1
|
Rahimi D, Sharifi R, Jaberie H, Naghibalhossaini F. Antiproliferative and Antitelomerase Effects of Silymarin on Human Colorectal and Hepatocellular Carcinoma Cells. PLANTA MEDICA 2024; 90:298-304. [PMID: 38219733 DOI: 10.1055/a-2244-8788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both in vitro and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines. The cell viability and telomerase activity were assessed using MTT and the telomerase repeat amplification protocol assay, respectively. We also investigated the effects of silymarin on the expression of human telomerase reverse transcriptase and its promoter methylation in HepG2 cells by real-time RT-PCR and methylation-specific PCR, respectively. Silymarin treatment inhibited cell proliferation and telomerase activity in all cancer cells. After 24 h of treatment, silymarin exhibited IC50 values ranging from 19 - 56.3 µg/mL against these cancer cells. A 30-min treatment with silymarin at the IC50 concentration effectively inhibited telomerase activity in cell-free extracts of both colorectal cancer and hepatocyte carcinoma cells. Treatment of HepG2 cells with 10 and 30 µg/mL of silymarin for 48 h resulted in a decrease in human telomerase reverse transcriptase expression to 75 and 35% of the level observed in the untreated control (p < 0.01), respectively. Treatment with silymarin (10, 30, and 60 µg/mL) for 48 h did not affect human telomerase reverse transcriptase promoter methylation in HepG2 cells. In conclusion, our findings suggest that silymarin inhibits cancer cell growth by directly inhibiting telomerase activity and downregulating its human telomerase reverse transcriptase catalytic subunit. However, silymarin did not affect human telomerase reverse transcriptase promoter methylation at the concentrations of 10 - 60 µg/mL used in this study.
Collapse
Affiliation(s)
- Daruosh Rahimi
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Roya Sharifi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hajar Jaberie
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | |
Collapse
|
2
|
Kato Y, Fukazawa T, Tanimoto K, Kanawa M, Kojima M, Saeki I, Kurihara S, Touge R, Hirohashi N, Okada S, Hiyama E. Achaete-scute family bHLH transcription factor 2 activation promotes hepatoblastoma progression. Cancer Sci 2024; 115:847-858. [PMID: 38183173 PMCID: PMC10921009 DOI: 10.1111/cas.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
Achaete-scute family bHLH transcription factor 2 (ASCL2) is highly expressed in hepatoblastoma (HB) tissues, but its role remains unclear. Thus, biological changes in the HB cell line HepG2 in response to induced ASCL2 expression were assessed. ASCL2 expression was induced in HepG2 cells using the Tet-On 3G system, which includes doxycycline. Cell viability, proliferation activity, mobility, and stemness were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony-formation, migration, invasion, and sphere-formation assays. Quantitative reverse-transcription polymerase chain reaction was used to assess the expression of markers for proliferation (CCND1 and MYC), epithelial-mesenchymal transition (EMT; SNAI1, TWIST1, and ZEB1), mesenchymal-epithelial transition (CDH1), and stemness (KLF4, POU5F1, and SOX9). Compared with the non-induced HepG2 cells, cells with induced ASCL2 expression showed significant increases in viability, colony number, migration area (%), and sphere number on days 7, 14, 8, and 7, respectively, and invasion area (%) after 90 h. Furthermore, induction of ASCL2 expression significantly upregulated CCND1, MYC, POU5F1, SOX9, and KLF4 expression on days 2, 2, 3, 3, and 5, respectively, and increased the ratios of SNAI1, TWIST1, and ZEB1 to CDH1 on day 5. ASCL2 promoted the formation of malignant phenotypes in HepG2 cells, which may be correlated with the upregulation of the Wnt signaling pathway-, EMT-, and stemness-related genes. ASCL2 activation may therefore be involved in the progression of HB.
Collapse
Affiliation(s)
- Yutaka Kato
- Department of Pediatrics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takahiro Fukazawa
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Division of Medical Research Support, Advanced Research Support CenterEhime UniversityToonJapan
| | - Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Masami Kanawa
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
| | - Masato Kojima
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Isamu Saeki
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Sho Kurihara
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Ryo Touge
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Nobuyuki Hirohashi
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Eiso Hiyama
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| |
Collapse
|
3
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
4
|
Sanaei M, Kavoosi F, Nasiri S. Effect of 5-aza-2'-deoxycytidine on p27Kip1, p21Cip1/Waf1/Sdi1, p57Kip2, and DNA methyltransferase 1 Genes Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer SW 480 and SW 948 Cell Lines. Galen Med J 2021; 9:e1899. [PMID: 34466608 PMCID: PMC8343479 DOI: 10.31661/gmj.v9i0.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background:
Dysregulation of the cell cycle has been reported in various cancers. Inactivation of the cyclin-dependent kinases inhibitors (CDKIs), CIP/KIP family, such as p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 genes because of hypermethylation has been shown in several cancers. Treatment with DNA demethylating agent 5-aza-2ˈ-deoxycytidine (5-Aza-CdR) has been indicated that affect genomic methylation and resulting in silenced genes reactivation in colon cancer. Previously, we evaluated the effect of 5-Aza-CdR on DNA methyltransferase 1 (DNMT1) gene expression in hepatocellular carcinoma (HCC) which encouraged us to design the current study. The present study aimed to evaluate the effect of 5-Aza-CdR on p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2, and DNAT1 genes expression, cell growth inhibition and apoptosis induction in colon cancer SW 480 and SW 948 cell lines.
Materials and Methods: The effect of 5-aza-CdR on the SW 480 and SW 948 cells growth, apoptosis induction and genes expression were assessed by MTT assay, flow cytometry, and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis respectively. Results:
5-aza-CdR inhibited cell growth as time-and dose-dependent manner significantly (P<0.001). The agent reactivated p15INK4, p16INK4, p18INK4, and p19INK4 genes expression and induced apoptosis at a concentration of 5 μM significantly. Besides, 5-aza-CdR had a more significant effect on the SW 480 cell line in comparison to SW 948 cell line.
