1
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
2
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zhang Y, Chen X, Cao Y, Yang Z. Roles of APOBEC3 in hepatitis B virus (HBV) infection and hepatocarcinogenesis. Bioengineered 2021; 12:2074-2086. [PMID: 34043485 PMCID: PMC8806738 DOI: 10.1080/21655979.2021.1931640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
APOBEC3 (A3) cytidine deaminases inhibit hepatitis B virus (HBV) infection and play vital roles in maintaining a variety of biochemical processes, including the regulation of protein expression and innate immunity. Emerging evidence indicates that the deaminated deoxycytidine biochemical activity of A3 proteins in single-stranded DNA makes them a double-edged sword. These enzymes can cause cellular genetic mutations at replication forks or within transcription bubbles, depending on the physiological state of the cell and the phase of the cell cycle. Under pathological conditions, aberrant expression of A3 genes with improper deaminase activity regulation may threaten genomic stability and eventually lead to cancer development. This review attempted to summarize the antiviral activities and underlying mechanisms of A3 editing enzymes in HBV infections. Moreover, the correlations between A3 genes and hepatocarcinogenesis were also elucidated.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary HospitalSchool of Medicine, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
4
|
He X, Li J, Wu J, Zhang M, Gao P. Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review). Mol Med Rep 2015; 12:6405-14. [PMID: 26398702 PMCID: PMC4626158 DOI: 10.3892/mmr.2015.4312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) infection is a major risk factor in the development of chronic hepatitis (CH) and hepa-tocellular carcinoma (HCC). The activation-induced cytidine deaminase (AID)/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases is significant in innate immunity, as it restricts numerous viruses, including HBV, through hypermutation-dependent and -independent mechanisms. It is important to induce covalently closed circular (ccc)DNA degradation by interferon-α without causing side effects in the infected host cell. Furthermore, organisms possess multiple mechanisms to regulate the expression of AID/APOBECs, control their enzymatic activity and restrict their access to DNA or RNA substrates. Therefore, the AID/APOBECs present promising targets for preventing and treating viral infections. In addition, gene polymorphisms of the AID/APOBEC family may alter host susceptibility to HBV acquisition and CH disease progression. Through G-to-A hypermutation, AID/APOBECs also edit HBV DNA and facilitate the mutation of HBV DNA, which may assist the virus to evolve and potentially escape from the immune responses. The AID/APOBEC family and their associated editing patterns may also exert oncogenic activity. Understanding the effects of cytidine deaminases in CH virus-induced hepatocarcinogenesis may aid with developing efficient prophylactic and therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Wu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manli Zhang
- Department of Gastroenterology, The Second Branch of The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Janahi EM, McGarvey MJ. The inhibition of hepatitis B virus by APOBEC cytidine deaminases. J Viral Hepat 2013; 20:821-8. [PMID: 24304451 DOI: 10.1111/jvh.12192] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022]
Abstract
APOBEC3 (A3) cytidine deaminases are a family of enzymes that have been shown to inhibit the replication of HIV-1 and other retroviruses as part of the innate immune responses to virus infection. They can also hyperedit HBV DNA and inhibit HBV replication. Although A3 proteins are present at low levels in normal liver, A3 gene expression is highly stimulated by both interferon-α and interferon-γ. A3 deaminases are incorporated into nascent HBV capsids where they cleave amino groups from cytidine bases converting them to uracil in newly synthesized DNA following reverse transcription of pregenomic RNA. This modified HBV DNA is susceptible to degradation, or alternatively, numerous G-to-A nucleotide mutations are incorporated into positive-strand viral DNA disrupting coding sequences. A3 proteins in which the cytidine deaminase activity has been lost can also inhibit HBV replication, suggesting that there may be more than one way in which inhibition can occur. There is also evidence that A3 proteins might play a role in the development of hepatocellular carcinoma during chronic HBV infection.
