1
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Li D, Chu X, Liu W, Ma Y, Tian X, Yang Y. The regulatory roles of RNA-binding proteins in the tumour immune microenvironment of gastrointestinal malignancies. RNA Biol 2025; 22:1-14. [PMID: 39718205 DOI: 10.1080/15476286.2024.2440683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
The crosstalk between the tumour immune microenvironment (TIME) and tumour cells promote immune evasion and resistance to immunotherapy in gastrointestinal (GI) tumours. Post-transcriptional regulation of genes is pivotal to GI tumours progression, and RNA-binding proteins (RBPs) serve as key regulators via their RNA-binding domains. RBPs may exhibit either anti-tumour or pro-tumour functions by influencing the TIME through the modulation of mRNAs and non-coding RNAs expression, as well as post-transcriptional modifications, primarily N6-methyladenosine (m6A). Aberrant regulation of RBPs, such as HuR and YBX1, typically enhances tumour immune escape and impacts prognosis of GI tumour patients. Further, while targeting RBPs offers a promising strategy for improving immunotherapy in GI cancers, the mechanisms by which RBPs regulate the TIME in these tumours remain poorly understood, and the therapeutic application is still in its early stages. This review summarizes current advances in exploring the roles of RBPs in regulating genes expression and their effect on the TIME of GI tumours, then providing theoretical insights for RBP-targeted cancer therapies.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiangyu Chu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Zhou C, Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int J Biol Sci 2024; 20:2698-2726. [PMID: 38725864 PMCID: PMC11077374 DOI: 10.7150/ijbs.91832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.
Collapse
Affiliation(s)
- Yuhan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada, T6G2R3
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
4
|
Ghorbani A, Hosseinie F, Khorshid Sokhangouy S, Islampanah M, Khojasteh-Leylakoohi F, Maftooh M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Nazari E, Avan A. The prognostic, diagnostic, and therapeutic impact of Long noncoding RNAs in gastric cancer. Cancer Genet 2024; 282-283:14-26. [PMID: 38157692 DOI: 10.1016/j.cancergen.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Gastric cancer (GC), ranking as the third deadliest cancer globally, faces challenges of late diagnosis and limited treatment efficacy. Long non-coding RNAs (lncRNAs) emerge as valuable treasured targets for cancer prognosis, diagnosis, and therapy, given their high specificity, convenient non-invasive detection in body fluids, and crucial roles in diverse physiological and pathological processes. Research indicates the significant involvement of lncRNAs in various aspects of GC pathogenesis, including initiation, metastasis, and recurrence, underscoring their potential as novel diagnostic and prognostic biomarkers, as well as therapeutic targets for GC. Despite existing challenges in the clinical application of lncRNAs in GC, the evolving landscape of lncRNA molecular biology holds promise for advancing the survival and treatment outcomes of gastric cancer patients. This review provides insights into recent studies on lncRNAs in gastric cancer, elucidating their molecular mechanisms and exploring the potential clinical applications in GC.
Collapse
Affiliation(s)
- Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Hosseinie
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Saeideh Khorshid Sokhangouy
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Wei H, Wu X, Huang L, Long C, Lu Q, Huang Z, Huang Y, Li W, Pu J. LncRNA MEG3 Reduces the Ratio of M2/M1 Macrophages Through the HuR/CCL5 Axis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:543-562. [PMID: 38496248 PMCID: PMC10943271 DOI: 10.2147/jhc.s449090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Objective Tumor-associated macrophages play a crucial role in the development of hepatocellular carcinoma (HCC). Our study aimed to investigate the relationship between long coding RNA (lncRNA) maternally expressed gene 3 (MEG3), RNA-binding protein human antigen R (HuR), and messenger RNA C-C motif chemokine 5 (CCL5) in the modulation of M1 and M2 macrophage polarization in HCC. Methods To induce M1 or M2 polarization, LPS/IFNγ- or IL4/IL13 were used to treat bone marrow derived macrophages (BMDMs). The localization of MEG3 in M1 and M2 macrophages was assessed using fluorescence in situ hybridization assay. Expression levels of MEG3, HuR, CCL5, M1, and M2 markers were measured by RT-qPCR or immunofluorescence staining. Flow cytometry was performed to determine the proportion of F4/80+CD206+ and F4/80+CD68+ cells. RNA pulldown assay was performed to detect the binding of lncRNA MEG3 and HuR. The impacts of HuR on CCL5 stability and activity of CCL5 promoter were evaluated using actinomycin D treatment and luciferase reporter assay. Cell migration, invasiveness, and angiogenesis were assessed using transwell migration and invasion assays and a tube formation assay. A mixture of Huh-7 cells and macrophages were injected into nude mice to explore the effect of MEG3 on tumorigenesis. Results MEG3 promoted M1-like polarization while dampening M2-like polarization of BMDMs. MEG3 bound to HuR in M1 and M2 macrophages. HuR downregulated CCL5 by inhibiting CCL5 transcription in macrophages. In addition, overexpression of MEG3 suppressed cell metastasis, invasion, and angiogenesis by obstructing macrophage M2 polarization. MEG3 inhibited tumorigenesis in HCC via promotion of M1-like polarization and inhibition of M2-like polarization. Rescue experiments showed that depletion of CCL5 in M2 macrophages reversed MEG3-induced suppressive effect on cell migration, invasion, and tube formation. Conclusion MEG3 suppresses HCC progression by promoting M1-like while inhibiting M2-like macrophage polarization via binding to HuR and thus upregulating CCL5.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Chen Long
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Qi Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| |
Collapse
|
6
|
Stukas D, Jasukaitiene A, Bartkeviciene A, Matthews J, Maimets T, Teino I, Jaudzems K, Gulbinas A, Dambrauskas Z. Targeting AHR Increases Pancreatic Cancer Cell Sensitivity to Gemcitabine through the ELAVL1-DCK Pathway. Int J Mol Sci 2023; 24:13155. [PMID: 37685961 PMCID: PMC10487468 DOI: 10.3390/ijms241713155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.