Conclusion:
5-Aza-CdR plays a key role in the up-regulation of p21Cip1/ Waf1/Sdi1, p27Kip1, and p57Kip2 and down-regulation of DNMT1 genes resulting in cell growth inhibition and apoptosis induction.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Correspondence to: Fraidoon Kavoosi, Research Center for Non-communicable Diseases, Jahrom University of medical sciences, Jahrom, Iran Telephone Number: 00987154265814 Email Address:
| | - Sedighe Nasiri
- Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
5
|
Ricci C, Morandi L, Ambrosi F, Righi A, Gibertoni D, Maletta F, Agostinelli C, Corradini AG, Uccella S, Asioli S, Sessa F, La Rosa S, Papotti MG, Asioli S. Intron 4-5 hTERT DNA Hypermethylation in Merkel Cell Carcinoma: Frequency, Association with Other Clinico-pathological Features and Prognostic Relevance. Endocr Pathol 2021; 32:385-395. [PMID: 33909215 PMCID: PMC8370894 DOI: 10.1007/s12022-021-09669-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/23/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin tumor with neuroendocrine differentiation, mainly affecting elderly population or immunocompromised individuals. As methylation of the human telomerase reverse transcriptase (mhTERT) has been shown to be a prognostic factor in different tumors, we investigated its role in MCC, in particular in intron 4-5 where rs10069690 has been mapped and recognized as a cancer susceptibility locus. DNA methylation analysis of hTERT gene was assessed retrospectively in a cohort of 69 MCC patients from the University of Bologna, University of Turin and University of Insubria. Overall mortality was evaluated with Kaplan-Meier curves and multivariable Royston-Parmar models. High levels of mhTERT (mhTERThigh) (HR = 2.500, p = 0.015) and p63 (HR = 2.659, p = 0.016) were the only two clinico-pathological features significantly associated with a higher overall mortality at the multivariate analysis. We did not find different levels of mhTERT between MCPyV (+) and (-) cases (21 vs 14, p = 0.554); furthermore, mhTERThigh was strongly associated with older age (80.5 vs 72 years, p = 0.026), no angioinvasion (40.7% vs 71.0%, p = 0.015), lower Ki67 (50 vs 70%, p = 0.005), and PD-L1 expressions in both tumor (0 vs 3%, p = 0.021) and immune cells (0 vs 10%, p = 0.002). mhTERT is a frequently involved epigenetic mechanism and a relevant prognostic factor in MCC. In addition, it belongs to the shared oncogenic pathways of MCC (MCPyV and UV-radiations) and it could be crucial, together with other epigenetic and genetic mechanisms as gene amplification, in determining the final levels of hTERT mRNA and telomerase activity in these patients.
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, Maggiore Hospital, AUSL Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, Functional MR Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | | | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dino Gibertoni
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene and Biostatistics, University of Bologna, Bologna, Italy
| | - Francesca Maletta
- Department of Oncology, University of Turin, Città Della Salute Hospital, Turin, Italy
| | - Claudio Agostinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Angelo Gianluca Corradini
- Department of Biomedical and Neuromotor Sciences, Functional MR Unit, IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Silvia Uccella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Silvia Asioli
- Unit of Pathology, Morgagni-Pierantoni Hospital, Forlì, 47121, Italy
| | - Fausto Sessa
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefano La Rosa
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mauro Giulio Papotti
- Department of Oncology, University of Turin, Città Della Salute Hospital, Turin, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM) Surgical Pathology Section- Alma Mater Studiorum , University of Bologna , Bologna, Italy.
| |
Collapse
|
6
|
Donia T, Khedr S, Salim EI, Hessien M. Trichostatin A sensitizes hepatoma cells to Taxol more than 5-Aza-dC and dexamethasone. Drug Metab Pers Ther 2021; 36:299-309. [PMID: 34773731 DOI: 10.1515/dmpt-2020-0186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This work was designed to compare the sensitizing effects of epigenetic modifiers on cancer cells vs. that of glucocorticoids. Also, to evaluate their effects on genes involved in epigenetic changes and drug metabolism. METHODS Hepatoma cells (HepG2) were treated with the anticancer drug (Taxol), with a histone deacetylase inhibitor (Trichostatin A [TSA]), DNA methyltransferase inhibitor (5-Aza-dC) or dexamethasone (DEX). Cytotoxicity was assessed by MTT assay and the apoptosis was determined by Annexin V-FITC. The expression levels of HDAC1, HDAC3, Dnmt1, Dnmt3α, CYP1A2, CYP3A4, CYP2B6, CYP2C19 and CYP2D6 were monitored by qRT-PCR. RESULTS TSA, synergistically enhanced cells sensitivity with the anticancer effect of Taxol more than 5-Aza-dC and DEX. This was evidenced by the relative decrease in IC50 in cells cotreated with Taxol + TSA, Taxol + 5-Aza-dC or Taxol + DEX. Apoptosis was induced in 51.2, 16.9 and 41.3% of cells, respectively. In presence of Taxol, TSA induced four-fold increase in the expression of HDAC1 and downregulated Dnmt1&3α genes. CYP2D6 demonstrated progressive expression (up to 28-fold) with the increasing number of drugs. Moreover, the isoform overexpressed in cells treated with TSA + Taxol > DEX + Taxol > 5-Aza-dC + Taxol (6.4, 4.6 and 2.99, respectively). The investigated genes were clustered in two distinct subsets, where no coregulation was observed between HDAC1 and HDAC3. However, tight pairwise correlation-based cluster was seen between (CYP3A4/Dnmt3α and CYP2D6/CYP2C19). CONCLUSIONS The data reflects the sensitizing effect of acetylation modification by TSA on the responsiveness of hepatoma cells to anticancer therapy. The effect of histone deacetylase inhibition was more than hypomethylation and glucocorticoid effects. TSA exerts its role through its modulatory role on epigenetics and drugs metabolizing genes. Other modifiers (5-Aza-dC and DEX), however may adopt different mechanisms.
