1
|
Page A, Paoli P, Salvador EM, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 2016; 64:661-73. [PMID: 26632634 PMCID: PMC4904781 DOI: 10.1016/j.jhep.2015.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS DNA methylation (5-mC) is an epigenetic mark that is an established regulator of transcriptional repression with an important role in liver fibrosis. Currently, there is very little knowledge available as to how DNA methylation controls the phenotype of hepatic stellate cell (HSC), the key cell type responsible for onset and progression of liver fibrosis. Moreover, recently discovered DNA hydroxymethylation (5-hmC) is involved in transcriptional activation and its patterns are often altered in human diseases. The aim of this study is to investigate the role of DNA methylation/hydroxymethylation in liver fibrosis. METHODS Levels of 5-mC and 5-hmC were assessed by slot blot in a range of animal liver fibrosis models and human liver diseases. Expression levels of TET and DNMT enzymes were measured by qRT-PCR and Western blotting. Reduced representation bisulfite sequencing (RRBS) method was used to examine 5-mC and 5-hmC patterns in quiescent and in vivo activated rat HSC. RESULTS We demonstrate global alteration in 5-mC and 5-hmC and their regulatory enzymes that accompany liver fibrosis and HSC transdifferentiation. Using RRBS, we show exact genomic positions of changed methylation patterns in quiescent and in vivo activated rat HSC. In addition, we demonstrate that reduction in DNMT3a expression leads to attenuation of pro-fibrogenic phenotype in activated HSC. CONCLUSIONS Our data suggest that DNA 5-mC/5-hmC is a crucial step in HSC activation and therefore fibrogenesis. Changes in DNA methylation during HSC activation may bring new insights into the molecular events underpinning fibrogenesis and may provide biomarkers for disease progression as well as potential new drug targets.
Collapse
Affiliation(s)
- Agata Page
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Pier Paoli
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Eva Moran Salvador
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Steve White
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeremy French
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
2
|
Page A, Paoli PP, Hill SJ, Howarth R, Wu R, Kweon SM, French J, White S, Tsukamoto H, Mann DA, Mann J. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol 2015; 62:388-97. [PMID: 25457206 PMCID: PMC4629846 DOI: 10.1016/j.jhep.2014.09.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Alcohol is a primary cause of liver disease and an important co-morbidity factor in other causes of liver disease. A common feature of progressive liver disease is fibrosis, which results from the net deposition of fibril-forming extracellular matrix (ECM). The hepatic stellate cell (HSC) is widely considered to be the major cellular source of fibrotic ECM. We determined if HSCs are responsive to direct stimulation by alcohol. METHODS HSCs undergoing transdifferentiation were incubated with ethanol and expression of fibrogenic genes and epigenetic regulators was measured. Mechanisms responsible for recorded changes were investigated using ChIP-Seq and bioinformatics analysis. Ethanol induced changes were confirmed using HSCs isolated from a mouse alcohol model and from ALD patient's liver and through precision cut liver slices. RESULTS HSCs responded to ethanol exposure by increasing profibrogenic and ECM gene expression including elastin. Ethanol induced an altered expression of multiple epigenetic regulators, indicative of a potential to modulate chromatin structure during HSC transdifferentiation. MLL1, a histone 3 lysine 4 (H3K4) methyltransferase, was induced by ethanol and recruited to the elastin gene promoter where it was associated with enriched H3K4me3, a mark of active chromatin. Chromatin immunoprecipitation sequencing (ChIPseq) revealed that ethanol has broad effects on the HSC epigenome and identified 41 gene loci at which both MML1 and its H3K4me3 mark were enriched in response to ethanol. CONCLUSIONS Ethanol directly influences HSC transdifferentiation by stimulating global changes in chromatin structure, resulting in the increased expression of ECM proteins. The ability of alcohol to remodel the epigenome during HSC transdifferentiation provides mechanisms for it to act as a co-morbidity factor in liver disease.
Collapse
Affiliation(s)
- Agata Page
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Pier P Paoli
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Stephen J Hill
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel Howarth
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Raymond Wu
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, University of Southern California Keck School of Medicine, USA; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Soo-Mi Kweon
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, University of Southern California Keck School of Medicine, USA; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jeremy French
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Steve White
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, University of Southern California Keck School of Medicine, USA; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Derek A Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|