1
|
Tang Y, Li K, Hu B, Cai Z, Li J, Tao H, Cao J. Fatty acid binding protein 5 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by degradation of Krüppel-like factor 9 mediated by miR-889-5p via cAMP-response element binding protein. Cancer Biol Ther 2022; 23:424-438. [PMID: 35816613 PMCID: PMC9275499 DOI: 10.1080/15384047.2022.2094670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mounting evidence has demonstrated that fatty acid binding protein 5 (FABP5) is commonly upregulated in many human malignancies. However, the mechanisms explaining the involvement of FABP5 in hepatocellular carcinoma (HCC) remain unclear. In this study, we demonstrated the involvement of FABP5 and its downstream signaling molecules in HCC progression. We first confirmed that FABP5 expression was upregulated in HCC. Additionally, FABP5 promoted HCC cells proliferation, migration, and invasion. Mechanistic investigation showed that FABP5 could improve cAMP-response element binding protein (CREB) phosphorylation. Meanwhile, CREB, as a transcription factor, upregulated the miR-889-5p expression by binding to the miR-889-5p promoter region. Consequently, miR-889-5p led to downregulation of Krüppel-like factor 9 (KLF9) by binding to the 3ʹ-UTR of the KLF9 mRNA, potentiating the PI3K/AKT signaling pathway and promoting the proliferation, migration, and invasion of HCC cells. Our findings have identified a FABP5/CREB/miR-889-5p/KLF9 axis for HCC progression, and we postulate that blocking this key signaling pathway may represent a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Yanping Tang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kezhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Bangli Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhengmin Cai
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jilin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hao Tao
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ji Cao
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
2
|
Bell CC, Lauschke VM, Vorrink SU, Palmgren H, Duffin R, Andersson TB, Ingelman-Sundberg M. Transcriptional, Functional, and Mechanistic Comparisons of Stem Cell-Derived Hepatocytes, HepaRG Cells, and Three-Dimensional Human Hepatocyte Spheroids as Predictive In Vitro Systems for Drug-Induced Liver Injury. Drug Metab Dispos 2017; 45:419-429. [PMID: 28137721 PMCID: PMC5363699 DOI: 10.1124/dmd.116.074369] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Reliable and versatile hepatic in vitro systems for the prediction of drug pharmacokinetics and toxicity are essential constituents of preclinical safety assessment pipelines for new medicines. Here, we compared three emerging cell systems-hepatocytes derived from induced pluripotent stem cells, HepaRG cells, and three-dimensional primary human hepatocyte (PHH) spheroids-at transcriptional and functional levels in a multicenter study to evaluate their potential as predictive models for drug-induced hepatotoxicity. Transcriptomic analyses revealed widespread gene expression differences between the three cell models, with 8148 of 17,462 analyzed genes (47%) being differentially expressed. Expression levels of genes involved in the metabolism of endogenous as well as xenobiotic compounds were significantly elevated in PHH spheroids, whereas genes involved in cell division and endocytosis were significantly upregulated in HepaRG cells and hepatocytes derived from induced pluripotent stem cells, respectively. Consequently, PHH spheroids were more sensitive to a panel of drugs with distinctly different toxicity mechanisms, an effect that was amplified by long-term exposure using repeated treatments. Importantly, toxicogenomic analyses revealed that transcriptomic changes in PHH spheroids were in compliance with cholestatic, carcinogenic, or steatogenic in vivo toxicity mechanisms at clinically relevant drug concentrations. Combined, the data reveal important phenotypic differences between the three cell systems and suggest that PHH spheroids can be used for functional investigations of drug-induced liver injury in vivo in humans.
Collapse
Affiliation(s)
- Catherine C Bell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (C.C.B., V.M.L., S.U.V., T.B.A., M.I.-S.); Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden (H.P., T.B.A.); and CXR Biosciences Ltd., Dundee, United Kingdom (R.D.)
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (C.C.B., V.M.L., S.U.V., T.B.A., M.I.-S.); Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden (H.P., T.B.A.); and CXR Biosciences Ltd., Dundee, United Kingdom (R.D.)
