.3b0000 0004 1936 8649Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.63984.300000 0000 9064 4811Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC Canada
| | - Carlos M. Telleria
- grid.14709.3b0000 0004 1936 8649Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.63984.300000 0000 9064 4811Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC Canada
| |
Collapse
|
4
|
Zhong C, Lu Y, Li Y, Xie H, Zhou G, Jia L. Similarities and differences between embryonic implantation and CTC invasion: Exploring the roles of abortifacients in cancer metastasis chemoprevention. Eur J Med Chem 2022; 237:114416. [DOI: 10.1016/j.ejmech.2022.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
|
5
|
Regulation of carcinogenesis and mediation through Wnt/β-catenin signaling by 3,3'-diindolylmethane in an enzalutamide-resistant prostate cancer cell line. Sci Rep 2021; 11:1239. [PMID: 33441906 PMCID: PMC7806813 DOI: 10.1038/s41598-020-80519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/18/2020] [Indexed: 12/09/2022] Open
Abstract
Enzalutamide (ENZ) is an important drug used to treat castration-resistant prostate cancer (CRPC), which inhibits androgen receptor (AR) signaling. Previous study showed that 3,3′-diindolylmethane (DIM) is an AR antagonist that also inhibits Wnt signaling and epithelial-mesenchymal transition (EMT). To investigate whether combined treatment with ENZ and DIM can overcome ENZ resistance by regulating Wnt signaling to inhibit AR signaling and EMT in ENZ-resistant prostate cancer cells, 22Rv1 cells were cultured in normal medium and treated with ENZ, DIM, and DIM with ENZ. Exposure of ENZ-resistant cells to both DIM and ENZ significantly inhibited cell proliferation without cytotoxicity and invasion in comparison with the control. DIM significantly increased the E-cadherin expression and inhibited the expressions of Vimentin and Fibronectin, subsequently inhibiting EMT. Co-treatment with ENZ and DIM significantly increased the expressions of GSK3β and APC and decreased the β-catenin protein expression, causing inhibition of Wnt signaling and AR expression, it also significantly decreased the AR-v7 expression and down-regulated AR signaling. Via suppression of Wnt and AR signaling, co-treatment increased the E-cadherin and decreased the Vimentin and Fibronectin RNA and protein expressions, then inhibited EMT. Co-treatment with DIM and ENZ regulated Wnt signaling to reduce not only the AR expression, but also the AR-v7 expression, indicating suppression of EMT that inhibits cancer cell proliferation, invasion and migration to ameliorate ENZ resistance.
Collapse
|
6
|
Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM. Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer 2019; 19:376. [PMID: 31014286 PMCID: PMC6480622 DOI: 10.1186/s12885-019-5587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/05/2019] [Indexed: 01/30/2023] Open
Abstract
Background Previous work in our laboratory demonstrated that antiprogestin mifepristone impairs the growth and adhesion of highly metastatic cancer cells, and causes changes in their cellular morphology. In this study, we further assess the anti-metastatic properties of mifepristone, by studying whether cytostatic doses of the drug can inhibit the migration and invasion of various cancer cell lines using a double fluorescence cytochemical labeling approach. Methods Cell lines representing cancers of the ovary (SKOV-3), breast (MDA-MB-231), glia (U87MG), or prostate (LNCaP) were treated with cytostatic concentrations of mifepristone. Wound healing and Boyden chamber assays were utilized to study cellular migration. To study cellular invasion, the Boyden chamber assay was prepared by adding a layer of extracellular matrix over the polycarbonate membrane. We enhanced the assays with the addition of double fluorescence cytochemical staining for fibrillar actin (F-actin) and DNA to observe the patterns of cytoskeletal distribution and nuclear positioning while cells migrate and invade. Results When exposed to cytostatic concentrations of mifepristone, all cancer cells lines demonstrated a decrease in both migration and invasion capacities measured using standard approaches. Double fluorescence cytochemical labeling validated that mifepristone-treated cancer cells exhibit reduced migration and invasion, and allowed to unveil a distinct migration pattern among the different cell lines, different arrays of nuclear localization during migration, and apparent redistribution of F-actin to the nucleus. Conclusion This study reports that antiprogestin mifepristone inhibits migration and invasion of highly metastatic cancer cell lines, and that double fluorescence cytochemical labeling increases the value of well-known approaches to study cell movement. Electronic supplementary material The online version of this article (10.1186/s12885-019-5587-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina J Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - BreeAnn N Brandhagen
- Present address: Research Acceleration Office, 2001 Campus Delivery, University Services Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alicia A Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada.