Collapse
Affiliation(s)
- Darius Stukas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Aldona Jasukaitiene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Arenida Bartkeviciene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| |
Collapse
|
7
|
Jin M, Wu J, Shi L, Zhou B, Shang F, Chang X, Dong X, Deng S, Liu L, Cai K, Nie X, Zhang T, Fan J, Liu H. Gut microbiota distinct between colorectal cancers with deficient and proficient mismatch repair: A study of 230 CRC patients. Front Microbiol 2022; 13:993285. [PMID: 36312959 PMCID: PMC9607965 DOI: 10.3389/fmicb.2022.993285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 07/28/2023] Open
Abstract
Colorectal cancers (CRCs) with deficient DNA mismatch repair (dMMR) and proficient DNA mismatch repair (pMMR) exhibit heterogeneous tumor characteristics, distinct responses to immunotherapy, and different survival outcomes. However, it is unclear whether gut microbiota is distinct between CRCs with different MMR status. In this study, we used immunohistochemistry for four major MMR proteins to determine the MMR status in 230 CRC patients. The gut microbiota was profiled in cancerous and adjacent normal tissues by using bacterial 16S rRNA sequencing. The differences in microbiota diversity, composition and related metabolic pathways between patients with dMMR and pMMR CRCs were explored. Linear discriminant analysis effect size (LEfSe) analysis was further applied to validate the significant taxonomic differences at the genus level. In our study cohort, dMMR status was identified in 29 of 230 (12.61%) tumors. The richness (alpha-diversity) of gut microbiome in dMMR tumor tissue was higher compared with pMMR tumor tissues. The microbial community composition (beta-diversity) between the two groups was significantly different. The dMMR group was enriched considerably for some microbiota, including Fusobacteria, Firmicutes, Verrucomicrobia, and Actinobacteria at the phylum level and Fusobacterium, Akkermansia, Bifidobacterium, Faecalibacterium, Streptococcus, and Prevotella bacteria at the genus level. However, the pMMR group was dominated by Proteobacteria at the phylum level and Serratia, Cupriavidus and Sphingobium at the genus level. Moreover, a wide variety of microbiota associated functional pathways were observed with different MMR status. KEGG pathway analysis indicated a higher abundance of the biosynthesis and metabolic pathways of glycan and nucleotide, cell growth and death pathways, genetic replication and repair pathways in dMMR samples compared with the pMMR group. These findings demonstrate that CRC patients with different MMR status have distinct gut bacterial community richness, compositions and related metabolic pathways, suggesting basis that may explain the effectiveness of immunotherapy in dMMR tumors.
Collapse
Affiliation(s)
- Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Linli Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fumei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Kim YS, Tang PW, Welles JE, Pan W, Javed Z, Elhaw AT, Mythreye K, Kimball SR, Hempel N. HuR-dependent SOD2 protein synthesis is an early adaptation to anchorage-independence. Redox Biol 2022; 53:102329. [PMID: 35594792 PMCID: PMC9121325 DOI: 10.1016/j.redox.2022.102329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
During metastasis cancer cells must adapt to survive loss of anchorage and evade anoikis. An important pro-survival adaptation is the ability of metastatic tumor cells to increase their antioxidant capacity and restore cellular redox balance. Although much is known about the transcriptional regulation of antioxidant enzymes in response to stress, how cells acutely adapt to alter antioxidant enzyme levels is less well understood. Using ovarian cancer cells as a model, we demonstrate that an increase in mitochondrial superoxide dismutase SOD2 protein expression is a very early event initiated in response to detachment, an important step during metastasis that has been associated with increased oxidative stress. SOD2 protein synthesis is rapidly induced within 0.5-2 h of matrix detachment, and polyribosome profiling demonstrates an increase in the number of ribosomes bound to SOD2 mRNA, indicating an increase in SOD2 mRNA translation in response to anchorage-independence. Mechanistically, we find that anchorage-independence induces cytosolic accumulation of the RNA binding protein HuR/ELAVL1 and promotes HuR binding to SOD2 mRNA. Using HuR siRNA-mediated knockdown, we show that the presence of HuR is necessary for the increase in SOD2 mRNA association with the heavy polyribosome fraction and consequent nascent SOD2 protein synthesis in anchorage-independence. Cellular detachment also activates the stress-response mitogen-activated kinase p38, which is necessary for HuR-SOD2 mRNA interactions and induction of SOD2 protein output. These findings illustrate a novel translational regulatory mechanism of SOD2 by which ovarian cancer cells rapidly increase their mitochondrial antioxidant capacity as an acute stress response to anchorage-independence.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Priscilla W Tang
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Jaclyn E Welles
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Weihua Pan
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Zaineb Javed
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Amal Taher Elhaw
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Okuni N, Honma Y, Urano T, Tamura K. Romidepsin and tamoxifen cooperatively induce senescence of pancreatic cancer cells through downregulation of FOXM1 expression and induction of reactive oxygen species/lipid peroxidation. Mol Biol Rep 2022; 49:3519-3529. [PMID: 35099714 DOI: 10.1007/s11033-022-07192-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although improvement has been made in therapeutic strategies against pancreatic carcinoma, overall survival has not significantly enhanced over the past decade. Thus, the establishment of better therapeutic regimens remains a high priority. METHODS Pancreatic cancer cell lines were incubated with romidepsin, an inhibitor of histone deacetylase, and tamoxifen, and their effects on cell growth, signaling and gene expression were analyzed. Xenografts of human pancreatic cancer CFPAC1 cells were medicated with romidepsin and tamoxifen to evaluate their effects on tumor growth. RESULTS The inhibition of the growth of pancreatic cancer cells induced by romidepsin and tamoxifen was effectively reduced by N-acetyl cysteine and α-tocopherol, respectively. The combined treatment greatly induced reactive oxygen species production and mitochondrial lipid peroxidation, and these effects were prevented by N-acetyl cysteine and α-tocopherol. Tamoxifen enhanced romidepsin-induced cell senescence. FOXM1 expression was markedly downregulated in pancreatic cancer cells treated with romidepsin, and tamoxifen further reduced FOXM1 expression in cells treated with romidepsin. Siomycin A, an inhibitor of FOXM1, induced senescence in pancreatic cancer cells. Similar results were obtained in knockdown of FOXM1 expression by siRNA. CONCLUSION Since FOXM1 is used as a prognostic marker and therapeutic target for pancreatic cancer, a combination of the clinically available drugs romidepsin and tamoxifen might be considered for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Noriko Okuni
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Yoshio Honma
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan.