Collapse
Affiliation(s)
- Thoria Donia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sherien Khedr
- College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | - Elsayed I Salim
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Hessien
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Donia T, Khedr S, Salim EI, Hessien M. Trichostatin A sensitizes hepatoma cells to Taxol more than 5-Aza-dC and dexamethasone. Drug Metab Pers Ther 2021; 0:dmdi-2020-0186. [PMID: 33818027 DOI: 10.1515/dmdi-2020-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This work was designed to compare the sensitizing effects of epigenetic modifiers on cancer cells vs. that of glucocorticoids. Also, to evaluate their effects on genes involved in epigenetic changes and drug metabolism. METHODS Hepatoma cells (HepG2) were treated with the anticancer drug (Taxol), with a histone deacetylase inhibitor (Trichostatin A [TSA]), DNA methyltransferase inhibitor (5-Aza-dC) or dexamethasone (DEX). Cytotoxicity was assessed by MTT assay and the apoptosis was determined by Annexin V-FITC. The expression levels of HDAC1, HDAC3, Dnmt1, Dnmt3α, CYP1A2, CYP3A4, CYP2B6, CYP2C19 and CYP2D6 were monitored by qRT-PCR. RESULTS TSA, synergistically enhanced cells sensitivity with the anticancer effect of Taxol more than 5-Aza-dC and DEX. This was evidenced by the relative decrease in IC50 in cells cotreated with Taxol + TSA, Taxol + 5-Aza-dC or Taxol + DEX. Apoptosis was induced in 51.2, 16.9 and 41.3% of cells, respectively. In presence of Taxol, TSA induced four-fold increase in the expression of HDAC1 and downregulated Dnmt1&3α genes. CYP2D6 demonstrated progressive expression (up to 28-fold) with the increasing number of drugs. Moreover, the isoform overexpressed in cells treated with TSA + Taxol > DEX + Taxol > 5-Aza-dC + Taxol (6.4, 4.6 and 2.99, respectively). The investigated genes were clustered in two distinct subsets, where no coregulation was observed between HDAC1 and HDAC3. However, tight pairwise correlation-based cluster was seen between (CYP3A4/Dnmt3α and CYP2D6/CYP2C19). CONCLUSIONS The data reflects the sensitizing effect of acetylation modification by TSA on the responsiveness of hepatoma cells to anticancer therapy. The effect of histone deacetylase inhibition was more than hypomethylation and glucocorticoid effects. TSA exerts its role through its modulatory role on epigenetics and drugs metabolizing genes. Other modifiers (5-Aza-dC and DEX), however may adopt different mechanisms.
Collapse
Affiliation(s)
- Thoria Donia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sherien Khedr
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Elsayed I Salim
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Hessien
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Chebly A, Ropio J, Peloponese JM, Poglio S, Prochazkova-Carlotti M, Cherrier F, Ferrer J, Idrissi Y, Segal-Bendirdjian E, Chouery E, Farra C, Pham-Ledard A, Beylot-Barry M, Philippe Merlio J, Tomb R, Chevret E. Exploring hTERT promoter methylation in cutaneous T-cell lymphomas. Mol Oncol 2021; 16:1931-1946. [PMID: 33715271 PMCID: PMC9067155 DOI: 10.1002/1878-0261.12946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
Abstract
Cutaneous T‐cell lymphomas (CTCLs) are telomerase‐positive tumors expressing hTERT, although neither gene rearrangement/amplification nor promoter hotspot mutations could explain the hTERT re‐expression. As the hTERT promoter is rich in CpG, we investigated the contribution of epigenetic mechanisms in its re‐expression. We analyzed hTERT promoter methylation status in CTCL cells compared with healthy cells. Gene‐specific methylation analyses revealed a common methylation pattern exclusively in tumor cells. This methylation pattern encompassed a hypermethylated distal region from −650 to −150 bp and a hypomethylated proximal region from −150 to +150 bp. Interestingly, the hypermethylated region matches with the recently named TERT hypermethylated oncogenic region (THOR). THOR has been associated with telomerase reactivation in many cancers, but it has so far not been reported in cutaneous lymphomas. Additionally, we assessed the effect of THOR on two histone deacetylase inhibitors (HDACi), romidepsin and vorinostat, both approved for CTCL treatment and a DNA methyltransferase inhibitor (DNMTi) 5‐azacytidine, unapproved for CTCL. Contrary to our expectations, the findings reported herein revealed that THOR methylation is relatively stable under these epigenetic drugs' pressure, whereas these drugs reduced the hTERT gene expression.