| |
Collapse
|
7
|
Xu H, Wan L, Xu J, Liu J, Zheng N, Jia L. HAMPT, A Novel Quadruple Drug Combination Designed for Cancer Metastatic Chemoprevention: From Hypothesis to Proof-of-concept. Curr Cancer Drug Targets 2019; 19:296-303. [PMID: 30968769 DOI: 10.2174/1568009618666181001102557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Highly Active Metastasis Preventing Therapy (HAMPT) is a quardruple drug combination consisting of mifepristone, aspirin, lysine and doxycycline. OBJECTIVE Based on our previous study, here, we further proved that HAMPT could effectively and safely prevent colon cancer metastasis. METHODS It was specifically designed for synergistically controlling key cancer metastatic pathways. The dose of HAMPT was designed at lower than the pharmaceutically-recommended dose, and thus the sub-healthy cancer survivors may take HAMPT safely and for a long time for metastasis chemoprevention. RESULTS HAMPT within its effective concentration range (1-50 µg/mL) showed no cytotoxicity to colon cancer cells HT-29 and CT-26, but significantly inhibited adhesion and invasion of these colon cancer cell lines to human umbilical vascular endothelial cells (HUVECs), and to Matrigel. HAMPT exhibits a good adhesion inhibited ratio, suggesting that it functions primarily by inhibiting adhesion of the cancer cells to HUVECs, rather than killing the cancer cells. At low concentrations, HAMPT also inhibited cancer cell migration. Flow cytometry analysis revealed that HAMPT had no significant effect on cell cycle, but inhibited IL-1β-induced expression of both E-selectin of HUVECs and Sialyl-Lewis X of HT-29. The in vivo experiment showed that HAMPT suppressed metastasis of CT-26 cells to mouse lungs in a dose-dependent manner. In the mouse model, HAMPT showed advantages in preventing metastasis over other combinations. CONCLUSION The present study demonstrated that HAMPT is a novel quadruple drug combination that can safely and effectively prevent cancer metastasis.
Collapse
Affiliation(s)
- Huo Xu
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.,Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Liyuan Wan
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Jianguo Xu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Ning Zheng
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.,Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
8
|
Llaguno-Munive M, Romero-Piña M, Serrano-Bello J, Medina LA, Uribe-Uribe N, Salazar AM, Rodríguez-Dorantes M, Garcia-Lopez P. Mifepristone Overcomes Tumor Resistance to Temozolomide Associated with DNA Damage Repair and Apoptosis in an Orthotopic Model of Glioblastoma. Cancers (Basel) 2018; 11:cancers11010016. [PMID: 30583528 PMCID: PMC6356343 DOI: 10.3390/cancers11010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The standard treatment for glioblastoma multiforme (GBM) is surgery followed by chemo/radiotherapy. A major limitation on patient improvement is the high resistance of tumors to drug treatment, likely responsible for their subsequent recurrence and rapid progression. Therefore, alternatives to the standard therapy are necessary. The aim of the present study was to evaluate whether mifepristone, an antihormonal agent, has a synergistic effect with temozolomide (used in standard therapy for gliomas). Whereas the mechanism of temozolomide involves damage to tumor DNA leading to apoptosis, tumor resistance is associated with DNA damage repair through the O6-methylguanine-DNA-methyltransferase (MGMT) enzyme. Temozolomide/mifepristone treatment, herein examined in Wistar rats after orthotopically implanting C6 glioma cells, markedly reduced proliferation. This was evidenced by a decreased level of the following parameters: a proliferation marker (Ki-67), a tumor growth marker (18F-fluorothymidine uptake, determined by PET/CT images), and the MGMT enzyme. Increased apoptosis was detected by the relative expression of related proteins, (e.g. Bcl-2 (B-cell lymphoma 2), Bax (bcl-2-like protein 4) and caspase-3). Thus, greater apoptosis of tumor cells caused by their diminished capacity to repair DNA probably contributed significantly to the enhanced activity of temozolomide. The results suggest that mifepristone could possibly act as a chemo-sensitizing agent for temozolomide during chemotherapy for GBM.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico.