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan.
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Kenji Tamura
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
10
|
Hu L, Ding R, Nie X. Comparison of toxic effects of atorvastatin and gemfibrozil on Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109224. [PMID: 34756985 DOI: 10.1016/j.cbpc.2021.109224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
Atorvastatin (ATV) and gemfibrozil (GEM) are two typical lipid-lowering pharmaceuticals with different action modes, which are frequently detected in various water bodies owning to their wide usage. However, there is limited information about their effects on Daphnia magna. The present study addressed and compared the toxic effects of ATV and GEM on D. magna through determining the responses of the stress related genes (including Nrf2, Keap1, HO-1, GCLC, p53 and PIG3) in D. magna for 24 h and 48 h acute exposure and the changes of life history traits and swimming behaviors in a 21 days chronic exposure under different concentrations of ATV and GEM exposure (5 μg L-1, 50 μg L-1, 500 μg L-1 and 5000 μg L-1). Results showed that the expression of Nrf2, Keap1, HO-1, GCLC, p53 and PIG3 were induced to various degrees under the ATV exposure. There were similar performances for GEM. ATV and GEM caused the delay of first brooding and hatching time and decrease of eggs production number, especially in GEM exposure, reproduction of Daphnia was significantly inhibited, decreasing 38.51% compared to the control. ATV and GEM increased the heart rate of D. magna, and changed swimming behaviors of D. magna. In summary, two lipid-lowering pharmaceuticals caused oxidative stress on D. magna, subsequently brought about alterations in physiological traits. Comparatively, ATV pose more higher risks to D. magna than GEM, but the detailed action mechanisms of ATV and GEM on D. magna needs more investigations in future.
Collapse
Affiliation(s)
- Limei Hu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Rui Ding
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Abstract
The Androgen Receptor (AR), transcriptionally activated by its ligands, testosterone and dihydrotestosterone (DHT), is widely expressed in cells and tissues, influencing normal biology and disease states. The protein product of the AR gene is involved in the regulation of numerous biological functions, including the development and maintenance of the normal prostate gland and of the cardiovascular, musculoskeletal and immune systems. Androgen signalling, mediated by AR protein, plays a crucial role in the development of prostate cancer (PCa), and is presumed to be involved in other cancers including those of the breast, bladder, liver and kidney. Significant research and reviews have focused on AR protein function; however, inadequate research and literature exist to define the function of AR mRNA in normal and cancer cells. The AR mRNA transcript is nearly 11 Kb long and contains a long 3’ untranslated region (UTR), suggesting its biological role in post-transcriptional regulation, consequently affecting the overall functions of both normal and cancer cells. Research has demonstrated that many biological activities, including RNA stability, translation, cellular trafficking and localization, are associated with the 3’ UTRs of mRNAs. In this review, we describe the potential role of the AR 3’ UTR and summarize RNA-binding proteins (RBPs) that interact with the AR mRNA to regulate post-transcriptional metabolism. We highlight the importance of AR mRNA as a critical modulator of carcinogenesis and its important role in developing therapy-resistant prostate cancer.
Collapse
Affiliation(s)
- Eviania Likos
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA
| | - Asmita Bhattarai
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA
| | - Crystal M Weyman
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Girish C Shukla
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
12
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
13
|
Borgonetti V, Coppi E, Galeotti N. Targeting the RNA-Binding Protein HuR as Potential Thera-Peutic Approach for Neurological Disorders: Focus on Amyo-Trophic Lateral Sclerosis (ALS), Spinal Muscle Atrophy (SMA) and Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms221910394. [PMID: 34638733 PMCID: PMC8508990 DOI: 10.3390/ijms221910394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
The importance of precise co- and post-transcriptional processing of RNA in the regulation of gene expression has become increasingly clear. RNA-binding proteins (RBPs) are a class of proteins that bind single- or double-chain RNA, with different affinities and selectivity, thus regulating the various functions of RNA and the fate of the cells themselves. ELAV (embryonic lethal/abnormal visual system)/Hu proteins represent an important family of RBPs and play a key role in the fate of newly transcribed mRNA. ELAV proteins bind AU-rich element (ARE)-containing transcripts, which are usually present on the mRNA of proteins such as cytokines, growth factors, and other proteins involved in neuronal differentiation and maintenance. In this review, we focused on a member of ELAV/Hu proteins, HuR, and its role in the development of neurodegenerative disorders, with a particular focus on demyelinating diseases.