Collapse
Affiliation(s)
- Alain Chebly
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Porto University, Institute of Biomedical Sciences of Abel Salazar, Instituto de Investigação e Inovação em Saúde, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465, Porto, Portugal
| | - Jean-Marie Peloponese
- University of Montpellier, CNRS, IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, Montpellier, France
| | - Sandrine Poglio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | | | | | - Jacky Ferrer
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Yamina Idrissi
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Evelyne Segal-Bendirdjian
- INSERM, UMR-S 1124, Team: Cellular Homeostasis Cancer and Therapies, Université de Paris, Paris, France
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Chantal Farra
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Hotel Dieu de France Medical Center, Faculty of Medicine, Genetics Department, Beirut, Lebanon
| | - Anne Pham-Ledard
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Marie Beylot-Barry
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Jean Philippe Merlio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, F-33600, Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| |
Collapse
|
9
|
Liu A, Wu Q, Peng D, Ares I, Anadón A, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Martínez MA. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev 2020; 40:1973-2018. [PMID: 32525219 DOI: 10.1002/med.21696] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
The cancer mortality rate of hepatocellular carcinoma (HCC) is the second highest in the world and the therapeutic options are limited. The incidence of this deadly cancer is rising at an alarming rate because of the high degree of resistance to chemo- and radiotherapy, lack of proper, and adequate vaccination to hepatitis B, and lack of consciousness and knowledge about the disease itself and the lifestyle of the people. DNA methylation and DNA methylation-induced epigenetic alterations, due to their potential reversibility, open the access to develop novel biomarkers and therapeutics for HCC. The contribution to these epigenetic changes in HCC development still has not been thoroughly summarized. Thus, it is necessary to better understand the new molecular targets of HCC epigenetics in HCC diagnosis, prevention, and treatment. This review elaborates on recent key findings regarding molecular biomarkers for HCC early diagnosis, prognosis, and treatment. Currently emerging epigenetic drugs for the treatment of HCC are summarized. In addition, combining epigenetic drugs with nonepigenetic drugs for HCC treatment is also mentioned. The molecular mechanisms of DNA methylation-mediated HCC resistance are reviewed, providing some insights into the difficulty of treating liver cancer and anticancer drug development.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
10
|
Sanaei M, Kavoosi F. Effect of 5-Aza-2'-Deoxycytidine in Comparison to Valproic Acid and Trichostatin A on Histone Deacetylase 1, DNA Methyltransferase 1, and CIP/KIP Family (p21, p27, and p57) Genes Expression, Cell Growth Inhibition, and Apoptosis Induction in Colon Cancer SW480 Cell Line. Adv Biomed Res 2019; 8:52. [PMID: 31516890 PMCID: PMC6712896 DOI: 10.4103/abr.abr_91_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer initiation and progression depends on genetic and epigenetic alterations such as DNA methylation and histone modifications. Hypermethylation and deacetylation of the CIP/KIP family (p21, p27, and p57) lead to tumorigenesis. Our previous study indicated that DNA methyltransferase (DNMT) inhibitor and histone deacetylase (HDAC) inhibitors can inhibit cell growth and induce apoptosis. The aim of the present study was to investigate the effect of 5-Aza-2'-deoxycytidine (5-Aza-CdR) in comparison to valproic acid (VPA) and trichostatin A (TSA) on HDAC1, DNMT1, and CIP/KIP family (p21, p27, and p57) genes expression, cell growth inhibition, and apoptosis induction in colon cancer SW480 cell line. MATERIALS AND METHODS The effect of the compounds on the cell viability was measured by MTT assay. The expression of HDAC1, DNMT1, and CIP/KIP family (p21, p27, and p57) genes was evaluated by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). For the detection of cell apoptosis, apoptotic cells were examined by the Annexin V-FITC/PI detection kit. RESULTS The results of MTT assay indicated that 5-Aza-CdR, VPA, and TSA significantly inhibited cell growth (P < 0.002, P < 0.001, and P < 0.001, respectively). The results of real-time RT-PCR demonstrated that all compounds significantly down-regulated DNMT1 and HDAC1, and up-regulated p21, p27, and p57 genes expression. The result of flow cytometry assay revealed that all agents induced apoptosis significantly. CONCLUSION 5-Aza-CdR, VPA, and TSA can significantly downregulate DNMT1 and HDAC1 and up-regulate p21, p27, and p57 genes expression through which enhance cell apoptosis and cell growth inhibition in colon cancer.
Collapse
Affiliation(s)
- Masumeh Sanaei
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Fraidoon Kavoosi
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| |
Collapse
|
11
|
Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, Feng ZB, Chen G. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med 2018; 16:220. [PMID: 30092792 PMCID: PMC6085698 DOI: 10.1186/s12967-018-1593-5] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have received increasing attention in human tumor research. However, there are still a large number of unknown circRNAs that need to be deciphered. The aim of this study is to unearth novel circRNAs as well as their action mechanisms in hepatocellular carcinoma (HCC). METHODS A combinative strategy of big data mining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and computational biology was employed to dig HCC-related circRNAs and to explore their potential action mechanisms. A connectivity map (CMap) analysis was conducted to identify potential therapeutic agents for HCC. RESULTS Six differently expressed circRNAs were obtained from three Gene Expression Omnibus microarray datasets (GSE78520, GSE94508 and GSE97332) using the RobustRankAggreg method. Following the RT-qPCR corroboration, three circRNAs (hsa_circRNA_102166, hsa_circRNA_100291 and hsa_circRNA_104515) were selected for further analysis. miRNA response elements of the three circRNAs were predicted. Five circRNA-miRNA interactions including two circRNAs (hsa_circRNA_104515 and hsa_circRNA_100291) and five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-877-5p, hsa-miR-583 and hsa-miR-1276) were identified. Then, 1424 target genes of the above five miRNAs and 3278 differently expressed genes (DEGs) on HCC were collected. By intersecting the miRNA target genes and the DEGs, we acquired 172 overlapped genes. A protein-protein interaction network based on the 172 genes was established, with seven hubgenes (JUN, MYCN, AR, ESR1, FOXO1, IGF1 and CD34) determined from the network. The Gene Oncology, Kyoto Encyclopedia of Genes and Genomes and Reactome enrichment analyses revealed that the seven hubgenes were linked with some cancer-related biological functions and pathways. Additionally, three bioactive chemicals (decitabine, BW-B70C and gefitinib) based on the seven hubgenes were identified as therapeutic options for HCC by the CMap analysis. CONCLUSIONS Our study provides a novel insight into the pathogenesis and therapy of HCC from the circRNA-miRNA-mRNA network view.