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| | - Mario Romero-Piña
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico.
| | - Janeth Serrano-Bello
- Facultad de Odontología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| | - Luis A Medina
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Ciudad de México, 14080, Mexico.
| | - Norma Uribe-Uribe
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico.
| | - Ana Maria Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| | | | - Patricia Garcia-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico.
| |
Collapse
|
9
|
Elmaci İ, Altinoz MA, Sav A, Yazici Z, Ozpinar A. Giving another chance to mifepristone in pharmacotherapy for aggressive meningiomas—A likely synergism with hydroxyurea? Curr Probl Cancer 2016; 40:229-243. [DOI: 10.1016/j.currproblcancer.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/10/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
10
|
Jang JH, Min KJ, Kim S, Park JW, Kwon TK. RU486 Induces Pro-Apoptotic Endoplasmic Reticulum Stress Through the Induction of CHOP Expression by Enhancing C/EBPδ Expression in Human Renal Carcinoma Caki Cells. J Cell Biochem 2015; 117:361-9. [PMID: 26174226 DOI: 10.1002/jcb.25278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Ji Hoon Jang
- Department of Immunology; School of Medicine; Keimyung University; 2800 Dalgubeoldaero; Dalseo-Gu Daegu 704-701 South Korea
| | - Kyoung-jin Min
- Department of Immunology; School of Medicine; Keimyung University; 2800 Dalgubeoldaero; Dalseo-Gu Daegu 704-701 South Korea
| | - Shin Kim
- Department of Immunology; School of Medicine; Keimyung University; 2800 Dalgubeoldaero; Dalseo-Gu Daegu 704-701 South Korea
| | - Jong-Wook Park
- Department of Immunology; School of Medicine; Keimyung University; 2800 Dalgubeoldaero; Dalseo-Gu Daegu 704-701 South Korea
| | - Taeg Kyu Kwon
- Department of Immunology; School of Medicine; Keimyung University; 2800 Dalgubeoldaero; Dalseo-Gu Daegu 704-701 South Korea
| |
Collapse
|
11
|
Abstract
Antiprogestins constitute a group of compounds, developed since the early 1980s, that bind progesterone receptors with different affinities. The first clinical uses for antiprogestins were in reproductive medicine, e.g., menstrual regulation, emergency contraception, and termination of early pregnancies. These initial applications, however, belied the capacity for these compounds to interfere with cell growth. Within the context of gynecological diseases, antiprogestins can block the growth of and kill gynecological-related cancer cells, such as those originating in the breast, ovary, endometrium, and cervix. They can also interrupt the excessive growth of cells giving rise to benign gynecological diseases such as endometriosis and leiomyomata (uterine fibroids). In this article, we present a review of the literature providing support for the antigrowth activity that antiprogestins impose on cells in various gynecological diseases. We also provide a summary of the cellular and molecular mechanisms reported for these compounds that lead to cell growth inhibition and death. The preclinical knowledge gained during the past few years provides robust evidence to encourage the use of antiprogestins in order to alleviate the burden of gynecological diseases, either as monotherapies or as adjuvants of other therapies with the perspective of allowing for long-term treatments with tolerable side effects. The key to the clinical success of antiprogestins in this field probably lies in selecting those patients who will benefit from this therapy. This can be achieved by defining the genetic makeup required - within each particular gynecological disease - for attaining an objective response to antiprogestin-driven growth inhibition therapy.Free Spanish abstractA Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/1/15/suppl/DC1.