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (C.C.B., V.M.L., S.U.V., T.B.A., M.I.-S.); Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden (H.P., T.B.A.); and CXR Biosciences Ltd., Dundee, United Kingdom (R.D.)
| | - Henrik Palmgren
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (C.C.B., V.M.L., S.U.V., T.B.A., M.I.-S.); Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden (H.P., T.B.A.); and CXR Biosciences Ltd., Dundee, United Kingdom (R.D.)
| | - Rodger Duffin
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (C.C.B., V.M.L., S.U.V., T.B.A., M.I.-S.); Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden (H.P., T.B.A.); and CXR Biosciences Ltd., Dundee, United Kingdom (R.D.)
| | - Tommy B Andersson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (C.C.B., V.M.L., S.U.V., T.B.A., M.I.-S.); Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden (H.P., T.B.A.); and CXR Biosciences Ltd., Dundee, United Kingdom (R.D.)
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (C.C.B., V.M.L., S.U.V., T.B.A., M.I.-S.); Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden (H.P., T.B.A.); and CXR Biosciences Ltd., Dundee, United Kingdom (R.D.)
| |
Collapse
|
3
|
Ajiboye TO, Yakubu MT, Oladiji AT. Lophirones B and C prevent aflatoxin B1-induced oxidative stress and DNA fragmentation in rat hepatocytes. PHARMACEUTICAL BIOLOGY 2016; 54:1962-1970. [PMID: 26841338 DOI: 10.3109/13880209.2015.1137603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Despite the reported anticarcinogenic activity of lophirones B and C, no scientific information exists for its activity in rat hepatocytes. Objective Effect of lophirones B and C on aflatoxin B1 (AFB1)-induced oxidative stress, and DNA fragmentation in rat hepatocytes was investigated. Materials and methods Wistar rat hepatocytes were incubated with lophirones B and C (1 mg/mL) or sylimarin (1 mg/mL) in the presence or absence of AFB1. For an in vivo study, rats were orally administered with lophirones B and C, and/or AFB1 (20 μg/d) for 9 weeks. Results Lophirones B and C lowered AFB1-mediated increase in nitric oxide, superoxide anion radicals, caspase-3 and fragmented DNA. Lophirones B and C attenuated AFB1-mediated decrease in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and reduced glutathione. Also, lophirones B and C attenuated AFB1-mediated increase in conjugated dienes, lipid hydroperoxides and malondialdehyde in rat hepatocytes. Furthermore, AFB1-mediated alterations in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, albumin, total bilirubin and globulin in rat serum were significantly annulled in lophirones B and C-treated rats. Conclusion This study revealed that lophirones B and C prevented AFB1-induced oxidative damage in rat hepatocytes.
Collapse
Affiliation(s)
- Taofeek Olakunle Ajiboye
- a Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences , Al-Hikmah University , Ilorin , Nigeria
| | - Musa Toyin Yakubu
- b Phytomedicine, Toxicology and Reproductive Research Laboratory, Department of Biochemistry , University of Ilorin , Ilorin , Nigeria
| | - Adenike Temidayo Oladiji
- b Phytomedicine, Toxicology and Reproductive Research Laboratory, Department of Biochemistry , University of Ilorin , Ilorin , Nigeria
| |
Collapse
|
4
|
Shi JL, Luo W, Li Y, Yang C, Tang YP, Li KZ, Cao J. Screening differentially expressed genes in hepatocellular carcinoma by cross-species and cross-carcinogenic factors strategy based on RNA-Seq. Shijie Huaren Xiaohua Zazhi 2016; 24:1664-1675. [DOI: 10.11569/wcjd.v24.i11.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify key molecules involved in progression of hepatocellular carcinoma (HCC) by cross-species (human and tupaia) and cross-carcinogenic factors (HBV and AFB1) strategy based on RNA sequencing (RNA-Seq).
METHODS: The transcripts in human and tupaia HCC, tumor adjacent liver tissue (para-HCC) and normal liver tissue were thoroughly analyzed by RNA sequencing. Tupaia HCC was induced by HBV infection or aflatoxin B1 (AFB1). Differentially expressed genes were collected between these tissues, and common differential genes which cross human and Tupaia as well as HBV and AFB1 carcinogenic factors were identified.
