1
|
Sidoti A, D’Angelo R, Castagnetti A, Viciani E, Scimone C, Alibrandi S, Giannini G. Exploring Trimethylaminuria: Genetics and Molecular Mechanisms, Epidemiology, and Emerging Therapeutic Strategies. BIOLOGY 2024; 13:961. [PMID: 39765628 PMCID: PMC11726875 DOI: 10.3390/biology13120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025]
Abstract
Trimethylaminuria (TMAU) is a rare metabolic syndrome caused by the accumulation of trimethylamine in the body, causing odor emissions similar to rotten fish in affected patients. This condition is determined by both genetic and environmental factors, especially gut dysbiosis. The multifactorial nature of this syndrome makes for a complex and multi-level diagnosis. To date, many aspects of this disease are still unclear. Recent research revealed the FMO3 haplotypes' role on the enzyme's catalytic activity. This could explain why patients showing only combined polymorphisms or heterozygous causative variants also manifest the TMAU phenotype. In addition, another research hypothesized that the behavioral disturbances showed by patients may be linked to gut microbiota alterations. Our review considers current knowledge about TMAU, clarifying its molecular aspects, the therapeutic approaches used to limit this condition, and the new therapies that are under study.
Collapse
Affiliation(s)
- Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
| | - Andrea Castagnetti
- Wellmicro Srl, Via Antonio Canova, 30, 40138 Bologna, Italy; (A.C.); (E.V.)
| | - Elisa Viciani
- Wellmicro Srl, Via Antonio Canova, 30, 40138 Bologna, Italy; (A.C.); (E.V.)
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., Via Michele Miraglia, 20, 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.S.); (R.D.); (C.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, I.E.ME.S.T., Via Michele Miraglia, 20, 90139 Palermo, Italy
| | | |
Collapse
|
2
|
Dutta R, Stothers L, Ackerman AL. Manipulating the Gut Microbiome in Urinary Tract Infection-Prone Patients. Urol Clin North Am 2024; 51:525-536. [PMID: 39349020 DOI: 10.1016/j.ucl.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Rahul Dutta
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - Lynn Stothers
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - A Lenore Ackerman
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA.
| |
Collapse
|
3
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
4
|
Chadwick PR, Trainor E, Marsden GL, Mills S, Chadwick C, O'Brien SJ, Evans CM, Mullender C, Strazds P, Turner S, Weston V, Toleman MS, de Barros C, Kontkowski G, Bak A. Guidelines for the management of norovirus outbreaks in acute and community health and social care settings. J Hosp Infect 2023:S0195-6701(23)00043-9. [PMID: 36796728 DOI: 10.1016/j.jhin.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023]
Affiliation(s)
| | - Eamonn Trainor
- Northern Care Alliance NHS Foundation Trust, Greater Manchester, UK.
| | - Gemma L Marsden
- Healthcare Infection Society, London, UK; Royal College of General Practitioners, London, UK
| | - Samuel Mills
- British Infection Association, Seafield, West Lothian, UK; Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Cariad M Evans
- Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | | | - Pixy Strazds
- Infection Prevention Society, London, UK; St Andrew's Healthcare, Northampton, UK
| | - Sarah Turner
- Infection Prevention Society, London, UK; Stockport Council, Stockport, UK
| | - Valya Weston
- Healthcare Infection Society, London, UK; Infection Prevention Society, London, UK; NHS England, London, UK
| | - Michelle S Toleman
- Healthcare Infection Society, London, UK; Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | | | - Aggie Bak
- Healthcare Infection Society, London, UK
| |
Collapse
|
5
|
Li X, Song J, Shi X, Huang M, Liu L, Yi G, Yang N, Xu G, Zheng J. FMO3 deficiency of duck leads to decreased lipid deposition and increased antibacterial activity. J Anim Sci Biotechnol 2022; 13:119. [DOI: 10.1186/s40104-022-00777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Most duck eggs possess a fishy odor, indicating that ducks generally exhibit impaired trimethylamine (TMA) metabolism. TMA accumulation is responsible for this unpleasant odor, and TMA metabolism plays an essential role in trimethylaminuria (TMAU), also known as fish odor syndrome. In this study, we focused on the unusual TMA metabolism mechanism in ducks, and further explored the unclear reasons leading to the debilitating TMA metabolism.