Collapse
Affiliation(s)
- Alicia A Goyeneche
- Division of Basic Biomedical SciencesSanford School of Medicine, The University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Carlos M Telleria
- Division of Basic Biomedical SciencesSanford School of Medicine, The University of South Dakota, Vermillion, South Dakota 57069, USA
| |
Collapse
|
12
|
Chen J, Wang J, Shao J, Gao Y, Xu J, Yu S, Liu Z, Jia L. The Unique Pharmacological Characteristics of Mifepristone (RU486): From Terminating Pregnancy to Preventing Cancer Metastasis. Med Res Rev 2014; 34:979-1000. [DOI: 10.1002/med.21311] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jianzhong Chen
- Cancer Metastasis Alert and Prevention Center; College of Chemistry and Chemical Engineering; Fuzhou University; Fuzhou 350002 China
- School of Pharmacy; Fujian University of Traditional Chinese Medicine; Fuzhou 350108 China
| | - Jichuang Wang
- Cancer Metastasis Alert and Prevention Center; College of Chemistry and Chemical Engineering; Fuzhou University; Fuzhou 350002 China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center; College of Chemistry and Chemical Engineering; Fuzhou University; Fuzhou 350002 China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center; College of Chemistry and Chemical Engineering; Fuzhou University; Fuzhou 350002 China
| | - Jianguo Xu
- Cancer Metastasis Alert and Prevention Center; College of Chemistry and Chemical Engineering; Fuzhou University; Fuzhou 350002 China
| | - Suhong Yu
- Cancer Metastasis Alert and Prevention Center; College of Chemistry and Chemical Engineering; Fuzhou University; Fuzhou 350002 China
| | - Zhenhua Liu
- Department of Clinical Oncology; Fujian Province Hospital; Fuzhou 350004 China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center; College of Chemistry and Chemical Engineering; Fuzhou University; Fuzhou 350002 China
| |
Collapse
|
13
|
Wang J, Chen J, Wan L, Shao J, Lu Y, Zhu Y, Ou M, Yu S, Chen H, Jia L. Synthesis, spectral characterization, and in vitro cellular activities of metapristone, a potential cancer metastatic chemopreventive agent derived from mifepristone (RU486). AAPS JOURNAL 2014; 16:289-98. [PMID: 24442753 DOI: 10.1208/s12248-013-9559-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/11/2013] [Indexed: 01/10/2023]
Abstract
Mifepristone (RU486) is marketed and used widely by women as an abortifacient, and experimentally for psychotic depression and anticancer treatments. After administration, metapristone is found to be the most predominant metabolite of mifepristone. We hypothesized that adhesion of circulating tumor cells (CTCs) to vascular endothelial bed is a crucial starting point in metastatic cascade, and that metapristone can serve as a cancer metastatic chemopreventive agent that can interrupt adhesion and invasion of CTCs to the intima of microvasculature. In the present study, we modified the synthesis procedure to produce grams of metapristone, fully characterized its spectral properties and in vitro cellular activities, including its cytostatic effects, cell cycle arrest, mitochondrial membrane potential, and apoptosis on human colorectal cancer HT-29 cells. Metapristone concentration dependently interrupted adhesion of HT-29 cells to endothelial cells. Metapristone may potentially be a useful agent to interrupt metastatic initiation.
Collapse
Affiliation(s)
- Jichuang Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry and Chemical Engineering, Fuzhou University, 523 Industry Road, Science Building, 3FL, Fuzhou, Fujian, 350002, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Llaguno-Munive M, Medina LA, Jurado R, Romero-Piña M, Garcia-Lopez P. Mifepristone improves chemo-radiation response in glioblastoma xenografts. Cancer Cell Int 2013; 13:29. [PMID: 23530939 PMCID: PMC3626552 DOI: 10.1186/1475-2867-13-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/18/2013] [Indexed: 11/10/2022] Open
Abstract
Background We have investigated the ability of Mifepristone, an anti-progestin and anti-glucocorticoid drug, to modulate the antitumor effect of current standard clinical treatment in glioblastoma xenografts. Methods The effect of radiation alone or combined with Mifepristone and Temozolamide was evaluated on tumor growth in glioblastoma xenografts, both in terms of preferentially triggering tumor cell death and inhibiting angiogenesis. Tumor size was measured once a week using a caliper and tumor metabolic-activity was carried out by molecular imaging using a microPET/CT scanner. The effect of Mifepristone on the expression of angiogenic factors after concomitant radio-chemotherapy was determined using a quantitative real-time PCR analysis of VEGF gene expression. Results The analysis of the data shows a significant antitumoral effect by the simultaneous administration of radiation-Mifepristone-Temozolamide in comparison with radiation alone or radiation-Temozolamide. Conclusion Our results suggest that Mifepristone could improve the efficacy of chemo-radiotherapy in Glioblastoma. The addition of Mifepristone to standard radiation-Temozolamide therapy represents a potential approach as a chemo-radio-sensitizer in treating GBMs, which have very limited treatment options.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, Av, San Fernando No, 22, Tlalpan 14000, Apartado Postal, 22026, México, DF, Mexico.