RESULTS: Compared to human para-HCC and normal liver tissues, 68 differential genes were screened in human HCC, among which 14 were up-regulated and 54 down-regulated. Compared to Tupaia para-HCC and normal liver tissues, 314 differential genes were screened in HBV induced Tupaia HCC, and 20 were screened in AFB1 induced Tupaia HCC. There were 11 common differential genes between HBV and AFB1 induced Tupaia HCC, all of which were down-regulated. There were 2 common differential genes between human HCC and Tupaia HCC, and they were apolipoprotein F (APOF) and insulin-like growth factor binding protein, acid labile subunit (IGFALS), both of which were down-regulated in HCC.
CONCLUSION: The cross-species, cross-carcinogenic factors screening strategy based on RNA-Seq may promote the process of identifying key molecules for human HCC. APOF and IGFALS may be important factors for HCC.
Collapse
|
5
|
Lu X, Sun W, Tang Y, Zhu L, Li Y, Ou C, Yang C, Su J, Luo C, Hu Y, Cao J. Identification of key genes in hepatocellular carcinoma and validation of the candidate gene, cdc25a, using gene set enrichment analysis, meta-analysis and cross-species comparison. Mol Med Rep 2015; 13:1172-8. [PMID: 26647881 PMCID: PMC4732839 DOI: 10.3892/mmr.2015.4646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to determine key pathways and genes involved in the pathogenesis of hepatocellular carcinoma (HCC) through bioinformatic analyses of HCC microarray data based on cross-species comparison. Microarray data of gene expression in HCC in different species were analyzed using gene set enrichment analysis (GSEA) and meta-analysis. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to determine the mRNA and protein expression levels of cdc25a, one of the identified candidate genes, in human, rat and tree shrew samples. The cell cycle pathway had the largest overlap between the GSEA and meta-analysis. Meta-analyses showed that 25 genes, including cdc25a, in the cell cycle pathway were differentially expressed. Cdc25a mRNA levels in HCC tissues were higher than those in normal liver tissues in humans, rats and tree shrews, and the expression level of cdc25a in HCC tissues was higher than in corresponding paraneoplastic tissues in humans and rats. In human HCC tissues, the cdc25a mRNA level was significantly correlated with clinical stage, portal vein tumor thrombosis and extrahepatic metastasis. Western blotting showed that, cdc25a protein levels were significantly upregulated in HCC tissues in humans, rats and tree shrews. In conclusion, GSEA and meta-analysis can be combined to identify key molecules and pathways involved in HCC. This study demonstrated that the cell cycle pathway and the cdc25a gene may be crucial in the pathogenesis and progression of HCC.
Collapse
Affiliation(s)
- Xiaoxu Lu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen Sun
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanping Tang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lingqun Zhu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Li
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chao Ou
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chun Yang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianjia Su
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chengpiao Luo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanling Hu
- The Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Ji Cao
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
6
|
Ye Y, Huang A, Huang C, Liu J, Wang B, Lin K, Chen Q, Zeng Y, Chen H, Tao X, Wei G, Wu Y. Comparative mitochondrial proteomic analysis of hepatocellular carcinoma from patients. Proteomics Clin Appl 2013; 7:403-415. [PMID: 23589362 DOI: 10.1002/prca.201100103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 10/22/2012] [Accepted: 11/06/2012] [Indexed: 01/22/2023]
Abstract
PURPOSE To define mitochondrial protein markers related to liver cancer. EXPERIMENTAL DESIGN Mitochondrial subproteomes of 20 patient-derived liver carcinoma and tumor-free control tissues were performed by 2DE coupled with MALDI-TOF/TOF. The altered patterns of three identified proteins were validated by Western blot and immunohistochemistry. RESULTS The results showed that compared with tumor-free control samples, nine proteins were downregulated and six proteins were upregulated in carcinoma samples. The increased expression of Arg1 mRNA and protein was validated by Western blot, Q-RT-PCR, paraffin tissue microarray and immunohistochemistry. Furthermore, a literature review shows that Heat shock protein 10 (Hsp10), single-stranded DNA-binding protein (SSBP1), and peptidyl-prolyl cis-trans isomerase A (PPIA), which were identified as being increased in the tumor samples in this study, may be closely related to protein folding and translation. CONCLUSIONS AND CLINICAL RELEVANCE These results show that in addition to changes in the signaling pathways, such as the Ras-Raf-MEK-ERK pathway, altered mitochondrial DNA replication and protein folding in liver cancer are also worth studying further. Collectively, these results suggest that specific mitochondrial proteins are uniquely susceptible to alterations in expression and carry implications for the investigation of their potential as therapeutic and prognostic markers. Further studies focusing on these proteins will be used to predict treatment response and reverse the apoptosis resistance.