Methods
To achieve this, transcriptome, proteome, and metagenome analyses were first integrated based on the constructed duck populations with high and low TMA metabolism abilities. Additionally, further experiments were conducted to validate the hypothesis regarding the limited flavin-containing monooxygenase 3 (FMO3) metabolism ability of ducks.
Results
The study demonstrated that liver FMO3 and cecal microbes, including Akkermansia and Mucispirillum, participated in TMA metabolism in ducks. The limited oxidation ability of FMO3 explains the weakening of TMA metabolism in ducks. Nevertheless, it decreases lipid deposition and increases antibacterial activity, contributing to its survival and reproduction during the evolutionary adaptation process.
Conclusions
This study demonstrated the function of FMO3 and intestinal microbes in regulating TMA metabolism and illustrated the biological significance of FMO3 impairment in ducks.
Collapse
|
6
|
Wang Y, Zhang S, Borody TJ, Zhang F. Encyclopedia of fecal microbiota transplantation: a review of effectiveness in the treatment of 85 diseases. Chin Med J (Engl) 2022; 135:1927-1939. [PMID: 36103991 PMCID: PMC9746749 DOI: 10.1097/cm9.0000000000002339] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT Fecal microbiota transplantation (FMT) has been used as a core therapy for treating dysbiosis-related diseases by remodeling gut microbiota. The methodology and technology for improving FMT are stepping forward, mainly including washed microbiota transplantation (WMT), colonic transendoscopic enteral tubing (TET) for microbiota delivery, and purified Firmicutes spores from fecal matter. To improve the understanding of the clinical applications of FMT, we performed a systematic literature review on FMT published from 2011 to 2021. Here, we provided an overview of the reported clinical benefits of FMT, the methodology of processing FMT, the strategy of using FMT, and the regulations on FMT from a global perspective. A total of 782 studies were included for the final analysis. The present review profiled the effectiveness from all clinical FMT uses in 85 specific diseases as eight categories, including infections, gut diseases, microbiota-gut-liver axis, microbiota-gut-brain axis, metabolic diseases, oncology, hematological diseases, and other diseases. Although many further controlled trials will be needed, the dramatic increasing reports have shown the promising future of FMT for dysbiosis-related diseases in the gut or beyond the gut.
Collapse
Affiliation(s)
- Yun Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Sheng Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | | | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- National Clinical Research Center for Digestive Diseases, Xi’an, Shaanxi 710032, China
| |
Collapse
|
7
|
Shi X, Huang M, Song J, Zeng L, Liang Q, Qu Y, Li J, Xu G, Zheng J. Effects of different duck rearing systems on egg flavor and quality and microbial diversity. Poult Sci 2022; 101:102110. [PMID: 36070643 PMCID: PMC9468592 DOI: 10.1016/j.psj.2022.102110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
The fishy odor of duck eggs has restricted their consumption and industrial development, a problem that producers need to address. We estimated the effects of cage, floor, and pond rearing systems on duck egg flavor, egg quality, and microbial diversity by evaluating yolk trimethylamine (TMA) content, egg quality, and the differences between duck cecum (cage cecum, CC; floor cecum, FC; pond cecum, PC) and the environment (cage environment, CE; floor environment, FE; pond environment, PE). The results show that the yolk TMA content of the floor-rearing and pond-rearing systems was significantly higher than that of the cage-rearing system (P < 0.001), with no difference between the floor and pond-rearing systems. No significant differences were detected in egg quality among the rearing systems. Firmicutes, Actinobacteria, and Bacteroidetes were the dominant phyla in the cecum, and in the rearing environment, Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria were the dominant phyla. The results of α and β diversity analyses show that changes in the rearing system affected the composition and diversity of duck cecal microbes. In addition, we screened several genera that may be related to the production of TMA in duck cecum under different rearing systems using LEfSe analysis; for example, Subdoligranulum in the CC group; Romboutsia in the FC group; and Lactobacillus, Clostridium, and Streptococcus in the PC group. In conclusion, the rearing system affects the cecal microbes of ducks, which in turn affect the deposition of TMA in duck eggs but have no adverse effect on egg quality. This study provides a basis for the development of rearing strategies to reduce the fishy odor of egg yolk in the duck industry.