| | | | | | | | | |
Collapse
|
15
|
Brandhagen BN, Tieszen CR, Ulmer TM, Tracy MS, Goyeneche AA, Telleria CM. Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics. BMC Cancer 2013; 13:35. [PMID: 23351358 PMCID: PMC3562154 DOI: 10.1186/1471-2407-13-35] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/24/2013] [Indexed: 01/07/2023] Open
Abstract
Background Changes in cell shape and plasticity in cytoskeletal dynamics are critically involved in cell adhesion, migration, invasion and the overall process of metastasis. Previous work in our laboratory demonstrated that the synthetic steroid mifepristone inhibited the growth of highly metastatic cancer cells, while simultaneously causing striking changes in cellular morphology. Here we assessed whether such morphological alterations developed in response to cytostatic concentrations of mifepristone are reversible or permanent, involve rearrangement of cytoskeletal proteins, and/or affect the adhesive capacity of the cells. Methods Cancer cell lines of the ovary (SKOV-3), breast (MDA-MB-231), prostate (LNCaP), and nervous system (U87MG) were exposed to cytostatic concentrations of mifepristone and studied by phase-contrast microscopy. The transient or permanent nature of the cytostasis and morphological changes caused by mifepristone was assessed, as well as the rearrangement of cytoskeletal proteins. De-adhesion and adhesion assays were utilized to determine if mifepristone-arrested and morphologically dysregulated cells had abnormal de-adhesion/adhesion dynamics when compared to vehicle-treated controls. Results Mifepristone-treated cells displayed a long, thin, spindle-like shape with boundaries resembling those of loosely adhered cells. Growth arrest and morphology changes caused by mifepristone were reversible in SKOV-3, MDA-MB-231 and U87MG, but not in LNCaP cells that instead became senescent. All cancer cell types exposed to mifepristone displayed greatly increased actin ruffling in association with accelerated de-adhesion from the culture plate, and delayed adhesion capacity to various extracellular matrix components. Conclusions Cytostatic concentrations of mifepristone induced alterations in the cellular structure of a panel of aggressive, highly metastatic cancer cells of different tissues of origin. Such changes were associated with re-distribution of actin fibers that mainly form non-adhesive membrane ruffles, leading to dysregulated cellular adhesion capacity.
Collapse
Affiliation(s)
- BreeAnn N Brandhagen
- Division of Basic Biomedical Science, Sanford School of Medicine of The University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wempe SL, Gamarra-Luques CD, Telleria CM. Synergistic lethality of mifepristone and LY294002 in ovarian cancer cells. CANCER GROWTH AND METASTASIS 2012; 6:1-13. [PMID: 23420486 PMCID: PMC3571730 DOI: 10.4137/cgm.s11124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously shown that the antiprogestin and antiglucocorticoid mifepristone inhibits the growth of ovarian cancer cells. In this work, we hypothesized that cellular stress caused by mifepristone is limited to cytostasis and that cell killing is avoided as a consequence of the persistent activity of the PI3K/Akt survival pathway. To investigate the role of this pathway in mifepristone-induced growth inhibition, human ovarian cancer cells of various histological subtypes and genetic backgrounds were exposed to cytostatic doses of mifepristone in the presence or absence of the PI3K inhibitor, LY294002. The activation of Akt in ovarian cancer cells, as marked by its phosphorylation on Ser473, was not modified by cytostatic concentrations of mifepristone, but it was blocked upon treatment with LY294002. The combination mifepristone/LY294002, but not the individual drugs, killed ovarian cancer cells via apoptosis, as attested by genomic DNA fragmentation and cleavage of caspase-3, and the concomitant downregulation of antiapoptotic proteins Bcl-2 and XIAP. From a pharmacological standpoint, when assessing cell growth inhibition using a median-dose analysis algorithm, the interaction between mifepristone and LY294002 was synergistic. The lethality caused by the combination mifepristone/LY294004 in 2-dimensional cell cultures was recapitulated in organized, 3-dimensional spheroids. This study demonstrates that mifepristone and LY294002 when used individually cause cell growth arrest; yet, when combined, they cause lethality.