Collapse
|
14
|
Bitaraf A, Razmara E, Bakhshinejad B, Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC, Babashah S. The oncogenic and tumor suppressive roles of RNA-binding proteins in human cancers. J Cell Physiol 2021; 236:6200-6224. [PMID: 33559213 DOI: 10.1002/jcp.30311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation is a mechanism for the cells to control gene regulation at the RNA level. In this process, RNA-binding proteins (RBPs) play central roles and orchestrate the function of RNA molecules in multiple steps. Accumulating evidence has shown that the aberrant regulation of RBPs makes contributions to the initiation and progression of tumorigenesis via numerous mechanisms such as genetic changes, epigenetic alterations, and noncoding RNA-mediated regulations. In this article, we review the effects caused by RBPs and their functional diversity in the malignant transformation of cancer cells that occurs through the involvement of these proteins in various stages of RNA regulation including alternative splicing, stability, polyadenylation, localization, and translation. Besides this, we review the various interactions between RBPs and other crucial posttranscriptional regulators such as microRNAs and long noncoding RNAs in the pathogenesis of cancer. Finally, we discuss the potential approaches for targeting RBPs in human cancers.
Collapse
Affiliation(s)
- Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Mousa Vatanmakanian
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Long noncoding RNA TSLNC8 enhances pancreatic cancer aggressiveness by regulating CTNNB1 expression via association with HuR. Hum Cell 2020; 34:165-176. [PMID: 32951177 DOI: 10.1007/s13577-020-00429-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies worldwide. Tumor suppressor long noncoding RNA on chromosome 8p12 (TSLNC8) is a newly identified long noncoding RNA (lncRNA) and play an important role in human cancers. However, the function and molecular mechanism of TSLNC8 in PC progression remain to be elucidated. Our results showed a significant increase of TSLNC8 expression in PC tissues and cell lines. Upregulation of TSLNC8 expression in PC tissues was closely correlated with TNM stage, distant and lymph node metastasis, and poor prognosis of PC patients. Functional experiments demonstrated that TSLNC8 promoted PC cells proliferation and invasion in vitro, and enhanced PC growth and metastasis in vivo. Mechanistically, TSLNC8 associated with HuR, promoted the binding of HuR with CTNNB1 mRNA and increased the stability of CTNNB1 mRNA, thus activating WNT/β-catenin signaling pathway. Taken together, our present study revealed that oncogenic lncRNA TSLNC8 positively regulate PC growth and metastasis via HuR-mediated mRNA stability of CTNNB1, extending the understanding of PC pathogenesis regulated by lncRNAs.
Collapse
|
16
|
Dery KJ, Nakamura K, Kadono K, Hirao H, Kageyama S, Ito T, Kojima H, Kaldas FM, Busuttil RW, Kupiec‐Weglinski JW. Human Antigen R (HuR): A Regulator of Heme Oxygenase-1 Cytoprotection in Mouse and Human Liver Transplant Injury. Hepatology 2020; 72:1056-1072. [PMID: 31879990 PMCID: PMC8330638 DOI: 10.1002/hep.31093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion injury (IRI) represents a risk factor in liver transplantation (LT). We have shown that overexpression of heme oxygenase-1 (HO-1) mitigates hepatic IRI in LT recipients. Here, we hypothesized that human antigen R (HuR), the stabilizer of adenylate-uridylate (AU)-rich mRNAs, is required for hepatoprotection in LT. APPROACH AND RESULTS In an experimental arm, HuR/HO-1 protein expression was correlated with hepatic IRI phenotype. In an in vitro inflammation mimic model of hepatic warm IRI, induction of HuR/HO-1 and cytoplasmic localization following cytokine preconditioning were detected in primary hepatocyte cultures, whereas HuR silencing caused negative regulation of HO-1, followed by enhanced cytotoxicity. Using the HuR-inhibitor, we showed that HuR likely regulates HO-1 through its 3' untranslated region and causes neutrophil activation (CD69+/lymphocyte antigen 6 complex locus G [Ly6-G]). HuR silencing in bone marrow-derived macrophages decreased HO-1 expression, leading to the induction of proinflammatory cytokines/chemokines. RNA sequencing of HuR silenced transcripts under in vitro warm IRI revealed regulation of genes thymus cell antigen 1 (THY1), aconitate decarboxylase 1 (ACOD1), and Prostaglandin E Synthase (PTGES). HuR, but not hypoxia-inducible protein alpha, positively regulated HO-1 in warm, but not cold, hypoxia/reoxygenation conditions. HuR modulated HO-1 in primary hepatocytes, neutrophils, and macrophages under reperfusion. Adjunctive inhibition of HuR diminished microtubule-associated proteins 1A/1B light chain 3B (LC3B), a marker for autophagosome, under HO-1 regulation, suggesting a cytoprotective mechanism in hepatic IR. In a clinical arm, hepatic biopsies from 51 patients with LT were analyzed at 2 hours after reperfusion. Graft HuR expression was negatively correlated with macrophage (CD80/CD86) and neutrophil (Cathepsin G) markers. Hepatic IRI increased HuR/HO-1 expression and inflammatory genes. High HuR-expressing liver grafts showed lower serum alanine aminotransferase/serum aspartate aminotransferase levels and improved LT survival. CONCLUSIONS This translational study identifies HuR as a regulator of HO-1-mediated cytoprotection in sterile liver inflammation and a biomarker of ischemic stress resistance in LT.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Kojiro Nakamura
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA,Department of SurgeryKyoto UniversityKyotoJapan,Department of SurgeryNishi‐Kobe Medical CenterKobeJapan
| | - Kentaro Kadono
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Hirofumi Hirao
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Shoichi Kageyama
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Takahiro Ito