Collapse
Affiliation(s)
- Xuefeng Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingyi Huang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianlou Song
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingsen Zeng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianni Liang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanqi Qu
- Hubei Shendan Healthy Food Co., Ltd., Hubei, 430206, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Wang X, Xing Y, Ji Y, Xi H, Liu X, Yang L, Lei L, Han W, Gu J. The Combination of Phages and Faecal Microbiota Transplantation Can Effectively Treat Mouse Colitis Caused by Salmonella enterica Serovar Typhimurium. Front Microbiol 2022; 13:944495. [PMID: 35875536 PMCID: PMC9301289 DOI: 10.3389/fmicb.2022.944495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the common causes of human colitis. In the present study, two lytic phages vB_SenS-EnJE1 and vB_SenS-EnJE6 were isolated and the therapeutic effect of the combination of phages and faecal microbiota transplantation (FMT) on S. Typhimurium-induced mouse colitis was investigated. The characteristics and genome analysis indicated that they are suitable phages for phage therapy. Results showed that vB_SenS-EnJE1 lysis 41/54 Salmonella strains of serotype O4, and vB_SenS-EnJE6 lysis 46/54 Salmonella strains of serotypes O4 and O9. Severe inflammatory symptoms and disruption of the intestinal barrier were observed in S. Typhimurium -induced colitis. Interestingly, compared with a single phage cocktail (Pc) or single FMT, the combination of Pc and FMT (PcFMT) completely removed S. Typhimurium after 72 h of treatment, and significantly improved pathological damage and restored the intestinal barrier. Furthermore, PcFMT effectively restored the intestinal microbial diversity, especially for Firmicutes/Bacteroidetes [predominantly bacterial phyla responsible for the production of short-chain fatty acids (SCFA)]. Additionally, we found that PcFMT treatment significantly increased the levels of SCFA. All these data indicated that the combination of phages and FMT possesses excellent therapeutic effects on S. Typhimurium -induced intestinal microbiota disorder diseases. Pc and FMT played roles in “eliminating pathogens” and “strengthening vital qi,” respectively. This study provides a new idea for the treatment of intestinal microbiota disorder diseases caused by specific bacterial infections.
