1
|
Chattopadhyay I, Gundamaraju R, Rajeev A. Diversification and deleterious role of microbiome in gastric cancer. Cancer Rep (Hoboken) 2023; 6:e1878. [PMID: 37530125 PMCID: PMC10644335 DOI: 10.1002/cnr2.1878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.
Collapse
Affiliation(s)
| | - Rohit Gundamaraju
- ER stress and Mucosal Immunology TeamSchool of Health Sciences, University of TasmaniaLauncestonTasmaniaAustralia
| | - Ashwin Rajeev
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurIndia
| |
Collapse
|
2
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Shome M, Gao W, Engelbrektson A, Song L, Williams S, Murugan V, Park JG, Chung Y, LaBaer J, Qiu J. Comparative Microbiomics Analysis of Antimicrobial Antibody Response between Patients with Lung Cancer and Control Subjects with Benign Pulmonary Nodules. Cancer Epidemiol Biomarkers Prev 2023; 32:496-504. [PMID: 36066883 PMCID: PMC10494706 DOI: 10.1158/1055-9965.epi-22-0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND CT screening can detect lung cancer early but suffers a high false-positive rate. There is a need for molecular biomarkers that can distinguish malignant and benign indeterminate pulmonary nodules (IPN) detected by CT scan. METHODS We profiled antibodies against 901 individual microbial antigens from 27 bacteria and 29 viruses in sera from 127 lung adenocarcinoma (ADC), 123 smoker controls (SMC), 170 benign nodule controls (BNC) individuals using protein microarrays to identify ADC and BNC specific antimicrobial antibodies. RESULTS Analyzing fourth quartile ORs, we found more antibodies with higher prevalence in the three BNC subgroups than in ADC or SMC. We demonstrated that significantly more anti-Helicobacter pylori antibodies showed higher prevalence in ADC relative to SMC. We performed subgroup analysis and found that more antibodies with higher prevalence in light smokers (≤20 pack-years) compared with heavy smokers (>20 pack-years), in BNC with nodule size >1 cm than in those with ≤1 cm nodules, and in stage I ADC than in stage II and III ADC. We performed multivariate analysis and constructed antibody panels that can distinguish ADC versus SMC and ADC versus BNC with area under the ROC curve (AUC) of 0.88 and 0.80, respectively. CONCLUSIONS Antimicrobial antibodies have the potential to reduce the false positive rate of CT screening and provide interesting insight in lung cancer development. IMPACT Microbial infection plays an important role in lung cancer development and the formation of benign pulmonary nodules.
Collapse
Affiliation(s)
- Mahasish Shome
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Weimin Gao
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | | | - Lusheng Song
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stacy Williams
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Vel Murugan
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jin G. Park
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Yunro Chung
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ji Qiu
- Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
4
|
Yao B, Xu X, Liu W, Zhang Q, Wang W, Huang Z. The correlation of Th22 and regulatory T cells with Helicobacter pylori infection in patients with chronic gastritis. Immun Inflamm Dis 2023; 11:e768. [PMID: 36705412 PMCID: PMC9846114 DOI: 10.1002/iid3.768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Helicobacter pylori is planted in the human stomach and is the most common cause of chronic gastritis, which produced specific local and systemic humoral immunity, while the associations of these immune responses and H. pylori in the development of chronic gastritis remain unclear. METHODS This study analyzed histology, the number of Th22 and regulatory T (Treg) cells, and the levels of inflammation- and gastritis-related indicators between 22 H. pylori-infected and 24 non-H. pylori-infected chronic gastritis patients by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR, and flow cytometry analysis. RESULTS This study found that the pathological damage degree of gastric mucosa in H. pylori infection patients was more serious. In the H. pylori-infected patient serum, the gastrin, G-17, interleukins (IL)-22, transforming growth factor (TGF)-β, tumor necrosis factor (TNF)-α, IL-4, and IL-17A levels were notably raised, while the interferon (IFN)-γ level was inhibited, and in gastric mucosa, and except IFN-γ, the IL-22, forkhead box P3 (Foxp3), TNF-α, IL-4, and IL-17A mRNA levels were raised too. The receiver operating characteristic curve analysis indicates serum IL-22, TGF-β, TNF-α, IL-4, and IL-17A are suitable for differential diagnosis of H. pylori infection. In addition, in the peripheral blood, the percentages of the IL-22+ CD4+ and Foxp3+ CD4+ T cells were raised with H. pylori infection. The positive correlation between IL-22 and Foxp3 mRNA levels and the degree of H. pylori colonization and gastric mucositis by Pearson's correlation analysis. CONCLUSIONS Treg and Th22 cells were positively associated with the degree of H. pylori infection and the severity of gastritis. In summary, this study provides an experimental basis for the study of the eradication of H. pylori and the biological mechanism of chronic gastritis.