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Hidenobu Kojima
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Fady M. Kaldas
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Ronald W. Busuttil
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| | - Jerzy W. Kupiec‐Weglinski
- The Dumont‐UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas TransplantationDavid Geffen School of Medicine at UCLALos AngelesCA
| |
Collapse
|
17
|
Wu M, Tong CWS, Yan W, To KKW, Cho WCS. The RNA Binding Protein HuR: A Promising Drug Target for Anticancer Therapy. Curr Cancer Drug Targets 2020; 19:382-399. [PMID: 30381077 DOI: 10.2174/1568009618666181031145953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The stability of mRNA is one of the key factors governing the regulation of eukaryotic gene expression and function. Human antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. While HuR is normally localized within the nucleus, it has been shown that HuR binds mRNAs in the nucleus and then escorts the mRNAs to the cytoplasm where HuR protects them from degradation. It contains several RNA recognition motifs, which specifically bind to adenylate and uridylate-rich regions within the 3'-untranslated region of the target mRNA to mediate its effect. Many of the HuR target mRNAs encode proteins important for cell growth, tumorigenesis, angiogenesis, tumor inflammation, invasion and metastasis. HuR overexpression is known to correlate well with high-grade malignancy and poor prognosis in many tumor types. Thus, HuR has emerged as an attractive drug target for cancer therapy. Novel small molecule HuR inhibitors have been identified by high throughput screening and new formulations for targeted delivery of HuR siRNA to tumor cells have been developed with promising anticancer activity. This review summarizes the significant role of HuR in cancer development, progression, and poor treatment response. We will discuss the potential and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
18
|
The RNA-Binding Protein HuR in Digestive System Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9656051. [PMID: 32775456 PMCID: PMC7396115 DOI: 10.1155/2020/9656051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Human antigen R (HuR) is a member of the Hu family of RNA-binding proteins. This molecule, which was first described in tumors nearly two decades ago, has recently received much attention in tumor-related research because it regulates the expression of many tumor-associated molecules through posttranscriptional regulatory mechanisms, thereby affecting biological characteristics. It is suggested that HuR might be a novel therapeutic target and a marker for therapeutic response and prognostic assessment. Increasing evidence supports that HuR also plays critical roles in the development, therapy, and prognosis of digestive system tumors. Herein, we review the relationships between HuR and digestive system tumors, demonstrating the importance of HuR in digestive system tumor diagnosis.
Collapse
|
19
|
Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A, Mirzaei H. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2020; 25:3563-3577. [PMID: 31470781 DOI: 10.2174/1381612825666190830161528] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sima Fathullahzadeh
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Lukosiute-Urboniene A, Jasukaitiene A, Silkuniene G, Barauskas V, Gulbinas A, Dambrauskas Z. Human antigen R mediated post-transcriptional regulation of inhibitors of apoptosis proteins in pancreatic cancer. World J Gastroenterol 2019; 25:205-219. [PMID: 30670910 PMCID: PMC6337016 DOI: 10.3748/wjg.v25.i2.205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the association of human antigen R (HuR) and inhibitors of apoptosis proteins (IAP1, IAP2) and prognosis in pancreatic cancer. METHODS Protein and mRNA expression levels of IAP1, IAP2 and HuR in pancreatic ductal adenocarcinoma (PDAC) were compared with normal pancreatic tissue. The correlations among IAP1/IAP2 and HuR as well as their respective correlations with clinicopathological parameters were analyzed. The Kaplan-Meier method and log-rank tests were used for survival analysis. Immunoprecipitation assay was performed to demonstrate HuR binding to IAP1, IAP2 mRNA. PANC1 cells were transfected with either anti-HuR siRNA or control siRNA for 72 h and quantitative reverse transcription polymerase chain reaction (RT-PCR), western blot analysis was carried out. RESULTS RT-PCR analysis revealed that HuR, IAP1, IAP2 mRNA expression were accordingly 3.3-fold, 5.5-fold and 8.4 higher in the PDAC when compared to normal pancreas (P < 0.05). Expression of IAP1 was positively strongly correlated with HuR expression (P < 0.05, r = 0.783). Western blot analysis confirmed RT-PCR results. High IAP1 expression, tumor resection status, T stage, lymph-node metastases, tumor differentiation grade, perineural and lymphatic invasion were identified as significant factors for shorter survival in PDAC patients (P < 0.05). Immunohistological analysis showed that HuR was mainly expressed in the ductal cancer cell's nucleus and less so in cytoplasm. RNA immunoprecipitation analysis confirmed IAP1 and IAP2 post-transcriptional regulation by HuR protein. Following siHuR transfection, IAP1 mRNA and protein levels were decreased, however IAP2 expression levels were increased. CONCLUSION HuR mediated overexpression of IAP1 significantly correlates with poor outcomes and early progression of pancreatic cancer. Further studies are needed to assess the underlying mechanisms.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Baculoviral IAP Repeat-Containing 3 Protein/genetics
- Baculoviral IAP Repeat-Containing 3 Protein/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Middle Aged
- Neoplasm Grading
- Pancreas/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Ausra Lukosiute-Urboniene
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