Collapse
Affiliation(s)
- Dan-dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dong-yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Rong-quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Dian-zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Zhen-bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People’s Republic of China
| |
Collapse
|
12
|
He ZH, Chen Y, Chen P, He SD, Zeng HH, Ye JR, Liu D, Cao J. 5-Aza-2'-deoxycytidine protects against emphysema in mice via suppressing p16 Ink4a expression in lung tissue. Int J Chron Obstruct Pulmon Dis 2017; 12:3149-3158. [PMID: 29133977 PMCID: PMC5669795 DOI: 10.2147/copd.s131090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background There is a growing realization that COPD, or at least emphysema, involves several processes presenting in aging and cellular senescence. Endothelial progenitor cells (EPCs) contribute to neovascularization and play an important role in the development of COPD. The gene for p16Ink4a is a major dominant senescence one. The aim of the present study was to observe changes in lung function, histomorphology of lung tissue, and expression of p16Ink4a in lung tissue and bone marrow-derived EPCs in emphysematous mice induced by cigarette-smoke extract (CSE), and further to search for a potential candidate agent protecting against emphysema induced by CSE. Materials and methods An animal emphysema model was induced by intraperitoneal injection of CSE. 5-Aza-2′-deoxycytidine (5-Aza-CdR) was administered to the emphysematous mice. Lung function and histomorphology of lung tissue were measured. The p16Ink4a protein and mRNA in EPCs and lung tissues were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction, respectively. Results CSE induced emphysema with increased p16Ink4a expression in lung tissue and bone marrow-derived EPCs. 5-Aza-CdR partly protected against emphysema, especially in the lung-morphology profile, and partly protest against the overexpression of p16Ink4a in EPCs and lung tissue induced by CSE. Conclusion 5-Aza-CdR partly protected against emphysema in mice via suppressing p16Ink4a expression in EPCs and lung tissue.
Collapse
Affiliation(s)
| | - Yan Chen
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha
| | - Ping Chen
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha
| | - Sheng-Dong He
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha
| | - Hui-Hui Zeng
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha
| | - Ji-Ru Ye
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha
| | - Da Liu
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha
| | - Jun Cao
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
13
|
Peri-tumor associated fibroblasts promote intrahepatic metastasis of hepatocellular carcinoma by recruiting cancer stem cells. Cancer Lett 2017; 404:19-28. [PMID: 28716525 DOI: 10.1016/j.canlet.2017.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Fibroblasts have been reported to play an important role in hepatocellular carcinoma (HCC). However, the role of fibroblasts have not been fully understood. Conditioned medium collected from human peri-tumor tissue-derived fibroblasts (CM-pTAFs) showed high metastasis ability than human HCC tissues-derived fibroblasts (CM-TAFs). To determine what component was secreted from fibroblasts, we used Bio-Plex analysis system and compared the factors secreted from CM-pTAFs and CM-TAFs, found a series of up-regulated cytokines in the CM-pTAFs, including IL-6, CCL2, CXCL1, CXCL8, SCGF-β, HGF and VEGF. Pretreatment of IL-6 inhibitor Tocilizumab could inhibit metastasis the HCC cell treated with CM-pTAFs in vitro and in vivo. The expression of CCR2 and CXCR1 were up-regulated after CM-pTAFs treatment in HCC cell line SMMC-7721. Flow cytometric analysis experiment showed that most CCR2 or CXCR1 positive cells were also EpCAM positive. In vitro studies also showed that CM-pTAFs could increase stemness of SMMC-7721. In addition, neutralization of SCGF-β and HGF could significantly reduce metastasis and viability of cancer stem cells treated with CM-pTAFs. Taken together, these results indicated that the peri-tumor tissues derived fibroblasts may promote development of HCC by recruiting cancer stem cells and maintaining their stemness characteristic.
Collapse
|
14
|
Hilal G, Reitzel R, Al Hamal Z, Chaftari AM, Al Wohoush I, Jiang Y, Hachem R, Raad II. Novel plasma telomerase detection method to improve cancer diagnostic assessment. PLoS One 2017; 12:e0174266. [PMID: 28467443 PMCID: PMC5414931 DOI: 10.1371/journal.pone.0174266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/05/2017] [Indexed: 01/15/2023] Open
Abstract
Background The activity levels of telomerase and its mRNA have been found to be more diagnostically sensitive than cytological results in many cancerous tissues and correlate well with the clinical disease stage. Currently, there are several methods of detecting telomerase in tissues and in blood. The most commonly used method is a conventional quantitative real-time polymerase chain reaction (PCR) which is time and labor exhausting. Methods We have developed a simple and innovative blood test method that allows us to diagnose cancer and relapsed cancer in a cost- and time -effective manner. We had evaluated our novel method in two populations: 1) in vivo in three mice with pancreatic ductal adenocarcinoma (PDAC) versus one control mouse and 2) clinically in 30 cancer patients versus 10 individuals without cancer. We compared our novel method with the old conventional method. At least one sample was obtained from each patient included in the study. Results The novel method substantially increased the sensitivity (from 37% to 77%, p<0.001) and negative predictive value (from 32% to 56%, p = 0.005) of the telomerase test for all cancer patients (those who were substantially treated and those who were not). There was no significant difference in telomerase activity between cancer patients and healthy volunteers using the conventional method (p = 0.13), whereas there was a significant difference using the novel method (p = 0.001). Conclusion Conventional method shows no significant difference in telomerase activity between cancer patients and healthy volunteers (p = 0.13), whereas there was a significant difference using the novel method (p = 0.001).