Collapse
Affiliation(s)
- Biyu Yao
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Xiaoyan Xu
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Weijie Liu
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Qin Zhang
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Wei Wang
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Zhiming Huang
- Department of GastroenterologyThe First Affiliated Hospital of Wenzhou Medical UniversityZhejiangWenzhouChina
| |
Collapse
|
5
|
Mohammadi A, Khanbabaei H, Zandi F, Ahmadi A, Haftcheshmeh SM, Johnston TP, Sahebkar A. Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb Pathog 2022; 166:105552. [DOI: 10.1016/j.micpath.2022.105552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
|
6
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Tong Y, Zhao X, Wang R, Li R, Zou W, Zhao Y. Therapeutic effect of berberine on chronic atrophic gastritis based on plasma and urine metabolisms. Eur J Pharmacol 2021; 908:174335. [PMID: 34265298 DOI: 10.1016/j.ejphar.2021.174335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the therapeutic effect of berberine (BBR) on chronic atrophic gastritis (CAG) and its potential mechanism. The effects of BBR on gastric histopathology, serum biochemical indexes and inflammatory factors in CAG rats were assessed. Moreover, plasma and urine metabolomics based on ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer (UHPLC-Q-TOF/MS) were used to identify potential metabolic markers and possible pathways of BBR in the treatment of CAG. The results showed that BBR could significantly improve the pathological characteristics of gastric tissue, alleviate the serum biochemical indexes and reduce the mRNA expression of nuclear factor-κB, tumor necrosis factor-α, Cyclooxygenase-2, monocyte chemoattractant protein-1, Interleukin-17A and I interferon-γ. The results of metabolomic analysis show that the therapeutic effect of BBR on CAG may be related to the regulation of 15 metabolic markers and 12 metabolic pathways, which may be the potential mechanism for the treatment of CAG. This study provides new insights for elucidating the mechanism of BBR improving CAG.
Collapse
Affiliation(s)
- Yuling Tong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of PLA General Hospital of Chinese, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Ji XK, Madhurapantula SV, He G, Wang KY, Song CH, Zhang JY, Wang KJ. Genetic variant of cyclooxygenase-2 in gastric cancer: More inflammation and susceptibility. World J Gastroenterol 2021; 27:4653-4666. [PMID: 34366627 PMCID: PMC8326261 DOI: 10.3748/wjg.v27.i28.4653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer accounts for the majority cancer-related deaths worldwide. Although various methods have considerably improved the screening, diagnosis, and treatment of gastric cancer, its incidence is still high in Asia, and the 5-year survival rate of advanced gastric cancer patients is only 10%-20%. Therefore, more effective drugs and better screening strategies are needed for reducing the incidence and mortality of gastric cancer. Cyclooxygenase-2 (COX-2) is considered to be the key inducible enzyme in prostaglandins (PGs) synthesis, which is involved in multiple pathways in the inflammatory response. For example, inflammatory cytokines stimulate innate immune responses via Toll-like receptors and nuclear factor-kappa B to induce COX-2/PGE2 pathway. In these processes, the production of an inflammatory microenvironment promotes the occurrence of gastric cancer. Epidemiological studies have also indicated that non-steroidal anti-inflammatory drugs can reduce the risk of malignant tumors of the digestive system by blocking the effect of COX-2. However, clinical use of COX-2 inhibitors to prevent or treat gastric cancer may be limited because of potential side effects, especially in the cardiovascular system. Given these side effects and low treatment efficacy, new therapeutic approaches and early screening strategies are urgently needed. Some studies have shown that genetic variation in COX-2 also play an important role in carcinogenesis. However, the genetic variation analysis in these studies is incomplete and isolated, pointing out only a few single nucleotide polymorphisms (SNPs) and the risk of gastric cancer, and no comprehensive study covering the whole gene region has been carried out. In addition, copy number variation (CNV) is not mentioned. In this review, we summarize the SNPs in the whole COX-2 gene sequence, including exons, introns, and both the 5' and 3' untranslated regions. Results suggest that COX-2 does not increase its expression through the CNV and the SNPs in COX-2 may serve as the potential marker to establish risk stratification in the general population. This review synthesizes emerging insights of COX-2 as a biomarker in multiple studies, summarizes the association between whole COX-2 sequence variation and susceptibility to gastric cancer, and discusses the future prospect of therapeutic intervention, which will be helpful for early screening and further research to find new approaches to gastric cancer treatment.