- Department of Pediatric Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Aldona Jasukaitiene
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Giedre Silkuniene
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Vidmantas Barauskas
- Department of Pediatric Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Antanas Gulbinas
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Zilvinas Dambrauskas
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| |
Collapse
|
21
|
Human antigen R and drug resistance in tumors. Invest New Drugs 2019; 37:1107-1116. [DOI: 10.1007/s10637-018-00723-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
|
22
|
Long intergenic non-coding RNA 00324 promotes gastric cancer cell proliferation via binding with HuR and stabilizing FAM83B expression. Cell Death Dis 2018; 9:717. [PMID: 29915327 PMCID: PMC6006375 DOI: 10.1038/s41419-018-0758-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
Substantial evidence shows that long non-coding RNAs (lncRNAs) participate in many biological mechanisms, and their dysregulation are also involved in the development and progression of cancers, including gastric cancer (GC). Long intergenic non-coding RNA 00324 (LINC00324), a 2115 bp ncRNA, is located on chromosome 17p13.1. The biological function and molecular mechanisms of LINC00324 in GC remains undiscovered. In this paper, we found that the expression level of LINC00324 was significantly upregulated in GC tissues compared with the corresponding normal tissues. The overexpression of LINC00324 was correlated with advanced TNM stage, larger tumor size, and lymph node metastasis as well as poor prognosis. Further experiments revealed that knockdown of LINC00324 could suppress the proliferation of GC cells. RNA transcriptome sequencing technology revealed that FAM83B may be a significant downstream target gene of LINC00324. LINC00324 could combine with the RNA-binding protein (RBP) human antigen R (HuR) and thus stabilize the expression of FAM83B. Moreover, rescue assays showed that the reduced FAM83B expression partially reversed the promotion of cell growth in GC induced by the overexpression of LINC00324. In conclusion, our study revealed that LINC00324 acted as an oncogene in tumorigenesis and progression, suggesting that it could be a new biomarker in diagnosis and prognosis of GC.
Collapse
|
23
|
Chu M, Wang T, Sun A, Chen Y. Nimesulide inhibits proliferation and induces apoptosis of pancreatic cancer cells by enhancing expression of PTEN. Exp Ther Med 2018; 16:370-376. [PMID: 29896263 DOI: 10.3892/etm.2018.6191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/05/2018] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-associated cases of mortality worldwide. Prostaglandin-endoperoxide synthase 2 (COX-2) is considered a therapeutic target for prevention of pancreatic cancer. Nimesulide, a selective COX-2 inhibitor, can induce cell apoptosis, resulting in an anti-cancer effect. However, the mechanism underlying this effect remains to be elucidated. The present study aimed to evaluate the effects of nimesulide on proliferation of PANC-1 cells using an MTT assay. Apoptosis was evaluated by DNA laddering and Annexin V-fluorescein isothiocyanate/propidium iodide-stained flow cytometry. Furthermore, western blot analysis was used to elucidate the mechanism underlying nimesulide treatment in PANC-1 cells. It was determined that proliferation of PANC-1 cells was inhibited by nimesulide in a dose-dependent manner. Nimesulide promoted apoptosis of PANC-1 cells. Western blot analysis demonstrated that nimesulide increased expression of cleaved caspase-3 and apoptosis regulator Bax (Bcl-2 associated protein X), and decreased the expression of pro-caspase-3 and apoptosis regulator Bcl-2 (B-cell lymphoma 2). Furthermore, nimesulide enhanced expression of phosphatase and tensin homolog (PTEN), and decreased the expression level of COX-2 and vascular endothelial growth factor. In summary, the results of the present study demonstrated that nimesulide could induce apoptosis and inhibit growth of PANC-1 cells by enhancing the expression of PTEN, which indicates the potential of nimesulide to prevent tumor angiogenesis.
Collapse
Affiliation(s)
- Meifen Chu
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Tongtong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Aihua Sun
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Yu Chen
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
24
|
Xu W, Chen C, Xu R, Li Y, Hu R, Li Z, Zhu X. Knockdown of HuR represses osteosarcoma cells migration, invasion and stemness through inhibition of YAP activation and increases susceptibility to chemotherapeutic agents. Biomed Pharmacother 2018; 102:587-593. [PMID: 29597092 DOI: 10.1016/j.biopha.2018.03.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
This study aims to explore the roles and related mechanisms of HuR in osteosarcoma (OS) cells migration, invasion, stemness and chemotherapeutical sensitivity. Here, we found that HuR exhibited higher level in OS tissues compared with the adjacent normal tissues. Knockdown of HuR with lentivirus infection suppressed OS cells migration and invasion, and thus the epithelial-mesenchymal transition (EMT) process. Additionally, HuR knockdown inhibited OS cells stemness. Mechanistically, YAP was identified as a direct target of HuR in OS cells, and HuR knockdown decreased its expression. Moreover, YAP transcriptional activity was attenuated by HuR knockdown, and RNA immunization co-precipitation (RIP) assay showed that HuR directly bound with YAP. Importantly, YAP overexpression rescued the inhibition of HuR knockdown on OS cells migration, invasion and stemness. Furthermore, HuR knockdown enhanced adriamycin sensitivity in OS cells, this effect was attenuated by YAP overexpression too. Importantly, HuR and YAP expression was positively correlated in OS tissues. Therefore, HuR acts as a tumor promoter by enhancing YAP expression in OS cells.