Collapse
Affiliation(s)
- E M Janahi
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | | |
Collapse
|
6
|
Deng Y, Du Y, Zhang Q, Han X, Cao G. Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation and hepatocellular carcinoma. Cancer Lett 2013; 343:161-71. [PMID: 24120759 DOI: 10.1016/j.canlet.2013.09.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
During hepatitis B virus (HBV)-induced hepatocarcinogenesis, chronic inflammation facilitates the evolution of hepatocellular carcinoma (HCC)-promoting HBV mutants. Cytidine deaminases, whose expression is stimulated by inflammatory cytokines and/or chemokines, play an important role in bridging inflammation and HCC. Through G-to-A hypermutation, cytidine deaminases inhibit HBV replication and facilitate the generation of HCC-promoting HBV mutants including C-terminal-truncated HBx. Cytidine deaminases also promote cancer-related somatic mutations including TP53 mutations. Their editing efficiency is counteracted by uracil-DNA glycosylase. Understanding the effects of cytidine deaminases in HBV-induced hepatocarcinogenesis and HCC progression will aid in developing efficient prophylactic and therapeutic strategies against HCC in HBV-infected population.
Collapse
Affiliation(s)
- Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yan Du
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Qi Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Xia J, Wang W, Li L, Liu Z, Liu M, Yang D. Inhibition of HBV replication by VPS4B and its dominant negative mutant VPS4B-K180Q in vivo. ACTA ACUST UNITED AC 2012; 32:311-316. [PMID: 22684550 DOI: 10.1007/s11596-012-0054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 11/30/2022]
Abstract
This study examined the anti-hepatitis B virus (HBV) effect of wild-type (WT) vacuolar protein sorting 4B (VPS4B) and its dominant negative (DN) mutant VPS4B-K180Q in vivo in order to further explore the relationship between HBV and the host cellular factor VPS4. VPS4B gene was amplified from Huh7 cells by RT-PCR and cloned into the eukaryotic expression vector pXF3H. Then, the VPS4B plasmid and the VPS4B-K180Q mutation plasmid were constructed by using the overlap extension PCR site-directed mutagenesis technique. VPS4B and HBV vectors were co-delivered into mice by the hydrodynamic tail-vein injection to establish HBV vector-based models. Quantities of HBsAg and HBeAg in the mouse sera were determined by ElectroChemiLuminescence (ECL). HBV DNA in sera was measured by real-time quantitative PCR. Southern blot analysis was used to assay the intracellular HBV nuclear capsid-related DNA, real-time quantitative PCR to detect the HBV-related mRNA and immunohistochemical staining to observe the HBcAg expression in the mouse liver tissues. Our results showed that VPS4B and its mutant VPS4B-K180Q could decrease the levels of serum HBsAg, HBeAg and HBV-DNA. In addition, the HBV DNA replication and the mRNA level of HBV in the liver tissues of treated mice could be suppressed by VPS4B and VPS4B-K180Q. It was also found that VPS4B and VPS4B-K180Q had an ability to inhibit core antigen expression in the infected mouse liver. Furthermore, the anti-HBV effect of mutant VPS4B-K180Q was more potent than that of wild-type VPS4B. Taken together, it was concluded that VPS4B and its DN mutant VPS4B-K180Q have anti-HBV effect in vivo, which helps develop molecular therapeutic strategies for HBV infection.
Collapse
Affiliation(s)
- Jianbo Xia
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Clinical Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, 430070, China
| | - Weipeng Wang
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Clinical Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, 430070, China
| | - Lei Li
- Department of Infectious Disease, Anhui Provincial Hospital, Hefei, 230001, China
| | - Zhi Liu
- Department of Clinical Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, 430070, China
| | - Min Liu
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongliang Yang
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Abstract
APOBEC3F (A3F) is a member of the family of cytidine deaminases that is often coexpressed with APOBEC3G (A3G) in cells susceptible to HIV infection. A3F has been shown to have strong antiviral activity in transient-expression studies, and together with A3G, it is considered the most potent cytidine deaminase targeting HIV. Previous analyses suggested that the antiviral properties of A3F can be dissociated from its catalytic deaminase activity. We were able to confirm the deaminase-independent antiviral activity of exogenously expressed A3F; however, we also noted that exogenous expression was associated with very high A3F mRNA and protein levels. In analogy to our previous study of A3G, we produced stable HeLa cell lines constitutively expressing wild-type or deaminase-defective A3F at levels that were more in line with the levels of endogenous A3F in H9 cells. A3F expressed in stable HeLa cells was packaged into Vif-deficient viral particles with an efficiency similar to that of A3G and was properly targeted to the viral nucleoprotein complex. Surprisingly, however, neither wild-type nor deaminase-defective A3F inhibited HIV-1 infectivity. These results imply that the antiviral activity of endogenous A3F is negligible compared to that of A3G.