Collapse
Affiliation(s)
- Xuan-Ke Ji
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sailaja Vatsalya Madhurapantula
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Gui He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun-Yan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Chun-Hua Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jian-Ying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kai-Juan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
9
|
NF-κB in Gastric Cancer Development and Therapy. Biomedicines 2021; 9:biomedicines9080870. [PMID: 34440074 PMCID: PMC8389569 DOI: 10.3390/biomedicines9080870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.
Collapse
|
10
|
Damanhuri NS, Kumolosasi E, Omar MS, Razak AFA, Mansor AH. The influence of P-glycoprotein expression in the standard treatment of Helicobacter pylori infection in Sprague Dawley rats. Daru 2021; 29:13-22. [PMID: 33405191 PMCID: PMC8149563 DOI: 10.1007/s40199-020-00377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND P-glycoprotein (P-gp) is an Adenosine triphosphate (ATP) dependent drug-efflux pump which is located abundantly in the stomach and protects the gut mucosa from xenobiotic. OBJECTIVE The purpose of this study was to investigate the influence of P-gp modulation on the efficacy of treatment regimen. METHOD P-gp modulation in rats was performed by using P-gp inducer (150 mg/kg rifampicin) and P-gp inhibitor (10 mg/kg cyclosporine A) for 14 days prior to be infected with Helicobacter pylori (H. pylori). The rats were further divided into groups, which were normal control, vehicle control, antibiotics and omeprazole, antibiotics only and omeprazole only for another 2 weeks of treatment. The ulcer formation and P-gp expression were determined by using macroscopic evaluation and western blot analysis, respectively. RESULTS The highest P-gp expression was shown in the induced P-gp rats (2.00 ± 0.68) while the lowest P-gp expression was shown in the inhibited P-gp rats (0.45 ± 0.36) compared to the normal P-gp rats. In all groups, the rats which were infected with H. pylori, had a significant increase (p < 0.05) in P-gp expression level and a more severe ulcer formation compared to the healthy rats. The ulcer developed at different levels in the rats with inhibited, induced, or normal P-gp expression. After receiving the standard therapy for H. pylori, it was observed that the healing rate for ulcer was increased to 91% (rats with inhibited P-gp expression), 82% (rats with induced P-gp expression) and 75% in rats with normal P-gp. The use of rifampicin to induce P-gp level was also shown to be effective in eradicating the H. pylori infection. CONCLUSION The synergism in the standard therapy by using two antibiotics (clarithromycin and amoxicillin) and proton pump inhibitor (omeprazole) have shown to effectively eradicate the H. pylori infection. Thus, P-gp expression influenced the effectiveness of the treatment.