Collapse
Affiliation(s)
- Xinwu Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Yating Xing
- The Second Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xiaohe Liu
- The Second Hospital of Jilin University, Changchun, China
| | - Li Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jingmin Gu,
| |
Collapse
|
9
|
Khan I, Wei J, Li A, Liu Z, Yang P, Jing Y, Chen X, Zhao T, Bai Y, Zha L, Li C, Ullah N, Che T, Zhang C. Lactobacillus plantarum strains attenuated DSS-induced colitis in mice by modulating the gut microbiota and immune response. Int Microbiol 2022; 25:587-603. [PMID: 35414032 DOI: 10.1007/s10123-022-00243-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have shown good efficacy in the clinical treatment of IBD and animal models of colitis. However, how these probiotics contribute to the amelioration of IBD is largely unknown. In the current study, the DSS-induced mouse colitis model was treated with oral administration of Lactobacillus plantarum strains to investigate their effects on colitis. The results indicated that the L. plantarum strains improved dysbiosis and enhanced the abundance of beneficial bacteria related to short-chain fatty acids (SCFAs) production. Moreover, L. plantarum strains decreased the level of pro-inflammatory cytokines, i.e., IL-17A, IL-17F, IL-6, IL-22, and TNF-α and increased the level of anti-inflammatory cytokines, i.e., TGF-β, IL-10. Our result suggests that L. plantarum strains possess probiotic effects and can ameliorate DSS colitis in mice by modulating the resident gut microbiota and immune response.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Junshu Wei
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Anping Li
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Zhirong Liu
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Pingrong Yang
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Yaping Jing
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Xinjun Chen
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chenhui Li
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Recurrent Campylobacter jejuni Infection in an Immunodeficient Patient Treated with Repeated Faecal Microbiota Transplant (FMT)—A Case Report. Infect Dis Rep 2022; 14:56-62. [PMID: 35076517 PMCID: PMC8788277 DOI: 10.3390/idr14010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
There is limited evidence to guide successful treatment of recurrent Campylobacter infection in patients with common variable immunodeficiency (CVID) already managed on regular immunoglobulin therapy. The role of faecal microbiota transplant (FMT) is uncertain. We report a case of recurrent Campylobacter jejuni infection in a patient with CVID treated with repeated FMT with 18 months of symptom resolution prior to relapse.
Collapse
|
11
|
Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes 2022; 14:2038856. [PMID: 35230889 PMCID: PMC8890388 DOI: 10.1080/19490976.2022.2038856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major 'whole microbiome' therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, the potential use of FMT in treating other infectious diseases is an area of active research. In this review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lauren A. Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Frances J. Davies
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
12
|
Parnell JM, Nicholson MR, Kellermayer R, Kahn SA. Pediatric Fecal Microbiota Transplantation in Recurrent Clostridioides Difficile. Pediatr Ann 2021; 50:e515-e521. [PMID: 34889135 DOI: 10.3928/19382359-20211111-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With the rising rates of Clostridioides (Clostridium) difficile infection (CDI) in children, recognizing the limitations of CDI-directed antibiotic therapy, especially in recurrent CDI (rCDI), is important. Fecal microbiota transplantation (FMT), which directly targets the underlying gut dysbiosis present in rCDI, is an important treatment option to consider in rCDI. This article will summarize indications, procedures, effectiveness, and the safety of FMT for rCDI in pediatric patients. [Pediatr Ann. 2021;50(12):e515-e521.].
Collapse
|
13
|
Abstract
BACKGROUND Norovirus (NoV) infection frequently progresses to chronic disease after kidney transplant (KTx). This study aims to assess potential risk factors helping to determine patients at risk of chronic NoV infection and to analyse the effect of NoV on allograft outcome. Additionally, we assessed the effectiveness of intravenous immunoglobulin (IVIg) therapy for chronic NoV infection. METHODS The study enrolled 60 KTx patients requiring hospitalization because of NoV infection. Clinical parameters, severity of NoV infection and potential risk factors were evaluated. Outcome parameters were clinical symptoms, rehospitalizations, persistent shedding of virus and effects on allograft function. RESULTS Patients were divided into 2 groups: 29 had acute NoV infection only, 31 progressed to chronic NoV infection. Chronic NoV infection was defined as a recurrence of clinical symptoms plus redetection of NoV in stool. Lymphocyte-depleting induction therapy and diabetes mellitus were independent risk factors for chronic infection. For patients with chronic NoV infection, length of stay in hospital was significantly prolonged (p= 0.024). Allograft function remained impaired in the chronic NoV group 6 and 12 months after initial admission.IVIg was administered to 18 patients with chronic NoV infection. No further clinical symptoms of NoV infection occurred in 13 (72%) of these patients. However, NoV was still detectable in stool specimens from 10 (77%) of these patients. CONCLUSIONS Chronic NoV infection is associated with reduced allograft function. Administration of IVIg to patients with chronic NoV infection seems beneficial in achieving freedom from clinical symptoms, despite limited effects on shedding of virus.