Collapse
Affiliation(s)
- Yunbin Ye
- Immuno-Oncology Laboratory of Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital, Fujian, P R China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang Q, Schwarzenberger P, Yang F, Zhang J, Su J, Yang C, Cao J, Ou C, Liang L, Shi J, Yang F, Wang D, Wang J, Wang X, Ruan P, Li Y. Experimental chronic hepatitis B infection of neonatal tree shrews (Tupaia belangeri chinensis): a model to study molecular causes for susceptibility and disease progression to chronic hepatitis in humans. Virol J 2012; 9:170. [PMID: 22913805 PMCID: PMC3511180 DOI: 10.1186/1743-422x-9-170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/07/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection continues to be an escalating global health problem. Feasible and effective animal models for HBV infection are the prerequisite for developing novel therapies for this disease. The tree shrew (Tupaia) is a small animal species evolutionary closely related to humans, and thus is permissive to certain human viral pathogens. Whether tree shrews could be chronically infected with HBV in vivo has been controversial for decades. Most published research has been reported on adult tree shrews, and only small numbers of HBV infected newborn tree shrews had been observed over short time periods. We investigated susceptibility of newborn tree shrews to experimental HBV infection as well as viral clearance over a protracted time period. RESULTS Forty-six newborn tree shrews were inoculated with the sera from HBV-infected patients or tree shrews. Serum and liver samples of the inoculated animals were periodically collected and analyzed using fluorescence quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Southern blot, and immunohistochemistry. Six tree shrews were confirmed and four were suspected as chronically HBV-infected for more than 48 (up to 228) weeks after inoculation, including three that had been inoculated with serum from a confirmed HBV-infected tree shrew. CONCLUSIONS Outbred neonatal tree shrews can be long-term chronically infected with HBV at a frequency comparable to humans. The model resembles human disease where also a smaller proportion of infected individuals develop chronic HBV related disease. This model might enable genetic and immunologic investigations which would allow determination of underlying molecular causes favoring susceptibility for chronic HBV infection and disease establishment vs. viral clearance.
