1
|
Chruścik A, Gopalan V, Lam AKY. The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: A systematic review. Eur J Cell Biol 2018; 97:15-22. [PMID: 29128131 DOI: 10.1016/j.ejcb.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-β) is a multipurpose cytokine, which plays a role in many cellular functions such as proliferation, differentiation, migration, apoptosis, cell adhesion and regulation of epithelial to mesenchymal transition. Despite many studies having observed the effect that TGF-β plays in colorectal cancer, its role in the colorectal stem cell population has not been widely observed. METHOD This systematic review will analyse the role of TGF-β in the stem cell population of colorectal cancer. RESULTS The effects on the stem cell phenotype are through the downstream proteins involved in activation of the TGF-β pathway. Its involvement in the initiation of the epithelial to mesenchymal transition (EMT), the effect of colorectal invasion and metastasis regulated through the Smad protein involvement in the EMT, initiation of angiogenesis, promotion of metastasis of colorectal cancer to the liver and its ability to cross-talk with other pathways. CONCLUSION TGF-β is a key player in angiogenesis, tumour growth and metastasis in colon cancer.
Collapse
Affiliation(s)
- Anna Chruścik
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
2
|
Kong W, Zhu XP, Han XJ, Nuo M, Wang H. Epithelial stem cells are formed by small-particles released from particle-producing cells. PLoS One 2017; 12:e0173072. [PMID: 28253358 PMCID: PMC5333853 DOI: 10.1371/journal.pone.0173072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/14/2017] [Indexed: 01/11/2023] Open
Abstract
Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small "naked" nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some "naked" nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion.
Collapse
Affiliation(s)
- Wuyi Kong
- Beijing Khasar Medical Technology Co. Ltd., Beijing, China
- * E-mail:
| | - Xiao Ping Zhu
- Beijing Khasar Medical Technology Co. Ltd., Beijing, China
| | - Xiu Juan Han
- Beijing Khasar Medical Technology Co. Ltd., Beijing, China
| | - Mu Nuo
- Beijing Khasar Medical Technology Co. Ltd., Beijing, China
| | - Hong Wang
- Beijing Khasar Medical Technology Co. Ltd., Beijing, China
| |
Collapse
|
3
|
Sipos F, Constantinovits M, Valcz G, Tulassay Z, Műzes G. Association of hepatocyte-derived growth factor receptor/caudal type homeobox 2 co-expression with mucosal regeneration in active ulcerative colitis. World J Gastroenterol 2015; 21:8569-8579. [PMID: 26229399 PMCID: PMC4515838 DOI: 10.3748/wjg.v21.i28.8569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/25/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor (HGFR)-expressing cells in active ulcerative colitis (UC). METHODS On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected. After preparing tissue microarrays and blood smears HGFR, caudal type homeobox 2 (CDX2), prominin-1 (CD133) and Musashi-1 conventional and double fluorescent immunolabelings were performed. Immunostained samples were digitalized using high-resolution Mirax Desk instrument, and analyzed with the Mirax TMA Module software. For semiquantitative counting of immunopositive lamina propria (LP) cells 5 fields of view were counted at magnification × 200 in each sample core, then mean ± SD were determined. In case of peripheral blood smears, 30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells (mean ± SD) was determined. Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected. Gene expression analysis of HGFR, CDX2, CD133, leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), Musashi-1 and cytokeratin 20 (CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction (RT-PCR). RESULTS By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR, higher number of HGFR (blood: 6.7 ± 1.22 vs 38.5 ± 3.18; LP: 2.25 ± 0.85 vs 9.22 ± 0.65; P < 0.05), CDX2 (blood: 0 vs 0.94 ± 0.64; LP: 0.75 ± 0.55 vs 2.11 ± 0.75; P < 0.05), CD133 (blood: 1.1 ± 0.72 vs 8.3 ± 1.08; LP: 11.1 ± 0.85 vs 26.28 ± 1.71; P < 0.05) and Musashi-1 (blood and LP: 0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls. HGFR/CDX2 (blood: 0 vs 1 ± 0.59; LP: 0.8 ± 0.69 vs 2.06 ± 0.72, P < 0.05) and Musashi-1/CDX2 (blood and LP: 0 vs scattered) co-expressions were found in blood and lamina propria of UC samples. HGFR/CD133 and CD133/CDX2 co-expressions appeared only in UC lamina propria samples. CDX2, Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression. CONCLUSION In active UC, a portion of circulating HGFR-expressing cells are committed to the epithelial lineage, and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.