Collapse
|
14
|
Keller JJ, Ooijevaar RE, Hvas CL, Terveer EM, Lieberknecht SC, Högenauer C, Arkkila P, Sokol H, Gridnyev O, Mégraud F, Kump PK, Nakov R, Goldenberg SD, Satokari R, Tkatch S, Sanguinetti M, Cammarota G, Dorofeev A, Gubska O, Laniro G, Mattila E, Arasaradnam RP, Sarin SK, Sood A, Putignani L, Alric L, Baunwall SMD, Kupcinskas J, Link A, Goorhuis AG, Verspaget HW, Ponsioen C, Hold GL, Tilg H, Kassam Z, Kuijper EJ, Gasbarrini A, Mulder CJJ, Williams HRT, Vehreschild MJGT. A standardised model for stool banking for faecal microbiota transplantation: a consensus report from a multidisciplinary UEG working group. United European Gastroenterol J 2021; 9:229-247. [PMID: 33151137 PMCID: PMC8259288 DOI: 10.1177/2050640620967898] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Faecal microbiota transplantation is an emerging therapeutic option, particularly for the treatment of recurrent Clostridioides difficile infection. Stool banks that organise recruitment and screening of faeces donors are being embedded within the regulatory frameworks described in the European Union Tissue and Cells Directive and the technical guide to the quality and safety of tissue and cells for human application, published by the European Council. OBJECTIVE Several European and international consensus statements concerning faecal microbiota transplantation have been issued. While these documents provide overall guidance, we aim to provide a detailed description of all processes that relate to the collection, handling and clinical application of human donor stool in this document. METHODS Collaborative subgroups of experts on stool banking drafted concepts for all domains pertaining to stool banking. During a working group meeting in the United European Gastroenterology Week 2019 in Barcelona, these concepts were discussed and finalised to be included in our overall guidance document about faecal microbiota transplantation. RESULTS A guidance document for all domains pertaining to stool banking was created. This document includes standard operating manuals for several processes involved with stool banking, such as handling of donor material, storage and donor screening. CONCLUSION The implementation of faecal microbiota transplantation by stool banks in concordance with our guidance document will enable quality assurance and guarantee the availability of donor faeces preparations for patients.
Collapse
|
15
|
Xu F, Li N, Wang C, Xing H, Chen D, Wei Y. Clinical efficacy of fecal microbiota transplantation for patients with small intestinal bacterial overgrowth: a randomized, placebo-controlled clinic study. BMC Gastroenterol 2021; 21:54. [PMID: 33549047 PMCID: PMC7866462 DOI: 10.1186/s12876-021-01630-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background Small intestinal bacterial overgrowth (SIBO) is characterized by the condition that bacteria overgrowth in the small intestine. Fecal microbiota transplantation (FMT) has been applied as an effective tool for reestablishing the structure of gut microbiota. However, whether FMT could be applied as a routine SIBO treatment has not been investigated. Methods In this trial, 55 SIBO patients were enrolled. All participants were randomized in two groups, and were given FMT capsule or placebo capsules once a week for 4 consecutive weeks. Measurements including the lactulose hydrogen breath test gastrointestinal symptoms, as well as fecal microbiota diversity were assessed before and after FMT therapy. Results Gastrointestinal symptoms significantly improved in SIBO patients after treatment with FMT compared to participants in placebo group. The gut microbiota diversity of FMT group had a significant increase, while placebo group showed none. Conclusions This study suggests that applying FMT for patients with SIBO can alleviate gastrointestinal symptoms, indicating that FMT may be a promising and novel therapeutic regimen for SIBO. Trial registry This study was retrospectively registered with the Chinese Clinical Trial registry on 2019.7.10 (ID: ChiCTR1900024409, http://www.chictr.org.cn).