Collapse
|
9
|
Strebel K, Luban J, Jeang KT. Human cellular restriction factors that target HIV-1 replication. BMC Med 2009; 7:48. [PMID: 19758442 PMCID: PMC2759957 DOI: 10.1186/1741-7015-7-48] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023] Open
Abstract
Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5alpha), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.
Collapse
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, NIAID, the National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
10
|
Henry M, Guétard D, Suspène R, Rusniok C, Wain-Hobson S, Vartanian JP. Genetic editing of HBV DNA by monodomain human APOBEC3 cytidine deaminases and the recombinant nature of APOBEC3G. PLoS One 2009; 4:e4277. [PMID: 19169351 PMCID: PMC2625395 DOI: 10.1371/journal.pone.0004277] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/04/2008] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) DNA is vulnerable to editing by human cytidine deaminases of the APOBEC3 (A3A-H) family albeit to much lower levels than HIV cDNA. We have analyzed and compared HBV editing by all seven enzymes in a quail cell line that does not produce any endogenous DNA cytidine deaminase activity. Using 3DPCR it was possible to show that all but A3DE were able to deaminate HBV DNA at levels from 10−2 to 10−5in vitro, with A3A proving to be the most efficient editor. The amino terminal domain of A3G alone was completely devoid of deaminase activity to within the sensitivity of 3DPCR (∼10−4 to 10−5). Detailed analysis of the dinucleotide editing context showed that only A3G and A3H have strong preferences, notably CpC and TpC. A phylogenic analysis of A3 exons revealed that A3G is in fact a chimera with the first two exons being derived from the A3F gene. This might allow co-expression of the two genes that are able to restrict HIV-1Δvif efficiently.
Collapse
Affiliation(s)
- Michel Henry
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | - Denise Guétard
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | | | - Simon Wain-Hobson
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Goila-Gaur R, Strebel K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 2008; 5:51. [PMID: 18577210 PMCID: PMC2443170 DOI: 10.1186/1742-4690-5-51] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/24/2008] [Indexed: 02/05/2023] Open
Abstract
Members of the APOBEC family of cellular cytidine deaminases represent a recently identified group of proteins that provide immunity to infection by retroviruses and protect the cell from endogenous mobile retroelements. Yet, HIV-1 is largely immune to the intrinsic antiviral effects of APOBEC proteins because it encodes Vif (viral infectivity factor), an accessory protein that is critical for in vivo replication of HIV-1. In the absence of Vif, APOBEC proteins are encapsidated by budding virus particles and either cause extensive cytidine to uridine editing of negative sense single-stranded DNA during reverse transcription or restrict virus replication through deaminase-independent mechanisms. Thus, the primary function of Vif is to prevent encapsidation of APOBEC proteins into viral particles. This is in part accomplished by the ability of Vif to induce the ubiquitin-dependent degradation of some of the APOBEC proteins. However, Vif is also able to prevent encapsidation of APOBEC3G and APOBEC3F through degradation-independent mechanism(s). The goal of this review is to recapitulate current knowledge of the functional interaction of HIV-1 and its Vif protein with the APOBEC3 subfamily of proteins and to summarize our present understanding of the mechanism of APOBEC3-dependent retrovirus restriction.
Collapse
Affiliation(s)
- Ritu Goila-Gaur
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4/312, Bethesda, Maryland 20892-0460, USA.
| | | |
Collapse
|