Collapse
Affiliation(s)
- George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Campus of Medical Sciences, Saint-Joseph University, Riad el Solh, Beirut, Lebanon
| | - Ruth Reitzel
- Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zainab Al Hamal
- Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anne-Marie Chaftari
- Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Iba Al Wohoush
- Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ying Jiang
- Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ray Hachem
- Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| | - Issam I. Raad
- Department of Infectious Diseases, Infection Control and Employee Health, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
15
|
Wahid B, Ali A, Rafique S, Idrees M. New Insights into the Epigenetics of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1609575. [PMID: 28401148 PMCID: PMC5376429 DOI: 10.1155/2017/1609575] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most predominant malignancies with high fatality rate. This deadly cancer is rising at an alarming rate because it is quite resistant to radio- and chemotherapy. Different epigenetic mechanisms such as histone modifications, DNA methylation, chromatin remodeling, and expression of noncoding RNAs drive the cell proliferation, invasion, metastasis, initiation, progression, and development of HCC. These epigenetic alterations because of potential reversibility open way towards the development of biomarkers and therapeutics. The contribution of these epigenetic changes to HCC development has not been thoroughly explored yet. Further research on HCC epigenetics is necessary to better understand novel molecular-targeted HCC treatment and prevention. This review highlights latest research progress and current updates regarding epigenetics of HCC, biomarker discovery, and future preventive and therapeutic strategies to combat the increasing risk of HCC.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan
- Hazara University, Mansehra, Pakistan
| |
Collapse
|
16
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [PMID: 27118336 DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|
17
|
Zhang X, Li B, de Jonge N, Björkholm M, Xu D. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression. Oncotarget 2016; 6:4888-900. [PMID: 25682873 PMCID: PMC4467122 DOI: 10.18632/oncotarget.2917] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/14/2014] [Indexed: 01/27/2023] Open
Abstract
DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Bingnan Li
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nick de Jonge
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Magnus Björkholm
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Dawei Xu
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
18
|
Global analysis of DNA methylation in hepatocellular carcinoma by a liquid hybridization capture-based bisulfite sequencing approach. Clin Epigenetics 2015; 7:86. [PMID: 26300991 PMCID: PMC4546208 DOI: 10.1186/s13148-015-0121-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Epigenetic alterations, such as aberrant DNA methylation of promoter and enhancer regions, which lead to atypical gene expression, have been associated with carcinogenesis. In hepatocellular carcinoma (HCC), genome-wide analysis of methylation has only recently been used. For a better understanding of hepatocarcinogenesis, we applied an even higher resolution analysis of the promoter methylome to identify previously unknown regions and genes differentially methylated in HCC. RESULTS Optimized liquid hybridization capture-based bisulfite sequencing (LHC-BS) was developed to quantitatively analyze 1.86 million CpG sites in individual samples from eight pairs of HCC and adjacent tissues. By linking the differentially methylated regions (DMRs) in promoters to the differentially expressed genes (DEGs), we identified 12 DMR-associated genes. We further utilized Illumina MiSeq combining the bisulfite sequencing PCR approach to validate the 12 candidate genes. Analysis of an additional 78 HCC pairs on the Illumina MiSeq platform confirmed that 7 genes showed either promoter hyper-methylation (SMAD6, IFITM1, LRRC4, CHST4, and TBX15) or hypo-methylation (CCL20 and NQO1) in HCC. CONCLUSIONS Novel methylome profiling provides a cost-efficient approach to identifying candidate genes in human HCC that may contribute to hepatocarcinogenesis. Our work provides further information critical for understanding the epigenetic processes underlying tumorigenesis and development of HCC.
Collapse
|
19
|
Epigenetic regulation in hepatocellular carcinoma requires long noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:473942. [PMID: 25861629 PMCID: PMC4377435 DOI: 10.1155/2015/473942] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/15/2022]
Abstract
Recent evidence has proven the relevance of epigenetic changes in the development of hepatocellular carcinoma (HCC), the major adult liver malignancy. Moreover, HCC onset and progression correlate with the deregulation of several long noncoding RNAs (lncRNAs), exhibiting great biological significance. As discussed in this review, many of these transcripts are able to specifically act as tumor suppressors or oncogenes by means of their role as molecular platforms. Indeed, these lncRNAs are able to bind and recruit epigenetic modifiers on specific genomic loci, ultimately resulting in regulation of the gene expression relevant in cancer development. The evidence presented in this review highlights that lncRNAs-mediated epigenetic regulation should be taken into account for potential targeted therapeutic approaches.
Collapse
|
20
|
Liu WJ, Ren JG, Li T, Yu GZ, Zhang J, Li CS, Liu ZS, Liu QY. 5-Aza-2<-deoxycytidine induces hepatoma cell apoptosis via enhancing methionine adenosyltransferase 1A expression and inducing S-adenosylmethionine production. Asian Pac J Cancer Prev 2015; 14:6433-8. [PMID: 24377546 DOI: 10.7314/apjcp.2013.14.11.6433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In hepatocellular cancer (HCC), lack of response to chemotherapy and radiation treatment can be caused by a loss of epigenetic modifications of cancer cells. Methionine adenosyltransferase 1A is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation. Therefore, drugs releasing epigenetic repression have been proposed to reverse this process. We studied the effect of the demethylating reagent 5-aza-2<-deoxycitidine (5-Aza-CdR) on MAT1A gene expression, DNA methylation and S-adenosylmethionine (SAMe) production in the HCC cell line Huh7. We found that MAT1A mRNA and protein expression were activated in Huh7 cells with the treatment of 5-Aza-CdR; the status of promoter hypermethylation was reversed. At the same time, MAT2A mRNA and protein expression was significantly reduced in Huh7 cells treated with 5-Aza-CdR, while SAMe production was significantly induced. However, 5-Aza-CdR showed no effects on MAT2A methylation. Furthermore, 5-Aza-CdR inhibited the growth of Huh7 cells and induced apoptosis and through down-regulation of Bcl-2, up-regulation of Bax and caspase-3. Our observations suggest that 5-Aza- CdR exerts its anti-tumor effects in Huh7 cells through an epigenetic change involving increased expression of the methionine adenosyltransferase 1A gene and induction of S-adenosylmethionine production.