Collapse
Affiliation(s)
- Noor Safwah Damanhuri
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marhanis Salihah Omar
- Quality Use of Medicine Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirul Faiz Abd Razak
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Hasnan Mansor
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Interaction of Cyclooxygenase-2 with Helicobacter pylori Induces Gastric Chronic Nonresolving Inflammation and the Formation of Syndrome of Internal Block of Static Blood in Helicobacter pylori-Related Gastric Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7340814. [PMID: 32328138 PMCID: PMC7165359 DOI: 10.1155/2020/7340814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme stimulated by various inflammatory factors (IFs). Chronic gastritis is a classic model of “inflammation-cancer transformation” and Helicobacter pylori-related gastric diseases (HPGD) are specific ones of this model. Traditional Chinese Medicine (TCM) syndromes could play a predictive role in gastric histopathological evolution. To search for early warning evidence about “inflammation-cancer transformation,” this study is about to explore interaction of COX-2 with Helicobacter pylori (Hp) in HPGD with different TCM syndromes. All included subjects underwent endoscopy and biopsy. Hp infection was detected by rapid urease test and methylene blue staining. Histopathological characteristics and COX-2 expression in gastric mucosa (GM) were, respectively, observed by hematoxylin-eosin and Elivision™ plus. SPSS 18.0 and Stata 11.0 statistical software packages were used for statistical analysis. Results of immunohistochemical staining in this study showed COX-2 expression in Hp-positive patients was stronger than that in Hp-negative ones. Spearman' analysis indicated that degrees of both Hp infection and COX-2 expression were positively correlated with those of gastric inflammation and inflammatory activity. Compared with the relative normal group, both severe dysplasia group and gastric carcinoma group had more severe Hp infection and COX-2 expression. Compared with the nonsyndrome, syndrome of internal block of static blood (IBSB) had higher scores in semiquantitative analysis of COX-2 protein expression among TCM groups. Moreover, multivariate logistics regression analysis suggested that patients with Hp infection could increase the risk of IBSB. These results indicated that COX-2 interacting with Hp could play an important role in transforming gastric chronic nonresolving inflammation into carcinoma in subjects with HPGD, as well as inducing the formation of IBSB. HPGD together with IBSB could be an early warning evidence for GM with histopathological evolution from benign to malignant.
Collapse
|
12
|
Benedetti I, Hoyos J, Barrios L. Cyclooxigenase-2 and osteopontin in gastric pre-neoplastic lesions in relation to H-pylori infection and grade of inflammation. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2020; 53:79-87. [PMID: 32199598 DOI: 10.1016/j.patol.2019.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The association between Helicobacter-pylori-induced inflammation and gastric adenocarcinoma is well documented and it has been suggested that the pro-mitotic and apoptotic effect of Cyclooxygenase-2 and Osteopontin on the epithelial cells of the gastric mucosa may have a role in carcinogenesis of the gastric mucosa. The aim of this study was to determine the expression of Cyclooxygenase-2 and Osteopontin in normal gastric mucosa, mucosa with gastritis and gastric mucosa with intestinal metaplasia, in relation to Helicobacter-pylori infection and grade of inflammation. Immunohistochemistry was performed on 108 gastric biopsies in order to detect Cyclooxygenase-2 and Osteopontin expression. The intensity and percentage of staining were evaluated using the H-Score, and its association with grade of inflammation, Helicobacter pylori infection and intestinal metaplasia was determined. Expression of Cyclooxygenase-2 and Osteopontin was higher in gastric biopsies (values shown respectively) with Helicobacter-pylori infection (179.9/142.3), intestinal metaplasia (208.8/179.3) or higher grades of inflammation (190/135.7) in comparison to normal gastric mucosa (100.7/80) or mild grade of inflammation (128.4/128.4), (p<0.05).There is an overexpression of Cyclooxygenase-2 and Osteopontin in gastric mucosa with H. pylori infection, intestinal metaplasia and high grades of inflammation, suggesting a constant up-regulation of protein expression in response to the inflammatory process generated by a Helicobacter-pylori infection, leading to the development of intestinal metaplasia.
Collapse
Affiliation(s)
- Inés Benedetti
- Grupo de investigación Histopatología, Facultad de Medicina, Universidad de Cartagena, Carrera 50 # 24-120, código postal 130014 Cartagena, Colombia.
