1
|
Xiang X, Wu Y, Lv XQ, Xu RQ, Liu Y, Pan SH, He M, Lai GQ. Hepatitis B Virus Infection Promotes M2 Polarization of Macrophages by Upregulating the Expression of B7x In Vivo and In Vitro. Viral Immunol 2022; 35:597-608. [PMID: 36099202 DOI: 10.1089/vim.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several studies have reported that hepatitis B virus (HBV) infection is mediated by macrophages and that the B7x (B7-H4, VTCN-1) protein plays an important role in immune regulation in HBV-associated hepatocellular carcinoma (HBV-HCC). However, the relationship among HBV, macrophages, and B7x has not been studied. In this study, HBV-infected mouse model and coculture of HBV cell lines and macrophages were used to observe the changes in macrophages and the role of B7x after HBV infection. The expression of HBV markers (HBeAg, HBsAg), negative regulator of immunity (B7x), T-helper 17 (Th17)/T-regulatory (Treg)-related cytokines, and macrophage markers, as well as changes in the apoptosis and cell cycle of macrophages were analyzed through reverse transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blot, and flow cytometry. The expression of HBsAg, HBeAg, and B7x increased and the levels of macrophage surface marker and Treg cells secrete related cytokines (IL-10 and TGF-β) were altered after HBV infection both in vivo and in vitro. Apoptosis of macrophages increased, and cell cycle arrest occurred in vitro. These effects, except those in the cell cycle, were reversed when B7x was knocked down. Thus, HBV infection can promote the expression of B7x, which in turn regulates the Th17/Treg balance and affects the expression of HBsAg and HBeAg. The mechanism used by B7x likely involves the promotion of macrophage polarization and apoptosis. These results suggest that B7x is a novel target for HBV immunotherapy.
Collapse
Affiliation(s)
- Xia Xiang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qin Lv
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Ru-Qing Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Suo-Han Pan
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Miao He
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Guo-Qi Lai
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Chi J, Liu Y, Yang L, Yang J. Silencing of B7H4 represses the development of oral squamous cell carcinoma through promotion of M1 macrophage polarization. J Oral Maxillofac Surg 2022; 80:1408-1423. [DOI: 10.1016/j.joms.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
|
3
|
Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers. Br J Cancer 2022; 126:10-23. [PMID: 34400801 PMCID: PMC8727557 DOI: 10.1038/s41416-021-01453-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most prevalent cancers, and the third most common cause of cancer-related mortality worldwide. The therapeutic options for the main types of primary liver cancer-hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)-are very limited. HCC and CCA are immunogenic cancers, but effective immune-mediated tumour control is prevented by their immunosuppressive tumour microenvironment. Despite the critical involvement of key co-inhibitory immune checkpoint interactions in immunosuppression in liver cancer, only a minority of patients with HCC respond to monotherapy using approved checkpoint inhibitor antibodies. To develop effective (combinatorial) therapeutic immune checkpoint strategies for liver cancer, in-depth knowledge of the different mechanisms that contribute to intratumoral immunosuppression is needed. Here, we review the co-inhibitory pathways that are known to suppress intratumoral T cells in HCC and CCA. We provide a detailed description of insights from preclinical studies in cellular crosstalk within the tumour microenvironment that results in interactions between co-inhibitory receptors on different T-cell subsets and their ligands on other cell types, including tumour cells. We suggest alternative immune checkpoints as promising targets, and draw attention to the possibility of combined targeting of co-inhibitory and co-stimulatory pathways to abrogate immunosuppression.