Collapse
Affiliation(s)
- Wei-Jun Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, China E-mail : lqy@whu. edu.cn,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bertorelle R, Rampazzo E, Pucciarelli S, Nitti D, Rossi AD. Telomeres, telomerase and colorectal cancer. World J Gastroenterol 2014; 20:1940-1950. [PMID: 24616570 PMCID: PMC3934464 DOI: 10.3748/wjg.v20.i8.1940] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and, despite improved treatments, is still an important cause of cancer-related deaths. CRC encompasses a complex of diseases arising from a multi-step process of genetic and epigenetic events. Besides heterogeneity in the molecular and biological features of CRC, chromosomal instability is a hallmark of cancer and cancer cells may also circumvent replicative senescence and acquire the ability to sustain unlimited proliferation. Telomere/telomerase interplay is an important mechanism involved in both genomic stability and cellular replicative potential, and its dysfunction plays a key role in the oncogenetic process. The erosion of telomeres, mainly because of cell proliferation, may be accelerated by specific alterations in the genes involved in CRC, such as APC and MSH2. Although there is general agreement that the shortening of telomeres plays a role in the early steps of CRC carcinogenesis by promoting chromosomal instability, the prognostic role of telomere length in CRC is still under debate. The activation of telomerase reverse transcriptase (TERT), the catalytic component of the telomerase complex, allows cancer cells to grow indefinitely by maintaining the length of the telomeres, thus favouring tumour formation/progression. Several studies indicate that TERT increases with disease progression, and most studies suggest that telomerase is a useful prognostic factor. Plasma TERT mRNA may also be a promising marker for the minimally invasive monitoring of disease progression and response to therapy.
Collapse
|
22
|
Dolcetti R, Giunco S, Dal Col J, Celeghin A, Mastorci K, De Rossi A. Epstein-Barr virus and telomerase: from cell immortalization to therapy. Infect Agent Cancer 2014; 9:8. [PMID: 24572088 PMCID: PMC3943417 DOI: 10.1186/1750-9378-9-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/24/2014] [Indexed: 12/18/2022] Open
Abstract
Overcoming cellular senescence is strictly required for virus-driven tumors, including those associated with Epstein-Barr virus (EBV). This critical step is successfully accomplished by EBV through TERT expression and telomerase activation in infected cells. We herein review the complex interplay between EBV and TERT/telomerase in EBV-driven tumorigenesis. Evidence accumulated so far clearly indicates that elucidation of this issue may offer promising opportunities for the design of innovative treatment modalities for EBV-associated malignancies. Indeed, several therapeutic strategies for telomerase inhibition have been developed and are being investigated in clinical trials. In this respect, our recent finding that TERT inhibition sensitizes EBV+ lymphoma cells to antivirals through activation of EBV lytic replication is particularly promising and provides a rationale for the activation of clinical studies aimed at assessing the effects of combination therapies with TERT inhibitors and antivirals for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO Aviano, National Cancer Institute, Aviano, PN, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Miu CG, Zhan XS, Li J. Promising roles of mammalian E2Fs in hepatocellular carcinoma. Cell Signal 2014; 26:1075-81. [PMID: 24440307 DOI: 10.1016/j.cellsig.2014.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
In mammalian cells, E2F family of transcription factors (E2Fs) traditionally modulates assorted cellular functions related to cell cycle progression, proliferation, apoptosis and differentiation. Eight members, E2F1 E2F8 have been recognized of this family so far, and the members of this family are generally divided into activator E2F (E2F1--E2F3a), repressor E2F (E2F3b--E2F5) and inhibitor E2F (E2F6--E2F8) subclasses based on their structur-e and function. Studies have showed that the mammalian E2F family members represent a recent evolutionary adaptation to malignancies besides hepatocellular carcinoma (HCC), and a growing body of evidence has validated that the individual members of the family develop a close relationship with HCC. E2F1 was identified to play overlapping roles in HCC, while E2F2--E2F8 (except E2F6 and E2F7) showed to be tumor-promoter in HCC. However, the mechanism underlying the mammalian E2Fs associated with HCC is still unknown and needs further research. The aim of this review is to sum up the collective knowledge of E2F family and the roles of each member of this family in HCC. Moreover, we will discuss some novel therapeutic target for HCC based on the complicated functions of mammalian E2Fs.
Collapse
Affiliation(s)
- Lei Zhan
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao Ming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Song
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao Qin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Cheng Gui Miu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiang Shu Zhan
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China.
| |
Collapse
|
24
|
Ma L, Chua MS, Andrisani O, So S. Epigenetics in hepatocellular carcinoma: an update and future therapy perspectives. World J Gastroenterol 2014; 20:333-345. [PMID: 24574704 PMCID: PMC3923010 DOI: 10.3748/wjg.v20.i2.333] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/01/2014] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of adult liver malignancies, is a global health concern. Its dismal prognosis has prompted recent significant advances in the understanding of its etiology and pathogenesis. The deregulation of epigenetic mechanisms, which maintain heritable gene expression changes and chromatin organization, is implicated in the development of multiple cancers, including HCC. This review summarizes the current knowledge of epigenetic mechanisms in the pathogenesis of HCC, with an emphasis on HCC mediated by chronic hepatitis B virus infection. This review also discusses the encouraging outcomes and lessons learnt from epigenetic therapies for hematological and other solid cancers, and highlights the future potential of similar therapies in the treatment of HCC.