Collapse
Affiliation(s)
- Wei Xu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Chao Chen
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Ruijun Xu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Yifan Li
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Ruixi Hu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Zhikun Li
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China.
| | - Xiaodong Zhu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China.
| |
Collapse
|
25
|
Han L, Jiang J, Ma Q, Wu Z, Wang Z. The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway. Int J Oncol 2018; 52:2101-2109. [PMID: 29620188 DOI: 10.3892/ijo.2018.4363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a type of cancer associated with a high fatality rate due to a poor prognosis and resistance to treatment. Heme oxygenase-1 (HO-1) is significantly overexpressed in a number of types of cancer and seems to play an important role in cancer progression. In this study, we examined the potential effects of HO-1 on PC cell proliferation and sensivity to gemcitabine (Gem). Furthermore, the role of the sonic hedgehog (SHH) signaling pathway in the regulatory effects of HO-1 on PC progression were examined. For this purpose, the expression of HO-1 was examined in cultured PC cells by real-time PCR, western blot analysis and immunofluorescence. Transfection with small interfering RNA against HO-1 or an overexpression plasmid were used to regulate the expression of HO-1 in the MIA PaCa-2 and PANC-1 cell lines. Cell proliferation was examined by MTT assays in response to the different treatments. The results revealed that HO-1 expression differed significantly in the different PC cells. The overexpression of HO-1 induced PC cell proliferation and the inhibition of HO-1 decreased the cell proliferative ability. Furthermore, HO-1 activated the SHH signaling pathway in the PC cells. In addition, the SHH signaling pathway was found to play a role in HO-1-induced PC cell proliferation. The inhibition of HO-1 enhanced the responsiveness of PC cells to Gem and Gem was found to regulate the expression of HO-1 and the activation of the SHH pathway. On the whole, our findings indicate that HO-1 overexpression in PC cells may be responsible for the increased cell proliferation and the resistance to anticancer therapy. Furthermore, the SHH signaling pathway, the activation of which was initiated by HO-1, may be one of the endogenous mechanisms in this process. Our data shed light into the association between HO-1 and SHH in PC cells, and may aid in the development of novel therapeutic targets for the treatment of patients with PC.
Collapse
Affiliation(s)
- Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Jiang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
26
|
Yamaguchi Y, Kasukabe T, Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol 2018; 52:1011-1022. [PMID: 29393418 DOI: 10.3892/ijo.2018.4259] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer with a mortality rate of almost 95%. Treatment with current chemotherapeutic drugs has limited success due to poor responses. Therefore, the development of novel drugs or effective combination therapies is urgently required. Piperlongumine (PL) is a natural product with cytotoxic properties restricted to cancer cells by significantly increasing intracellular reactive oxygen species (ROS) levels. In the present study, we demonstrated that PL induced cancer cell death through, at least in part, the induction of ferroptosis, as the cancer cell-killing activity was inhibited by the antioxidant, N‑acetylcysteine, ferroptosis inhibitors (ferrostatin‑1 and liproxstatin‑1) and the iron chelator, deferoxamine (DFO), but not by the apoptosis inhibitor, Z-VAD-FMK, or the necrosis inhibitor, necrostatin‑1. Cotylenin A (CN‑A; a plant growth regulator) exhibits potent antitumor activities in several cancer cell lines, including pancreatic cancer cell lines. We found that CN‑A and PL synergistically induced the death of pancreatic cancer MIAPaCa‑2 and PANC‑1 cells for 16 h. CN‑A enhanced the induction of ROS by PL for 4 h. The synergistic induction of cell death was also abrogated by the ferroptosis inhibitors and DFO. The present results revealed that clinically approved sulfasalazine (SSZ), a ferroptosis inducer, enhanced the death of pancreatic cancer cells induced by PL and the combined effects were abrogated by the ferroptosis inhibitors and DFO. SSZ further enhanced the cancer cell-killing activities induced by combined treatment with PL plus CN‑A. On the other hand, the synergistic induction of cell death by PL and CN‑A was not observed in mouse embryonic fibroblasts (MEFs), and SSZ did not enhance the death of MEFs induced by PL plus CN‑A. These results suggest that the triple combined treatment with PL, CN‑A and SSZ is highly effective against pancreatic cancer.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
27
|
Toyota K, Murakami Y, Kondo N, Uemura K, Nakagawa N, Takahashi S, Sueda T. Cytoplasmic Hu-Antigen R (HuR) Expression is Associated with Poor Survival in Patients with Surgically Resected Cholangiocarcinoma Treated with Adjuvant Gemcitabine-Based Chemotherapy. Ann Surg Oncol 2018; 25:1202-1210. [PMID: 29492748 DOI: 10.1245/s10434-018-6392-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hu-antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm translocation of messenger RNAs (mRNAs). OBJECTIVE The aim of this study was to investigate the prognostic significance of HuR in cholangiocarcinoma patients who received adjuvant gemcitabine-based chemotherapy (AGC) after surgical resection. METHODS Nuclear and cytoplasmic HuR expression was investigated immunohistochemically in 131 patients with resected cholangiocarcinoma, including 91 patients administered AGC and 40 patients who did not receive adjuvant chemotherapy. The correlation between HuR expression and survival was evaluated by statistical analysis. RESULTS High nuclear and cytoplasmic HuR expression was observed in 67 (51%) and 45 (34%) patients, respectively. Cytoplasmic HuR expression was significantly associated with lymph node metastasis (p < 0.01), while high cytoplasmic HuR expression was significantly associated with poor disease-free survival [DFS] (p = 0.03) and overall survival [OS] (p = 0.001) in the 91 patients who received AGC, but not in the 40 patients who did not receive AGC (DFS p = 0.17; OS p = 0.07). In the multivariate analysis of patients who received AGC, high cytoplasmic HuR expression was an independent predictor of poor DFS (hazard ratio [HR] 1.77; p = 0.04) and OS (HR 2.09; p = 0.02). Nuclear HuR expression did not affect the survival of enrolled patients. CONCLUSIONS High cytoplasmic HuR expression was closely associated with the efficacy of AGC in patients with cholangiocarcinoma. The current findings warrant further investigations to optimize adjuvant chemotherapy regimens for resectable cholangiocarcinoma.