Collapse
|
4
|
Hao TT, Liao R, Lei DL, Hu GL, Luo F. Inhibition of B7-H4 promotes hepatocellular carcinoma cell apoptosis and autophagy through the PI3K signaling pathway. Int Immunopharmacol 2020; 88:106889. [PMID: 32805693 DOI: 10.1016/j.intimp.2020.106889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
B7-H4 and autophagy can regulate or be induced by the PI3K signaling pathway. However, the association between B7-H4 and autophagy in hepatocellular carcinoma (HCC)remains unclear. The aim of this work was to investigate whether B7-H4 regulates autophagy via the PI3K signaling pathway in HCC cells. Here, western blotting was used to measure the expression of the related proteins involved in changes in of autophagy and apoptosis, such as LC3, P62, cleaved caspase 3, cleaved PARP, BCL-2, and BAX in Huh7 and Hep3B cells. Additionally, PI3K/AKT/mTOR signaling pathway proteins were measured. Cell counting kit-8 and flow cytometry were used to analyze the effects of B7-H4 siRNA interference on cell proliferation with the interference of B7-H4 siRNA. We found that B7-H4 siRNA increased HCC cell apoptosis and autophagy, and reduced cell proliferation. Moreover, the apoptosis-related proteins cleaved caspase 3, cleaved PARP and BAX were increased and Bcl-2 was decreased after B7-H4 siRNA interference. The expression level of the autophagy-related protein LC3Ⅱ was upregulated, while expression of the autophagy adaptor P62 expression was decreased in B7-H4 siRNA-pretreated cells. Furthermore, our data revealed that B7-H4 regulated apoptosis and autophagy through the PI3K signaling pathway in HCC cells. Therefore, these results suggested that B7-H4 plays an important role in HCC progression by affecting cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Tuan-Tuan Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Deng-Liang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gang-Li Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Alpha-Fetoprotein Regulates the Expression of Immune-Related Proteins through the NF- κB (P65) Pathway in Hepatocellular Carcinoma Cells. JOURNAL OF ONCOLOGY 2020; 2020:9327512. [PMID: 32774373 PMCID: PMC7407027 DOI: 10.1155/2020/9327512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Background The prognosis of patients with hepatocellular carcinoma (HCC) is poor, with 60% to 70% of patients developing recurrence and metastasis within five years of radical resection. Alpha-fetoprotein (AFP) plays a significant role in predicting the recurrence and metastasis of HCC after surgery. However, its role in modulating tumor immunity has not been investigated. Our objective was to examine the effect of AFP on the expression of B7 family and activation of the NF-κB (P65) pathway in HCC. Methods We generated human hepatoma SMMC-7721 cell lines with or without recombinant AFP transfection (AFPup and control groups). Colony formation assay, Transwell invasion assay, and wound healing assay were used to detect the function of AFP. Liver cancer xenografts were made in BALB/c nude male mice (N = 6 per group). After 28 days of inoculation, the expression of immune genes in the HCC tissues, including PD-L (B7-H1), B7-H3, B7-H4, and P65, was evaluated by quantitative real-time PCR (qPCR) and western blot. In addition, immunofluorescence was used to determine the subcellular localization of the P65 protein, a key factor in the NF-κB pathway. An online HCC patients' dataset was also used to detect the connection between AFP and P65. Results Overexpression of AFP could enhance proliferation, invasion, and migration of HCC cells. Both qPCR and western blot results demonstrated that the expressions of PD-L1, B7-H4, and P65 were significantly higher in the AFP group compared to the controls (P < 0.05). Immunofluorescence results indicated that the majority of the P65 protein was located in the cytoplasm in the control group but was translocated to the nucleus in the AFPup group. The Spearman correlation coefficient confirms that AFP has a positive correlation with P65 in HCC patients (R = 0.33, P=0.05). Conclusion AFP could enhance proliferation, invasion, and migration in HCC cells. The upregulation of AFP would increase the PD-L1 and B7-H4 mRNA and protein expression in HCC tissues through the upregulation and activation of the P65 protein.
Collapse
|
6
|
Li C, Zhan Y, Ma X, Fang H, Gai X. B7-H4 facilitates proliferation and metastasis of colorectal carcinoma cell through PI3K/Akt/mTOR signaling pathway. Clin Exp Med 2020; 20:79-86. [PMID: 31664539 DOI: 10.1007/s10238-019-00590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
B7-H4 is over-expressed in various tumors and may affect many aspects of cancer biology. Our previous studies have reported that the over-expressed B7-H4 in serum or tumor tissue of colorectal carcinoma (CRC) patients was closely related to CRC progression. However, B7-H4 in cell biological characteristics of CRC is not well studied. Here, we investigate the effect of the B7-H4 on cell proliferation, migration and its expression regulated by PI3K/Akt/mTOR signaling pathway in CRC. Firstly, pSilencer 4.1-B7-H4-shRNA vector was constructed and stable transfection was performed on HT-29 cells. Secondly, cell proliferation, cell cycle, cell apoptosis and cell migration were evaluated after B7-H4 silencing, and the expression of Bcl-2, caspase-3, MMP-2 and MMP-9 was also measured. Finally, the regulation of B7-H4 by PI3K/Akt/mTOR signaling pathway was measured followed by treatment with or without PI3K/Akt and mTOR inhibitor. The results showed that the viability of HT-29 cells was significantly decreased after B7-H4 silencing (P < 0.05). B7-H4 silencing significantly increased the apoptosis rate and caspase-3 protein expression while decreased Bcl-2 protein expression (P all < 0.05). B7-H4 silencing also significantly reduced the migration of HT-29 cells (P < 0.01) and the secretion of MMP-2 or MMP-9 (P all < 0.05). Following treatment with PI3K/Akt and mTOR inhibitor in HT-29 cells, the expression of B7-H4 was significantly downregulated compared with untreated group (P all < 0.05). Our results strongly suggest that B7-H4 may be involved in cell proliferation and migration by PI3K/Akt/mTOR signaling pathway. Therefore, blocking B7-H4 signaling might be a novel treatment strategy for CRC.