Collapse
|
25
|
Frau M, Feo CF, Feo F, Pascale RM. New insights on the role of epigenetic alterations in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:65-83. [PMID: 27508177 PMCID: PMC4918272 DOI: 10.2147/jhc.s44506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence assigns to epigenetic mechanisms heritable differences in gene function that come into being during cell development or via the effect of environmental factors. Epigenetic deregulation is strongly involved in the development of hepatocellular carcinoma (HCC). It includes changes in methionine metabolism, promoter hypermethylation, or increased proteasomal degradation of oncosuppressors, as well as posttranscriptional deregulation by microRNA or messenger RNA (mRNA) binding proteins. Alterations in the methylation of the promoter of methyl adenosyltransferase MAT1A and MAT2A genes in HCC result in decreased S-adenosylmethionine levels, global DNA hypomethylation, and deregulation of signal transduction pathways linked to methionine metabolism and methyl adenosyltransferases activity. Changes in S-adenosylmethionine levels may also depend on MAT1A mRNA destabilization associated with MAT2A mRNA stabilization by specific proteins. Decrease in MAT1A expression has also been attributed to miRNA upregulation in HCC. A complex deregulation of miRNAs is also strongly involved in hepatocarcinogenesis, with up-regulation of different miRNAs targeting oncosuppressor genes and down-regulation of miRNAs targeting genes involved in cell-cycle and signal transduction control. Oncosuppressor gene down-regulation in HCC is also induced by promoter hypermethylation or posttranslational deregulation, leading to proteasomal degradation. The role of epigenetic changes in hepatocarcinogenesis has recently suggested new promising therapeutic approaches for HCC on the basis of the administration of methylating agents, inhibition of methyl adenosyltransferases, and restoration of the expression of tumor-suppressor miRNAs.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
26
|
Zhou JD, Shen F, Ji JS, Zheng K, Huang M, Wu JC. FAM9C plays an anti-apoptotic role through activation of the PI3K/Akt pathway in human hepatocellular carcinoma. Oncol Rep 2013; 30:1275-84. [PMID: 23836295 DOI: 10.3892/or.2013.2592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/07/2013] [Indexed: 11/06/2022] Open
Abstract
The function of FAM9C encoding a testis-exclusively expressed and nuclear-localized protein remains unknown. In the present study, we evaluated the role of FAM9C in human hepatocellular carcinoma. We found that among three FAM9 family members, only FAM9C was frequently upregulated in HCC specimens compared with that in corresponding adjacent non-cancer liver tissues. FAM9C was located in the nucleus of HCC cells, as shown by both western blotting and immumofluorescence assays. Significantly, FAM9C overexpression promoted proliferation, clonogenicity in an anchorage-dependent manner, in vivo tumorigenicity of YY-8103, and Huh-7 cells. In contrast, FAM9C knockdown suppressed proliferation, anchorage-dependent colony formation and in vivo tumorigenicity of QGY-7703, and BEL-7404 cells. However, FAM9C had no significant effects on cell cycle progression when FAM9C was stably overexpressed in Huh-7 cells or knocked down in BEL-7404 cells. Most importantly, FAM9C regulated activation of Akt and UV-induced apoptosis in HCC cells. FAM9C overexpression increased the phosphorylation levels of Akt and anti-apoptotic ability of Huh-7 cells, whereas endogenous FAM9C knockdown reduced the phosphorylated levels of Akt and anti-apoptotic ability of BEL-7404 cells. Furthermore, the anti-apoptotic function of FAM9C could be prevented when the PI3K-Akt pathway was in a loss-of-function caused by RNA interference against Akt or PI3K inhibitor LY294002 in HCC cells. Taken together, our data demonstrate that FAM9C as a novel cancer testis gene plays an anti-apoptotic role in human hepatocellular carcinoma through activating the PI3K/Akt signaling pathway, and serves as a promising target for HCC therapy.
Collapse
Affiliation(s)
- Jun-Dong Zhou
- The Core Laboratory of the Suzhou Cancer Center and Department of Radiotherapy of the Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215001, P.R. China
| | | | | | | | | | | |
Collapse
|
27
|
Gan P, Zha Y, Yao Q, Chen Z, Tan J. miRNA interference-mediated Rap1 gene silencing increases apoptosis in hepatocellular carcinoma cell line HepG2. Shijie Huaren Xiaohua Zazhi 2013; 21:894-898. [DOI: 10.11569/wcjd.v21.i10.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of repressor/activator protein 1 (Rap1) in nuclear factor-κB (NF-κB)-mediated apoptosis of liver cancer cells.
METHODS: Hepatocellular carcinoma HepG2 cells were divided into three groups: control group, empty plasmid-transfected group, and Rap1 miRNA group. Apoptosis was determined by flow cytometry 72 h after transfection. The expression of Rap1 protein was measured by Western blot, and the expression of NF-κB p65 mRNA was measured by RT-PCR.
RESULTS: Compared to the control group and empty plasmid-transfected group, the level of Rap1 was significantly decreased and apoptosis rate (33.0% ± 5.8% vs 8.2% ± 2.5%, 0.6% ± 0.2%, both P < 0.05) was significantly increased 72 h after miRNA transfection. Cells in the Rap1 miRNA group had a significant reduction in the level of NF-κB p65 mRNA compared to controls.
CONCLUSION: Rap1 miRNA increases apoptosis in hepatocellular carcinoma cell line HepG2 by decreasing the expression of NF-κB p65.
Collapse
|
28
|
Yang ZH, Guo MZ, Li X, Mao GP. Zinc-finger protein 331 expression is regulated by promoter region hypermethylation in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:761-765. [DOI: 10.11569/wcjd.v21.i9.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the methylation status and the expression regulation of zinc-finger protein 331 (ZNF331) in hepatocellular carcinoma.
METHODS: Five human hepatic cancer cell lines and 50 specimens of human primary hepatic cancer were employed to detect ZNF331 promoter region methylation by methylation specific PCR (MSP). Semi-quantitative RT-PCR was used to examine the expression of ZNF331.
RESULTS: Partial methylation was found in HBXF344, PLC/PRF/5, HepG2 and BEL-7402 cell lines. Methylation was not detected in SNU449 cell line. Weak expression of ZNF331 was found in HBXF344, PLC/PRF/5, HepG2 and BEL-7402 cell lines. ZNF331 was moderately expressed in SNU449 cell line. Increased expression of ZNF331 was found in HBXF344, HepG2, BEL-7402, and PLC/PRF/5 cell lines after 5-Aza treatment. No significant change was examined in ZNF331 expression in SNU449 cell line before and after 5-Aza treatment. ZNF331 was methylated in 80% (40/50) of primary human hepatic cancer specimens, but methylation was not detectable in normal liver tissue specimens (0/10). No correlation was found between promoter region methylation and gender, age, AFP level, hepatitis virus infection, tumor size or tumor stage.
CONCLUSION: ZNF331 expression is silenced by promoter region hypermethylation in human hepatocellular carcinoma. ZNF331 is frequently methylated in human primary hepatic cancer.
Collapse
|