Collapse
|
17
|
Wang J, Chen J, Zhang K, Zhao Y, Nör JE, Wu J. TGF-β1 regulates the invasive and metastatic potential of mucoepidermoid carcinoma cells. J Oral Pathol Med 2011; 40:762-8. [PMID: 21689159 DOI: 10.1111/j.1600-0714.2011.01051.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with mucoepidermoid carcinoma exhibit poor long-term prognosis because of the lack of therapeutic strategies that effectively block tumor progression. We have previously characterized the Ms cells as a highly metastatic mucoepidermoid carcinoma cell line that expresses high levels of transforming growth factor β1 (TGF-β1). Here, we studied the effect of suppressing TGF-β1 by RNA silencing on the invasive and metastatic potential of mucoepidermoid carcinoma. METHODS Cell motility, substratum adhesion, and transmembrane invasion were estimated by migration, matrigel adhesion, and matrigel invasion assay. Matrix metalloproteinase (MMP)-2 and MMP-9 activity were determined using gelatin gel zymography. Balb/c nu/nu nude mice lung metastatic model was used to test the metastatic ability of the Ms cells. Lung metastatic tumors were experimentally induced by mice tail vein inoculation of cancer cells. RESULTS TGF-β1 silencing inhibits cell motility, substratum adhesion, and transmembrane invasion. In vivo, a significant decrease in lung metastasis was observed when mice received tail vein injections of TGF-β1-silenced mucoepidermoid carcinoma cells, as compared to controls. CONCLUSION These results unveil a critical role for TGF-β1 in the progression of mucoepidermoid carcinomas and suggest that patients with this malignancy may benefit from therapeutic inhibition of the effectors of the TGF-β1 pathway.
Collapse
Affiliation(s)
- Jing Wang
- School of Stomatology, Lanzhou University, Gansu, China
| | | | | | | | | | | |
Collapse
|
18
|
Lander M. The fight for a life-saving drug: a personal perspective. Med J Aust 2008; 187:706-8. [PMID: 18072931 DOI: 10.5694/j.1326-5377.2007.tb01488.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/01/2007] [Indexed: 11/17/2022]
|
19
|
Chang Q, Qin R, Huang T, Gao J, Feng Y. Effect of antisense hypoxia-inducible factor 1alpha on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas 2006; 32:297-305. [PMID: 16628086 DOI: 10.1097/00006676-200604000-00010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of the study was to observe the effect of antisense hypoxia-inducible factor 1alpha (HIF-1alpha) on progression, metastasis, and chemosensitivity of pancreatic cancer. METHODS BxPc-3 cells transfected with antisense HIF-1alpha plasmid were exposed to 0.5% O2 for 4 hours. Expressions of HIF-1alpha, survivin, and beta1 integrin were detected by reverse transcriptase -polymerase chain reaction and Western blotting. Growth inhibition rates and apoptosis rates of BxPc-3 cells under different dosages of chemotherapy agents (5-fluorouracil, doxorubicin, and gemcitabine) were measured by MTT colorimetric assay and flow cytometry. The migration of BxPc-3 cells was assayed using transwell cell culture chambers. Subcutaneous transplantation of BxPc-3 cells in nude mice for 8 weeks was to assess progression and metastasis of pancreatic cancer. RESULTS Expression of HIF-1alpha was obviously down-regulated, and at the same time, survivin and beta1-integrin expressions were markedly down-regulated in the experimental group (P < 0.05). Higher dosages (100, 200, and 400 mg/L of 5-fluorouracil; 0.05, 0.075, and 0.1 mg/L of doxorubicin; and 10(-9), 10(-8), and 10(-7) mol/L of gemcitabine) caused a greater increase of inhibition in the experimental group than in control (P < 0.05). The number of migrated BxPc-3 cells in the experimental group was far less than in control (P < 0.05). In vivo, the tumor size and weight in the experimental group were significantly lower than those in control (P < 0.05). CONCLUSION Our data demonstrate that antisense HIF-1alpha inhibits expressions of survivin and beta1 integrin, enhancing apoptosis in human pancreatic cancer cells and restraining the progression and metastasis of pancreatic cancer. Therefore, HIF-1alpha may play a very important role in progression, metastasis, and chemosensitivity of human pancreatic cancer. Blocking HIF-1alpha in pancreatic cancer cells may offer an avenue for gene therapy.
Collapse
Affiliation(s)
- Qing Chang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | |
Collapse
|