Collapse
|
4
|
Martín-Cano FE, Camello PJ, Pozo MJ. Characterization of the motor inhibitory role of colonic mucosa under chemical stimulation in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G614-21. [PMID: 24525019 DOI: 10.1152/ajpgi.00208.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The main roles of the colonic mucosa are the absorption of water and electrolytes and the barrier function that preserves the integrity of the colonic wall. The mediators and mechanisms to accomplish these functions are under continuous investigation, but little attention has been paid to a possible control of colonic motility by the mucosa that would fine tune the relationship between absorption and motility. The purpose of this study was to establish the role of the mucosa in the control of induced colonic contractility. Young ICR-CD1 mice (3-5 mo old) were studied. Isometric tension transducers were used to record contractility in full-thickness (FT) and mucosa-free (MF) strips from proximal colon. Proximal FT strips showed lower KCl- and bethanechol-induced responses than MF strips. The difference was not due to mechanical artefacts since the contractile response of FT strips to electrical field stimulation was around 50% lower than in MF. The inhibitory effects of the mucosa on FT strips were mimicked by immersion of separate strips of mucosa in the organ bath but not by addition of mucosal extract, suggesting gaseous molecules as mediators of this effect. Incubation of MF strips with synthase inhibitors of nitric oxide, carbon monoxide, and hydrogen sulfide abolished the inhibition caused by addition of the mucosal strip, indicating that mucosal gasotransmitters are the mediators of these effects. This suggests that the control of colonic motility exerted by the mucosa could fine tune the balance between transit and absorption.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Faculty of Nursing and Occupational Therapy, Department of Physiology, University of Extremadura, Caceres, Spain
| | | | | |
Collapse
|
5
|
Puebla-Osorio N, Kim J, Ojeda S, Zhang H, Tavana O, Li S, Wang Y, Ma Q, Schluns KS, Zhu C. A novel Ku70 function in colorectal homeostasis separate from nonhomologous end joining. Oncogene 2013; 33:2748-57. [PMID: 23752193 DOI: 10.1038/onc.2013.234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 02/07/2023]
Abstract
Ku70, a known nonhomologous end-joining (NHEJ) factor, also functions in tumor suppression, although this molecular mechanism remains uncharacterized. Previously, we showed that mice deficient for DNA ligase IV (Lig4), another key NHEJ factor, succumbed to aggressive lymphoma in the absence of tumor suppressor p53. However, the tumor phenotype is abrogated by the introduction of a hypomorphic mutant p53(R172P), which impaired p53-mediated apoptosis but not cell-cycle arrest. However, Lig4(-/-)p53(R172P) mice succumbed to severe diabetes. To further elucidate the role of NHEJ and p53-mediated apoptosis in vivo, we bred Ku70(-/-) p53(R172P) mice. Unexpectedly, these mice were free of diabetes, although 80% of the mutant mice had abnormally enlarged colons with pronounced inflammation. Remarkably, most of these mutant mice progressed to dysplasia, adenoma and adenocarcinoma; this is in contrast to the Lig4(-/-)p53(R172P) phenotype, strongly suggesting an NHEJ-independent function of Ku70. Significantly, our analyses of Ku70(-/-)p53(R172P) colonic epithelial cells show nuclear stabilization of β-catenin accompanied by higher expression of cyclin D1 and c-Myc in affected colon sections than in control samples. This is not due to the p53 mutation, as Ku70(-/-) mice share this phenotype. Our results not only unravel a novel function of Ku70 essential for colon homeostasis, but also establish an excellent in vivo model in which to study how chronic inflammation and abnormal cellular proliferation underlie tumorigenesis and tumor progression in the colon.