Collapse
Affiliation(s)
- Qi Wang
- Department of Experimental Pathology, Guangxi Cancer Institute (Guangxi Tumor Hospital), Nanning 530021, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Josse R, Dumont J, Fautrel A, Robin MA, Guillouzo A. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds. Toxicol Appl Pharmacol 2012; 258:176-87. [DOI: 10.1016/j.taap.2011.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/17/2011] [Accepted: 10/26/2011] [Indexed: 12/26/2022]
|
9
|
Aravalli RN. Progress in stem cell-derived technologies for hepatocellular carcinoma. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:81-92. [PMID: 24198513 PMCID: PMC3781728 DOI: 10.2147/sccaa.s6886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary hepatocellular carcinoma (HCC) is a common malignancy that has a poor prognosis because it is often diagnosed at an advanced stage. HCC normally develops as a consequence of underlying liver disease and is most often associated with cirrhosis. Surgical resection and liver transplantation are the current best options to treat liver cancer. However, problems associated with liver transplantation, such as shortage of donors, risk of immune rejection, and tissue damage following surgery provided the impetus for development of alternative therapies. The emerging field of stem cell therapy has raised hopes for finding curative options for liver cancer. Stem cells have the ability not only to proliferate after transplantation but also to differentiate into most mammalian cell types in vivo. In this review, progress on stem cell-derived technologies for the treatment of liver cancer is discussed.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
10
|
Li Y, Qin X, Cui J, Dai Z, Kang X, Yue H, Zhang Y, Su J, Cao J, Ou C, Yang C, Duan X, Yue H, Liu Y. Proteome analysis of aflatoxin B1-induced hepatocarcinogenesis in tree shrew (Tupaia belangeri chinensis) and functional identification of candidate protein peroxiredoxin II. Proteomics 2008; 8:1490-501. [PMID: 18318006 DOI: 10.1002/pmic.200700229] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In order to explore the proteins responsible for hepatocellular carcinoma (HCC), aflatoxin B(1)-induced hepatocarcinogenesis in tree shrew (Tupaia belangeri chinensis) was analyzed with 2-DE and MS. By comparing HCC samples with their own precancerous biopsies and HCC-surrounding tissues, a group of candidate proteins that differentially expressed in HCC were obtained. Peroxiredoxin (Prx) II, one of the candidates with distinct alteration, was further investigated and validated. Western blot and RT-PCR assays confirmed the overexpression of Prx II in both tree shrew and human HCC tissues. RNA interference for silencing Prx II was employed subsequently to explore the function and underlying mechanism of Prx II on liver cancer cell line Hep3B. Results showed the cell proliferation and clone formation decreased obviously when Prx II expression was inhibited, while the flow cytometer analysis showed the percentage of cell apoptosis enhanced. Inhibition of Prx II expression also obviously increased the generation of ROS and malondialdehyde, both are the products from peroxidation. These results imply the important role of Prx II in hepatocarcinogenesis, possibly through its function in regulating peroxidation and hereby to provide a favorable microenvironment for cancer cell surviving and progressing.
Collapse
Affiliation(s)
- Yuan Li
- Department of Experimental Pathology, Guangxi Cancer Institute, Nanning, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li Y, Wan D, Wei W, Su J, Cao J, Qiu X, Ou C, Ban K, Yang C, Yue H. Candidate genes responsible for human hepatocellular carcinoma identified from differentially expressed genes in hepatocarcinogenesis of the tree shrew (Tupaia belangeri chinesis). Hepatol Res 2008; 38:85-95. [PMID: 17714471 DOI: 10.1111/j.1872-034x.2007.00207.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To explore gene expression profiles during hepatocarcinogenesis of the tree shrew, and to find the genes responsible for human hepatocellular carcinoma (HCC). METHODS Tree shrews were used as an animal model for HCC induction employing aflatoxin B(1) (AFB(1)) alone or AFB(1) plus hepatitis B virus (HBV) as etiological factors. Gene expression profiles from the tissues of HCC, HCC-surrounding liver tissues (para-HCC) and the corresponding biopsies taken from the same animals before HCC had developed (pre-HCC) were analyzed by cDNA microarray assay to identify differentially expressed genes. Two genes, CuZn-superoxide dismutase (SOD1) and glutathione S-transferase A1 (GSTA1), were further investigated by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical (IHC) assays were done on tree shrew and human HCC samples. RESULTS RESULTS from the cDNA microarray analysis indicated that the gene expression profiles of HCC between AFB(1)and AFB(1) + HBV treatment groups were markedly different. A total of 11 genes, including SOD1 and GSTA1, were found changing in expression levels in all detected samples from both groups. RESULTS from RT-PCR and IHC assays indicated that mRNA and protein levels of SOD1 and GSTA1 were markedly downregulated in both tree shrew and human HCC, and downregulation of SOD1 and GSTA1 proteins in human HCC samples was closely correlated with the histopathological grading (P < 0.05). CONCLUSION The differentially expressed genes found in all HCC cases induced by different etiological factors among different species should be considered as good candidate genes responsible for HCC. Downregulation of SOD1 and GSTA1 might play an important role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Experimental Pathology, Guangxi Cancer Institute, Nanning, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|