Collapse
Affiliation(s)
- Chun Li
- Department of Pathology, Beihua University Faculty of Medicine, No. 3999 Binjiang East Road, Jilin, 132013, Jilin, People's Republic of China
| | - Yudong Zhan
- Department of Pathology, Beihua University Faculty of Medicine, No. 3999 Binjiang East Road, Jilin, 132013, Jilin, People's Republic of China
- Department of Pathology, Jingmen No. 1 People's Hospital, Jingmen, 448000, Hubei, People's Republic of China
| | - Xuzhe Ma
- Department of Pathology, Beihua University Faculty of Medicine, No. 3999 Binjiang East Road, Jilin, 132013, Jilin, People's Republic of China
| | - Hui Fang
- Department of Pathology, Beihua University Faculty of Medicine, No. 3999 Binjiang East Road, Jilin, 132013, Jilin, People's Republic of China
| | - Xiaodong Gai
- Department of Pathology, Beihua University Faculty of Medicine, No. 3999 Binjiang East Road, Jilin, 132013, Jilin, People's Republic of China.
| |
Collapse
|
7
|
Kaur G, Janakiram M. B7x-from bench to bedside. ESMO Open 2019; 4:e000554. [PMID: 31555486 PMCID: PMC6735664 DOI: 10.1136/esmoopen-2019-000554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/30/2023] Open
Abstract
B7x is an immune checkpoint molecule which belongs to the B7 family of ligands which includes PD-L1, PD-L2, B7-H3 and HHLA2. B7x belongs to the Immunoglobulin superfamily and its protein structure is similar to other members with a N terminus peptide, IgV and IgC like extracellular domain with four cysteine residues. Its receptor is yet to be identified. B7x inhibits T cell proliferation and expansion by IL-2 dependent and non-IL-2 dependent pathways. Even though high levels of B7x mRNA can be detected in most tissues its protein expression is highly limited suggesting significant post translational control. In vivo data, show that B7x plays an important role in limiting autoimmunity in the peripheral tissues and fine-tuning autoimmune responses. B7x is highly expressed in various cancers and in prostate cancer its expression is corelated with poorer outcomes. Local production of IL-6 and IL-10 in various cancers promotes B7x expression and tumor immune evasion. B7x is especially expressed in PD-L1 negative tumors suggesting that this may be an important method of immune evasion in these tumors. Currently drug development, targeting B7x through various mechanisms including monoclonal antibodies and antibody drug conjugates are in development in cancers and increasing B7x expression with fusion proteins in autoimmune diseases is underway.