Collapse
Affiliation(s)
- Kazuhiro Toyota
- Department of Surgery, Applied Life Sciences Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshiaki Murakami
- Department of Surgery, Applied Life Sciences Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Naru Kondo
- Department of Surgery, Applied Life Sciences Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kenichiro Uemura
- Department of Surgery, Applied Life Sciences Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoya Nakagawa
- Department of Surgery, Applied Life Sciences Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinya Takahashi
- Department of Surgery, Applied Life Sciences Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taijiro Sueda
- Department of Surgery, Applied Life Sciences Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
28
|
Song W, Sun Y, Lin J, Bi X. Current research on head and neck cancer-associated long noncoding RNAs. Oncotarget 2018; 9:1403-1425. [PMID: 29416703 PMCID: PMC5787447 DOI: 10.18632/oncotarget.22608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancers (HNC) are one of the ten leading cancers worldwide, including a range of malignant tumors arising from the upper neck. Due to the complex mechanisms of HNC and lack of effective biomarkers, the 5-year survival rate of HNC has been low and the mortality rate has been high in recent decades. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 bps, are a focus of current cancer research, closely related to tumor biology. LncRNAs have been revealed to be aberrantly expressed in various types of HNC, and the dysregulated lncRNAs participate in HNC progression and induce malignant behavior by modulating gene expression at diverse levels. This review will focus on the functions and molecular mechanisms of dysregulated lncRNAs in HNC tumorigenesis and progression, as well as their diagnostic, therapeutic or prognostic implications in HNC.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yimin Sun
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Lin
- Department of Dental Anesthesiology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoqin Bi
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Shang J, Zhao Z. Emerging role of HuR in inflammatory response in kidney diseases. Acta Biochim Biophys Sin (Shanghai) 2017; 49:753-763. [PMID: 28910975 DOI: 10.1093/abbs/gmx071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Human antigen R (HuR) is a member of the embryonic lethal abnormal vision (ELAV) family which can bind to the A/U rich elements in 3' un-translated region of mRNA and regulate mRNA splicing, transportation, and stability. Unlike other members of the ELAV family, HuR is ubiquitously expressed. Early studies mainly focused on HuR function in malignant diseases. As researches proceed, more and more proofs demonstrate its relationship with inflammation. Since most kidney diseases involve pathological changes of inflammation, HuR is now suggested to play a pivotal role in glomerular nephropathy, tubular ischemia-reperfusion damage, renal fibrosis and even renal tumors. By regulating the mRNAs of target genes, HuR is causally linked to the onset and progression of kidney diseases. Reports on this topic are steadily increasing, however, the detailed function and mechanism of action of HuR are still not well understood. The aim of this review article is to summarize the present understanding of the role of HuR in inflammation in kidney diseases, and we anticipate that future research will ultimately elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jin Shang
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhanzheng Zhao
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
30
|
Yu D, Zhang C, Gui J. RNA-binding protein HuR promotes bladder cancer progression by competitively binding to the long noncoding HOTAIR with miR-1. Onco Targets Ther 2017; 10:2609-2619. [PMID: 28553126 PMCID: PMC5440069 DOI: 10.2147/ott.s132728] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The elevated expressions of RNA-binding protein HuR and long noncoding HOX transcript antisense RNA (HOTAIR) are observed in numerous cancers. And HuR often exerts its promotive effects on tumorigenesis via binding to AU-rich elements in target transcripts and thus regulating the expression of target transcripts. However, the roles and related mechanisms of HuR/HOTAIR in bladder cancer progression have never been formally tested. Here, we found that the expression level of HuR was higher in clinical bladder cancer samples than in normal adjacent samples, mirroring that of HOTAIR, and their expression showed strong correlation. Knockdown of HuR/HOTAIR in bladder cancer inhibited cell proliferation, migration, invasion, and promoted cell apoptosis. Notably, HuR interacted and stabilized HOTAIR mRNA and knockdown of HuR decreased HOTAIR expression. Additionally, HOTAIR was identified as a potential target of miR-1 in bladder cancer cells. Interestingly, overexpression of HOTAIR enhanced HuR expression and increased cytoplasmic accumulation of HuR, thus enhancing HOTAIR expression in turn. But mutation of miR-1 binding site in HOTAIR canceled the effects of HOTAIR on HuR expression. Overall, we identified a regulatory loop between HOTAIR and HuR during the progression of bladder cancer, which could be exploited to curb bladder cancer progression.
Collapse
Affiliation(s)
- Dapeng Yu
- Department of Urinary Surgery, the Jining No 1 People's Hospital, Jining
| | - Chao Zhang
- Department of Urinary Surgery, the Qujing No 1 People's Hospital, Qujing, People's Republic of China
| | - Junqing Gui
- Department of Urinary Surgery, the Qujing No 1 People's Hospital, Qujing, People's Republic of China
| |
Collapse
|
31
|
Dysregulation of TTP and HuR plays an important role in cancers. Tumour Biol 2016; 37:14451-14461. [DOI: 10.1007/s13277-016-5397-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
|
32
|
Kasukabe T, Honma Y, Okabe-Kado J, Higuchi Y, Kato N, Kumakura S. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. Oncol Rep 2016; 36:968-76. [PMID: 27375275 DOI: 10.3892/or.2016.4867] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/02/2016] [Indexed: 01/30/2023] Open
Abstract
The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yoshio Honma
- Cancer Center, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Junko Okabe-Kado
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| |
Collapse
|