Collapse
Affiliation(s)
- N Puebla-Osorio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Ojeda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - O Tavana
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Q Ma
- 1] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA [2] Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K S Schluns
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - C Zhu
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Danger control programs cause tissue injury and remodeling. Int J Mol Sci 2013; 14:11319-46. [PMID: 23759985 PMCID: PMC3709734 DOI: 10.3390/ijms140611319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/12/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023] Open
Abstract
Are there common pathways underlying the broad spectrum of tissue pathologies that develop upon injuries and from subsequent tissue remodeling? Here, we explain the pathophysiological impact of a set of evolutionary conserved danger control programs for tissue pathology. These programs date back to the survival benefits of the first multicellular organisms upon traumatic injuries by launching a series of danger control responses, i.e., 1. Haemostasis, or clotting to control bleeding; 2. Host defense, to control pathogen entry and spreading; 3. Re-epithelialisation, to recover barrier functions; and 4. Mesenchymal, to repair to regain tissue stability. Taking kidney pathology as an example, we discuss how clotting, inflammation, epithelial healing, and fibrosis/sclerosis determine the spectrum of kidney pathology, especially when they are insufficiently activated or present in an overshooting and deregulated manner. Understanding the evolutionary benefits of these response programs may refine the search for novel therapeutic targets to limit organ dysfunction in acute injuries and in progressive chronic tissue remodeling.
Collapse
|
7
|
Zhang Z, Huang J. Intestinal stem cells - types and markers. Cell Biol Int 2013; 37:406-14. [PMID: 23471862 DOI: 10.1002/cbin.10049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/31/2012] [Indexed: 01/12/2023]
Abstract
Intestinal epithelium is a rapidly cycling tissue, always renewing every 4-5 days under normal conditions, which is maintained by intestinal stem cells (ISCs). Using the fluorescence labelling trace, ISCs can be divided into two different types: active intestinal stem cells (A-ISCs) located in bottom of the intestinal crypt and the quiescent intestinal stem cells (Q-ISCs) in the +4 position of the crypt. There is a complex signal regulation net between the ISCs and other intestinal cells, such as Wnt and Notch pathways. ISCs have an intimate relationship with the colorectal cancer (CRC). However, a deficiency of stem cells markers severely limits research on the biological characteristics of ISCs. We have reviewed several ISCs markers, including Lgr5, PHLDA1, Bmi1 and Lrig1. These markers have widely different biological functions, but also have a close relationship with cancers, especially CRC. Our hypothesis concerns the reasons for ISCs having two distinct types and why endless ISCs markers have emerged.
Collapse
Affiliation(s)
- Zhigang Zhang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | |
Collapse
|
8
|
Casaroli-Marano RP, Nieto-Nicolau N, Martínez-Conesa EM. Progenitor cells for ocular surface regenerative therapy. Ophthalmic Res 2012; 49:115-21. [PMID: 23257987 DOI: 10.1159/000345257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022]
Abstract
The integrity and normal function of the corneal epithelium are essential for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio-replacement, such as cultured limbal epithelial transplantation and cultured oral mucosal epithelial transplantation, present very encouraging clinical results for treating limbal stem cell deficiencies. Another emerging therapeutic strategy consists of obtaining and implementing human progenitor cells of different origins using tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal stromal cells, represents a significant breakthrough in the treatment of certain eye diseases and also offers a more rational, less invasive and more physiological approach to ocular surface regeneration.
Collapse
|
9
|
Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 2012; 35:123-37. [PMID: 22996682 DOI: 10.1007/s00281-012-0342-8] [Citation(s) in RCA: 446] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/31/2012] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is a bioactive lipid that elicits a wide range of biological effects associated with inflammation and cancer. PGE(2) exerts diverse effects on cell proliferation, apoptosis, angiogenesis, inflammation, and immune surveillance. This review concentrates primarily on gastrointestinal cancers, where the actions of PGE(2) are most prominent, most likely due to the constant exposure to dietary and environmental insults and the intrinsic role of PGE(2) in tissue homeostasis. A discussion of recent efforts to elucidate the complex and interconnected pathways that link PGE(2) signaling with inflammation and cancer is provided, supported by the abundant literature showing a protective effect of NSAIDs and the therapeutic efficacy of targeting mPGES-1 or EP receptors for cancer prevention. However, suppressing PGE(2) formation as a means of providing chemoprotection against all cancers may not ultimately be tenable, undoubtedly the situation for patients with inflammatory bowel disease. Future studies to fully understand the complex role of PGE(2) in both inflammation and cancer will be required to develop novel strategies for cancer prevention that are both effective and safe.