Collapse
Affiliation(s)
- Gurbakhash Kaur
- Department of Medical Oncology, Albert Einstein College of Medicine, New York city, New York, USA
| | - Murali Janakiram
- Department of Medical Oncology, Albert Einstein College of Medicine, New York city, New York, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Zheng Y, Liao N, Wu Y, Gao J, Li Z, Liu W, Wang Y, Li M, Li X, Chen L, Zhang W, Zhao B. High expression of B7‑H2 or B7‑H3 is associated with poor prognosis in hepatocellular carcinoma. Mol Med Rep 2019; 19:4315-4325. [PMID: 30942404 PMCID: PMC6472081 DOI: 10.3892/mmr.2019.10080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
B7 family members have been associated with the signaling transduction pathways underlying tumor immune evasion in hepatocellular carcinoma. In the present study, associations between the clinical characteristics of patients with hepatocellular carcinoma (HCC) and the expression of B7-H2 and B7-H3 were analyzed. A total of 63 formalin-fixed and paraffin-embedded HCC tissues were collected to be used as a tissue microarray. Following this, the association between B7-H2/B7-H3 and the prognosis of patients with HCC was analyzed using Pearson's χ2 test, the Kaplan-Meier method and receiver operating characteristic curve analysis. The results demonstrated that the expression of B7-H2 was significantly associated with recurrence (within 1 year) in patients with HCC (P<0.01), and that the expression of B7-H3 was associated with recurrence (within 1 year), metastasis and 2-year overall survival rate in patients with HCC (P<0.01, P=0.036 and P=0.016, respectively). In addition, the combined expression of B7-H2 and B7-H3 was associated with prognostic factors, including recurrence (within 1 year) and survival rate (within 2 years), in patients with HCC. In particular, an increased area under the curve was achieved when the combined expression of B7-H2 and B7-H3 was considered, compared with that for α-fetoprotein. Taken together, these results indicated that B7-H2- and/or B7-H3-positive expression indicates a poor clinical outcome for patients, and the combination of B7-H2 and B7-H3 may be a preferential prognostic biomarker in patients with HCC.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Yuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Ju Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Wenwen Liu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Ming Li
- Department of Anatomy and Embryology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiaolou Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Li Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Wenmin Zhang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
9
|
Wu YY, Hsieh CT, Tsay GJ, Kao JT, Chiu YM, Shieh DC, Lee YJ. Recruitment of CCR6 + Foxp3 + regulatory gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Helicobacter 2019; 24:e12550. [PMID: 30412323 DOI: 10.1111/hel.12550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori (H. pylori) infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, and gastric cancer. Increased T-cell infiltration is found at sites of H. pylori infection. The CCR6+ subset of CD4+ regulatory T cells (Tregs), a newly characterized subset of Tregs, has been reported to contribute to local immune inhibition. However, whether CCR6+ Tregs are present in H. pylori gastritis, and what their relationship is to disease prognosis, remains to be elucidated. In this study, gastric infiltrating lymphocytes were isolated from endoscopic biopsy specimens of H. pylori gastritis patients and analyzed. We found that in gastric infiltrating lymphocytes, CCR6+ CD4+ CD25high Tregs, which express high levels of CD45RO, are positively associated with more severe inflammation in gastric mucosa during H. pylori infection. Furthermore, the frequency of CCR6+ Tregs in gastric infiltrating lymphocytes, but not CCR6- Tregs, is significantly increased in inflamed gastric tissues, which is inversely correlated with significantly lower expression of IFN-γ+ CD8+ T cells. We also found that the frequency of CCR6+ Tregs is positively correlated with the frequency of CD4+ IFN-γ+ T cells. In addition, the frequency of CCR6+ Tregs, but not that of CCR6- Tregs, is significantly correlated with increased inflammation in H. pylori gastritis. This study demonstrates that immunosuppression in H. pylori gastritis might be related to the activity of CCR6+ Tregs, which could influence disease prognosis.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Tung Hsieh
- Department of Pediatrics, Lotung Poh-Ai Hospital, I-Lan, Taiwan
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jung-Ta Kao
- Department of Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ying-Ming Chiu
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
- Division of Allergy, Immunology & Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Dong-Chen Shieh
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yi-Ju Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Chen L, Jin M, Li C, Shang Y, Zhang Q. The tissue distribution and significance of B7-H4 in laryngeal carcinoma. Oncotarget 2017; 8:92227-92239. [PMID: 29190910 PMCID: PMC5696176 DOI: 10.18632/oncotarget.21152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
The costimulatory signals CD28 and B7 have been shown to control tumor invasion and metastasis by regulating T cell activation, whereas the distribution characteristics of B7-associated proteins in laryngeal carcinoma (LC) tissue are still unclear. Here, the expression of members of the B7 superfamily, including B7-H1 (PD-L1), B7-DC (PD-L2) and B7-H4, in fifty-two LC samples was determined by immunohistochemistry, and the relationship between B7-H4 and epithelial-mesenchymal transition (EMT)-associated markers was further assessed by immunofluorescence double staining. Furthermore, the human LC cell lines, Hep-2 and TU212 cells, were further transfected to overexpress B7-H4, and cell invasion and metastasis were analyzed. The results showed that B7-H1, B7-DC and B7-H4 were expressed in the tumor cells, and their expression was restricted to the cell membrane and the cytoplasm. The positive rates of these molecules in the tumor tissues were 57.7% (30/52), 32.7% (17/52) and 34.6% (18/52), respectively. Interestingly, double immunofluorescence staining showed that B7-H4 is coexpression with EMT-related markers, including p-Smad2/3, Snail and Vimentin, in carcinoma cells. Moreover, overexpression of B7-H4 in Hep-2 cells promotes the expression of pSmad2/3 and Snail by activating AKT-STAT3 signaling. Transwell and wound-healing assays demonstrated that B7-H4 enhanced both Hep-2 and TU212 cell invasion and metastasis. Our results suggest that B7-H4 transmits feedback signaling to tumor cells and promotes invasion and metastasis by promoting EMT progression. Therefore, blocking B7-H4 signaling might be a novel treatment strategy for LC.