| | - Julián Hoyos
- Grupo de investigación Histopatología, Facultad de Medicina, Universidad de Cartagena, Carrera 50 # 24-120, código postal 130014 Cartagena, Colombia
| | - Lía Barrios
- Grupo de investigación Histopatología, Facultad de Medicina, Universidad de Cartagena, Carrera 50 # 24-120, código postal 130014 Cartagena, Colombia
| |
Collapse
|
13
|
Yoo JH, Lee JS, Lee YS, Ku S, Lee HJ. Protective effect of bovine milk against HCl and ethanol–induced gastric ulcer in mice. J Dairy Sci 2018; 101:3758-3770. [DOI: 10.3168/jds.2017-13872] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/06/2018] [Indexed: 12/23/2022]
|
14
|
Gao S, Sun Y, Liu X, Zhang D, Yang X. EpCAM and COX-2 expression are positively correlated in human breast cancer. Mol Med Rep 2017; 15:3755-3760. [DOI: 10.3892/mmr.2017.6447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
15
|
Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040119. [PMID: 28350359 PMCID: PMC5408193 DOI: 10.3390/toxins9040119] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Diet, obesity, smoking and chronic infections, especially with Helicobacter pylori, contribute to stomach cancer development. H. pylori possesses a variety of virulence factors including encoded factors from the cytotoxin-associated gene pathogenicity island (cagPAI) or vacuolating cytotoxin A (VacA). Most of the cagPAI-encoded products form a type 4 secretion system (T4SS), a pilus-like macromolecular transporter, which translocates CagA into the cytoplasm of the host cell. Only H. pylori strains carrying the cagPAI induce the transcription factor NF-κB, but CagA and VacA are dispensable for direct NF-κB activation. NF-κB-driven gene products include cytokines/chemokines, growth factors, anti-apoptotic factors, angiogenesis regulators and metalloproteinases. Many of the genes transcribed by NF-κB promote gastric carcinogenesis. Since it has been shown that chemotherapy-caused cellular stress could elicit activation of the survival factor NF-κB, which leads to acquisition of chemoresistance, the NF-κB system is recommended for therapeutic targeting. Research is motivated for further search of predisposing conditions, diagnostic markers and efficient drugs to improve significantly the overall survival of patients. In this review, we provide an overview about mechanisms and consequences of NF-κB activation in gastric mucosa in order to understand the role of NF-κB in gastric carcinogenesis.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| |
Collapse
|
16
|
The Interaction between GSTT1, GSTM1, and GSTP1 Ile105Val Gene Polymorphisms and Environmental Risk Factors in Premalignant Gastric Lesions Risk. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7365080. [PMID: 28182092 PMCID: PMC5274680 DOI: 10.1155/2017/7365080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/18/2022]
Abstract
The study investigated the possible influence of GSTM1, GSTT1, and GSTP1 gene polymorphisms as predisposing factors for premalignant gastric lesions as well as their interaction with H. pylori infection, gastrotoxic drugs, smoking, and alcohol consumption. In this study, 270 patients with a complet set of gastric biopsies and successfully genotyped were finally included. The GSTM1 gene polymorphism had significant contribution in mild/severe endoscopic lesions (p = 0.01) as well as in premalignant lesions (p = 0.01). The GSTM1 null genotype increased the risk for mucosal defects in H. pylori-negative patients (OR = 2.27, 95% CI: 1.20–4.37) and the risk for premalignant lesions in patients with no alcohol consumption (OR = 2.13, 95% CI: 1.19–3.83). The GSTT1 deleted polymorphism did not significantly increase the risk for premalignant lesions in the absence of gastrotoxic drugs (OR = 1.82, 95% CI: 0.72–4.74). The combined GSTT1T1 and GSTM1 null polymorphisms were borderline correlated with an increased risk for premalignant lesions (OR = 1.72, 95% CI: 1.00–2.97). The wild-type GSTP1 Ile/Ile genotype versus the variant genotypes Ile/Val + Val/Val was significantly associated with a decreased risk of gastric atrophy/intestinal metaplasia (OR = 0.60, 95% CI: 0.37–0.98). In conclusion, the GSTM1 and GSTT1 null genotypes increased the risk for premalignant and endoscopic gastric lesions, modulated by H. pylori, alcohol, or gastrotoxic drug consumption, while the presence of the GSTP1Val allele seemed to reduce the risk for premalignant lesions.