Collapse
|
10
|
Sokolosky ML, Wargovich MJ. Homeostatic imbalance and colon cancer: the dynamic epigenetic interplay of inflammation, environmental toxins, and chemopreventive plant compounds. Front Oncol 2012; 2:57. [PMID: 22675672 PMCID: PMC3365481 DOI: 10.3389/fonc.2012.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022] Open
Abstract
The advent of modern medicine has allowed for significant advances within the fields of emergency care, surgery, and infectious disease control. Health threats that were historically responsible for immeasurable tolls on human life are now all but eradicated within certain populations, specifically those that enjoy higher degrees of socio-economic status and access to healthcare. However, modernization and its resulting lifestyle trends have ushered in a new era of chronic illness; one in which an unprecedented number of people are estimated to contract cancer and other inflammatory diseases. Here, we explore the idea that homeostasis has been redefined within just a few generations, and that diseases such as colorectal cancer are the result of fluctuating physiological and molecular imbalances. Phytochemical-deprived, pro-inflammatory diets combined with low-dose exposures to environmental toxins, including bisphenol-A (BPA) and other endocrine disruptors, are now linked to increasing incidences of cancer in westernized societies and developing countries. There is recent evidence that disease determinants are likely set in utero and further perpetuated into adulthood dependent upon the innate and environmentally-acquired phenotype unique to each individual. In order to address a disease as multi-factorial, case-specific, and remarkably adaptive as cancer, research must focus on its root causes in order to elucidate the molecular mechanisms by which they can be prevented or counteracted via plant-derived compounds such as epigallocatechin-3-gallate (EGCG) and resveratrol. The significant role of epigenetics in the regulation of these complex processes is emphasized here to form a comprehensive view of the dynamic interactions that influence modern-day carcinogenesis, and how sensibly restoring homeostatic balance may be the key to the cancer riddle.
Collapse
Affiliation(s)
- Melissa L Sokolosky
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina Charleston, SC, USA
| | | |
Collapse
|
11
|
Anders HJ. Four danger response programs determine glomerular and tubulointerstitial kidney pathology: clotting, inflammation, epithelial and mesenchymal healing. Organogenesis 2012; 8:29-40. [PMID: 22692229 PMCID: PMC3429510 DOI: 10.4161/org.20342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Renal biopsies commonly display tissue remodeling with a combination of many different findings. In contrast to trauma, kidney remodeling largely results from intrinsic responses, but why? Distinct danger response programs were positively selected throughout evolution to survive traumatic injuries and to regenerate tissue defects. These are: (1) clotting to avoid major bleeding, (2) immunity to control infection, (3) epithelial repair and (4) mesenchymal repair. Collateral damages are acceptable for the sake of host survival but causes for kidney injury commonly affect the kidneys in a diffuse manner. This way, coagulation, inflammation, deregulated epithelial healing or fibrosis contribute to kidney remodeling. Here, I focus on how these ancient danger response programs determine renal pathology mainly because they develop in a deregulated manner, either as insufficient or overshooting processes that modulate each other. From a therapeutic point of view, immunopathology can be prevented by suppressing sterile renal inflammation, a useless atavism with devastating consequences. In addition, it appears as an important goal for the future to promote podocyte and tubular epithelial cell repair, potentially by stimulating the differentiation of their newly discovered intrarenal progenitor cells. By contrast, it is still unclear whether selectively targeting renal fibrogenesis can preserve or bring back lost renal parenchyma, which would be required to maintain or improve kidney function. Thus, renal pathology results from ancient danger responses that evolved because of their evolutional benefits upon trauma. Understanding these causalities may help to shape the search for novel treatments for kidney disease patients.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum; Medizinische Klinik und Poliklinik IV; Klinikum der Universität; München, Germany.
| |
Collapse
|