Collapse
Affiliation(s)
- Lili Chen
- Medical College, Dalian University, Dalian, People's Republic of China.,Department of Clinical Laboratory, Laiwu City People Hospital, Laiwu, People's Republic of China
| | - Meihua Jin
- Medical College, Dalian University, Dalian, People's Republic of China
| | - Chunshi Li
- Medical College, Dalian University, Dalian, People's Republic of China.,School of Pharmacy, Yanbian University, Yanji, People's Republic of China
| | - Yongjun Shang
- Medical College, Dalian University, Dalian, People's Republic of China.,Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, People's Republic of China
| | - Qinggao Zhang
- Medical College, Dalian University, Dalian, People's Republic of China
| |
Collapse
|
11
|
Chen C, Qu QX, Xie F, Zhu WD, Zhu YH, Huang JA. Analysis of B7-H4 expression in metastatic pleural adenocarcinoma and therapeutic potential of its antagonists. BMC Cancer 2017; 17:652. [PMID: 28923053 PMCID: PMC5604341 DOI: 10.1186/s12885-017-3615-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/28/2017] [Indexed: 12/03/2022] Open
Abstract
Background The increasing incidence and poor outcome associated with malignant pleural effusion (MPE) requires finding an effective treatment for this disease. Inhibitory B7-H4 is expressed in many different human cancers but its role in malignant pleural tissue has yet to be established. Methods Here, patients with metastatic pleural adenocarcinoma (MPA) or with early-stage lung adenocarcinoma were clinically and statistically analyzed. Immunohistochemistry and confocal microscopy were used to determinate the expression of B7-H4 in the cancer cells. By using MPE model, we sought to a potential immunotherapy for MPE with anti-B7-H4 mAb. Results When compared to early-stage lung adenocarcinoma, MPA possessed higher level of nuclei membranous B7-H4 and lower cytoplasmic B7-H4 expression. Also, nuclei membranous B7-H4 expression was found to be positively correlated to Ki-67 expression, and indicated a possible poor prognosis of MPA. In mouse MPE model, intra-pleurally injection of anti-B7-H4 mAb effectively suppressed MPE formation. Conclusions Taken together, our data was in support of the significance of B7-H4 expression in MPA, which also suggest it warrants further exploration for potential immunotherapy of MPE.
Collapse
Affiliation(s)
- Cheng Chen
- Respiratory Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Qiu-Xia Qu
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, 788 Renmin Road, Suzhou, 215007, China
| | - Fang Xie
- Pathology Division, Soochow University, 1 Shizi Street, Suzhou, 215006, China
| | - Wei-Dong Zhu
- Pathology Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Ye-Han Zhu
- Respiratory Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Jian-An Huang
- Respiratory Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
12
|
Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol Rev 2017; 276:26-39. [PMID: 28258693 PMCID: PMC5338461 DOI: 10.1111/imr.12521] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022]
Abstract
The B7-CD28 family of ligands and receptors play important roles in T-cell co-stimulation and co-inhibition. Phylogenetically they can be divided into three groups. The recent discovery of the new molecules (B7-H3 [CD276], B7x [B7-H4/B7S1], and HHLA2 [B7H7/B7-H5]/TMIGD2 [IGPR-1/CD28H]) of the group III has expanded therapeutic possibilities for the treatment of human diseases. In this review, we describe the discovery, structure, and function of B7-H3, B7x, HHLA2, and TMIGD2 in immune regulation. We also discuss their roles in important pathological states such as cancers, autoimmune diseases, transplantation, and infection. Various immunotherapeutical approaches are emerging including antagonistic monoclonal antibodies and agonistic fusion proteins to inhibit or potentiate these molecules and pathways in cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Murali Janakiram
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Urvi A Shah
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weifeng Liu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mark P Schoenberg
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|