Collapse
|
17
|
Kun Z, Hanqing G, Hailing T, Yuan Y, Jun Z, Lingxia Z, Kun H, Xin Z. Gastrin Enhances Autophagy and Promotes Gastric Carcinoma Proliferation via Inducing AMPKα. Oncol Res 2017; 25:1399-1407. [PMID: 28059052 PMCID: PMC7841241 DOI: 10.3727/096504016x14823648620870] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequent epithelial malignancies worldwide. The gastrointestinal (GI) peptide gastrin is an important regulator of the secretion and release of gastric acid from stomach parietal cells, and it also plays a vital role in the development and progression of GC. The aim of the current study was to investigate the role and underlying mechanism of gastrin and autophagy in regulating GC tumorigenesis. Gastrin-17 amide (G-17) was applied in the GC cell lines SGC7901 and MGC-803. The results showed that G-17 maintained the high viability of SGC7901 and MGC-803. The expression of autophagy marker proteins LC3II and Beclin1 was significantly increased, while the autophagy substrate p62 was obviously decreased in the gastrin group compared with the control group. Moreover, G-17 strengthened the expressions of AMPKα, Ras, Raf, MEK, and ERK1/2. Additionally, administration of AMPKα siRNA counteracted the effect of gastrin in SGC7901 cells. Finally, in an in vivo study of the tumor growth and survival rate of rats, the levels of AMPKα/Ras/Raf/MEK/ERK were significantly increased in the gastrin group and decreased following AMPKα shRNA injection. In conclusion, these findings indicate that gastrin plays a tumorigenic role by promoting autophagy in GC and may provide a novel therapeutic target for GC treatment.
Collapse
|
18
|
Herrera-Goepfert R, Oñate-Ocaña LF, Mosqueda-Vargas JL, Herrera LA, Castro C, Mendoza J, González-Barrios R. Methylation of DAPK and THBS1 genes in esophageal gastric-type columnar metaplasia. World J Gastroenterol 2016; 22:4567-4575. [PMID: 27182166 PMCID: PMC4858638 DOI: 10.3748/wjg.v22.i18.4567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/30/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori (H. pylori) status in individuals harboring esophageal columnar metaplasia.
METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type (non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of death-associated protein kinase (DAPK), thrombospondin-1 (THBS1), cadherin-1 (CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction (MS-PCR) and sodium bisulfite modification protocol. H. pylori cagA status was determined by PCR.
RESULTS: In total, 68 subjects (33 females and 35 males), with a mean age of 52 years, were included. H. pylori cagA positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40 (58.8%), 33 (48.5%), 46 (67.6%), and 23 (33.8%) cases of the 68 esophageal samples. H. pylori status was associated with methylation of DAPK (P = 0.003) and THBS1 (P = 0.019).
CONCLUSION: DNA methylation occurs in cases of gastric-type (non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cagA positive infection.
Collapse
|
19
|
Sun W, Chen G. Impact and mechanism of non-steroidal anti-inflammatory drugs combined with chemotherapeutic drugs on human lung cancer-nude mouse transplanted tumors. Oncol Lett 2016; 11:4193-4199. [PMID: 27313765 DOI: 10.3892/ol.2016.4493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/14/2015] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to investigate the impact of indomethacin treatment combined with oxaliplatin treatment on the expression of cluster of differentiation 44 variant 6 (CD44v6), matrix metalloproteinase-2 (MMP-2) and survivin in human lung cancer-nude mouse transplanted tumors. The human lung adenocarcinoma (A549)-nude mouse transplanted tumor model was established, and the mice were divided into a control group, an indomethacin treatment group, an oxaliplatin treatment group and an indomethacin-oxaliplatin combination treatment group. The tumor inhibition rate was calculated following sacrificing of the mice. Immunohistochemical staining and fluorescence reverse transcription-quantitative polymerase chain reaction were utilized to detect the protein and messenger (m)RNA expression of CD44v6, MMP-2 and survivin. The tumor inhibition rates of the indomethacin group, the oxaliplatin group and the combination group were 26.67, 47.70 and 68.88%, respectively. The protein and mRNA expression levels of CD44v6, MMP-2 and survivin in the transplanted tumors of each treatment group were reduced compared with the control group (P<0.05), and those of the combination group were lower compared with the single-drug treatment groups (P<0.05). Survivin and MMP-2, MMP-2 and CD44v6, and MMP-2 and CD44v6 all exhibited linear positive correlation. The present study provides evidence that the administration of indomethacin alone, or in combination with oxaliplatin, may significantly inhibit the growth of lung cancer-nude mouse transplanted tumors and the expression of CD44v6, MMP-2 and survivin inside the tumor. The combination of non-steroidal anti-inflammatory drugs with chemotherapeutic drugs may improve the antitumor effects.
Collapse
Affiliation(s)
- Weiyi Sun
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Gang Chen
- Department of Respiratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
20
|
Qiu ZQ, Qiu ZR. Sensitivity of gastric cancer cells to chemotherapy drugs in elderly patients and its correlation with cyclooxygenase-2 expression. Asian Pac J Cancer Prev 2016; 16:3447-50. [PMID: 25921160 DOI: 10.7314/apjcp.2015.16.8.3447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To explore the sensitivity of gastric cancer cells to chemotherapy drugs in elderly patients and its correlation with cyclooxygenase-2 (COX-2) expression in cancer tissue. MATERIALS AND METHODS Forty-three elderly patients with gastric cancer (observation group) and 31 young patients with gastrointestinal tumors (control group) who were all diagnosed by pathology and underwent surgery in the 89th Hospital of Chinese People's Liberation Army were selected. Drug sensitivity testing of tumor cells in primary culture was carried out in both groups using a methyl thiazolyl tetrazolium (MTT) method, and the expression of COX-2 and the factors related to multi-drug resistance (MDR) in cancer tissue were assessed by immunohistochemistry. RESULTS The inhibition rates (IR) of vincristine (VCR), 5-fluorouracil (5-FU), oxaliplatin (L-OHP), mitomycin (MMC) and epirubicin (eADM) on tumor cells in the observation group were dramatically lower than in the control group, with statistical significance (P<0.05 or P<0.01). The positive rates of COX-2, glutathione s-transferase-π (GST-π) and P glycoprotein (P-gp) expression in cancer tissue in the observation group were all higher than in control group (P<0.05), while that of DNA topoisomerase IIα (TopoIIα) expression lower than in the control group (P<0.01). In the observation group, COX-2 expression in cancer tissue had a significantly-positive correlation with GST-π and P-gp (r=0.855, P=0.000; r=0.240, P=0.026), but a negative correlation with TopoIIα (r=-0.328, P=0.002). In the control group, COX-2 expression in cancer tissue was only correlated with P-gp positively (r=0.320, P=0.011). Bivariate correlation analysis displayed that COX-2 expression in cancer tissue in the observation group had a significantly-negative correlation with the IRs of 5-FU, L-OHP, paclitaxel (PTX) and eADM in tumor cells (r=-0.723, P=0.000; r=-0.570, P=0.000; r=-0.919, P=0.000; r=-0.781, P=0.000), but with hydroxycamptothecine (HCPT), VCR and 5-FU in the control group (r=-0.915, P=0.000; r=-0.890, P=0.000; r=-0.949, P=0.000). CONCLUSIONS Gastric cancer cells in elderly patients feature stronger MDR, which may be related to high COX-2 expression.
Collapse
Affiliation(s)
- Zhen-Qin Qiu
- Unified Supply Center, The 89th Hospital of Chinese People's Liberation Army, Weifang, China E-mail :
| | | |
Collapse
|
21
|
Ahn HJ, Lee DS. Helicobacter pylori in gastric carcinogenesis. World J Gastrointest Oncol 2015; 7:455-65. [PMID: 26690981 PMCID: PMC4678392 DOI: 10.4251/wjgo.v7.i12.455] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/10/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer still is a major concern as the third most common cancer worldwide, despite declining rates of incidence in many Western countries. Helicobacter pylori (H. pylori) is the major cause of gastric carcinogenesis, and its infection insults gastric mucosa leading to the occurrence of atrophic gastritis which progress to intestinal metaplasia, dysplasia, early gastric cancer, and advanced gastric cancer consequently. This review focuses on multiple factors including microbial virulence factors, host genetic factors, and environmental factors, which can heighten the chance of occurrence of gastric adenocarcinoma due to H. pylori infection. Bacterial virulence factors are key components in controlling the immune response associated with the induction of carcinogenesis, and cagA and vacA are the most well-known pathogenic factors. Host genetic polymorphisms contribute to regulating the inflammatory response to H. pylori and will become increasingly important with advancing techniques. Environmental factors such as high salt and smoking may also play a role in gastric carcinogenesis. It is important to understand the virulence factors, host genetic factors, and environmental factors interacting in the multistep process of gastric carcinogenesis. To conclude, prevention via H. pylori eradication and controlling environmental factors such as diet, smoking, and alcohol is an important strategy to avoid H. pylori-associated gastric carcinogenesis.
Collapse
|
22
|
Cao L, Yu J. Effect of Helicobacter pylori Infection on the Composition of Gastric Microbiota in the Development of Gastric Cancer. Gastrointest Tumors 2015; 2:14-25. [PMID: 26673084 DOI: 10.1159/000380893] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gastric cancer is one of the most common cancer types worldwide. In China, gastric cancer has become one of the major threats for public health, ranking second on incidence and third on cause of cancer death. Despite the common risk factors that promote the development of gastric cancer, the huge quantity of microorganism colonies within the gastrointestinal tract, particularly Helicobacter pylori infection, demonstrates a correlation with chronic inflammation and gastric carcinogenesis, as epidemiological studies have determined that H. pylori infection confers approximately 75% of the attributable risk for gastric cancer. SUMMARY The current article draws an overview on the correlation between the microbiota, inflammation and gastric tumorigenesis. H. pylori infection has been identified as the main risk factor as it triggers epithelial barrier disruption, survival signaling as well as genetic/epigenetic modulation. Apart from H. pylori, the existence of a diverse and complex composition of microbiota in the stomach has been identified, which supports a role of microbiota in the development of gastric cancer. Moreover, metagenomics studies focused on the composition and function of the microbiota have associated microbiota with gastric metabolic diseases and even tumorigenesis. Apart from the gastric microbiota, inflammation is another identified contributor to cancer development as well. KEY MESSAGE Though H. pylori infection and the non-H. pylori microbiota play a role in gastric cancer, the properties of gastric microbiota and mechanisms by which they participate in the genesis of gastric cancer are still not clearly depicted. Moreover, it remains to be understood how the presence of microbiota along with H. pylori infection affects the progress from gastric disease to cancer. PRACTICAL IMPLICATIONS This article summarized a clue of the current studies on microbiota, H. pylori infection and the progression from gastric disease to cancer.
Collapse
Affiliation(s)
- Le Cao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Ju Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| |
Collapse
|
23
|
Fang XG, Zhao K, Zhu R, Fu XF, Wang H. Impact of combined proglumide and celecoxib on cell proliferation and PGE2 secretion in human gastric cancer cell line BGC-823. Shijie Huaren Xiaohua Zazhi 2015; 23:719-727. [DOI: 10.11569/wcjd.v23.i5.719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of proglumide (a gastrin receptor antagonist) and celecoxib [a selective cyclooxygenase-2 (COX-2) inhibitor] on cell proliferation and COX-2, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and prostaglandin E2 (PGE2) expression in human gastric cancer cell line BGC-823.
METHODS: BGC-823 cells were treated with proglumide and celecoxib, alone or in combination. MTT assay was used to detect the proliferation of BGC-823 cells. Real-time PCR was used to detect COX-2 and 15-PGDH mRNA expression. Western blot was used to detect COX-2 and 15-PGDH protein expression, and ELISA was used to determine the content of PGE2 in culture medium.
RESULTS: Proglumide and celecoxib inhibited the growth of BGC-823 cells in a dose- and time-dependent manner. Treatment with combined proglumide (6 mmol/L, less than IC50) and celecoxib (50 μmol/L, less than IC50) for 48 h was associated with a significantly higher inhibition rate than either of the agents alone (65.1% ± 7.7% vs 38.1% ± 7.1%, 32.6% ± 3.3%, P < 0.05). Proglumide and celecoxib down-regulated the expression of COX-2 mRNA and protein, and up-regulated the expression of 15-PGDH mRNA and protein in BGC-823 cells, and the effects of combined treatment were more significant than treatment with either of the agents alone (P < 0.05 vs proglumide; P < 0.01 vs celecoxib). Proglumide and celecoxib reduced the secretion of PGE2, and the effects of combined treatment were more significant than either of the agents alone (P < 0.05 vs proglumide; P < 0.01 vs celecoxib).
CONCLUSION: Proglumide and celecoxib inhibit the growth of cultured BGC-823 cells time- and dose-dependently, possibly by down-regulating the expression of COX-2 mRNA and protein, up-regulating the expression of 15-PGDH mRNA and protein, and reducing PGE2 synthesis or secretion. Combined use of proglumide and celecoxib has a synergistic effect.
Collapse
|