Collapse
Affiliation(s)
- Fenghua Xu
- Department of Gastroenterology, Army Medical Center of PLA affiliated with Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Ning Li
- Department of Gastroenterology, Army Medical Center of PLA affiliated with Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Chun Wang
- Department of Gastroenterology, Army Medical Center of PLA affiliated with Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Hanyang Xing
- Department of Gastroenterology, Army Medical Center of PLA affiliated with Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Army Medical Center of PLA affiliated with Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yanling Wei
- Department of Gastroenterology, Army Medical Center of PLA affiliated with Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
16
|
Kumbale CM, Davis JD, Voit EO. Models for Personalized Medicine. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Schmidt AC, Leroux JC. Treatments of trimethylaminuria: where we are and where we might be heading. Drug Discov Today 2020; 25:1710-1717. [DOI: 10.1016/j.drudis.2020.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
18
|
Raghu Subramanian C, Talluri S, Khan SU, Katz JA, Georgetson M, Sinh P. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in Patients With Multiple Comorbidities: Long-Term Safety and Efficacy Results From a Tertiary Care Community Hospital. Gastroenterology Res 2020; 13:138-145. [PMID: 32864024 PMCID: PMC7433372 DOI: 10.14740/gr1275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022] Open
Abstract
Background Cure rates of Clostridium difficile infection (CDI) with fecal microbiota transplant (FMT) have been promising. However, there is debate regarding success of FMT in patients with comorbidities. Methods Electronic chart review was done to collect data on patients who underwent FMT from January 2015 to August 2017. Charts were analyzed in November 2018 with a median follow-up of 25.4 months (interquartile range 20 - 31 months). Results Twenty patients underwent FMT. The primary success rate at our institution was 90% and overall success rate was 100%. Six patients (43%) had FMT failure (two early and four late). Conclusions This case series is a description of our center’s initial experience with FMT for treatment of recurrent CDI. Our high success rate reiterates the efficacy and safety of FMT in this population including patients with comorbidities.
Collapse
Affiliation(s)
- Charumathi Raghu Subramanian
- Department of Medicine, Guthrie Clinic/Robert Packer Hospital, Sayre, PA, USA.,Washington Hospital Healthcare System, Fremont, CA, USA
| | - Swapna Talluri
- Department of Medicine, Guthrie Clinic/Robert Packer Hospital, Sayre, PA, USA
| | - Safi Ullah Khan
- Department of Medicine, Guthrie Clinic/Robert Packer Hospital, Sayre, PA, USA.,Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jeffry A Katz
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Michael Georgetson
- Division of Gastroenterology, Department of Medicine, Guthrie Clinic, Sayre, PA, USA
| | - Preetika Sinh
- Division of Gastroenterology, Department of Medicine, Guthrie Clinic, Sayre, PA, USA.,Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
19
|
Barberio B, Massimi D, Bonfante L, Facchin S, Calò L, Trevenzoli M, Savarino EV, Cattelan AM. Fecal microbiota transplantation for norovirus infection: a clinical and microbiological success. Therap Adv Gastroenterol 2020; 13:1756284820934589. [PMID: 32849912 PMCID: PMC7425245 DOI: 10.1177/1756284820934589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
| | | | - Luciana Bonfante
- Department of Internal Medicine, Division of Nephrology, University of Padua, Italy
| | - Sonia Facchin
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Lorenzo Calò
- Department of Internal Medicine, Division of Nephrology, University of Padua, Italy
| | - Marco Trevenzoli
- Department of Internal Medicine, Division of Infectious Diseases, University of Padua, Italy
| | | | - Anna Maria Cattelan
- Department of Internal Medicine, Division of Infectious Diseases, University of Padua, Italy
| |
Collapse
|
20
|
Khodamoradi Y, Kessel J, Vehreschild JJ, Vehreschild MJGT. The Role of Microbiota in Preventing Multidrug-Resistant Bacterial Infections. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 116:670-676. [PMID: 31658936 DOI: 10.3238/arztebl.2019.0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/11/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The introduction of industrially produced antibiotics was a milestone in the history of medicine. Now, almost a century later, the adverse consequences of these highly effective drugs have become evident in the form of antibiotic-resistant infections, which are on the rise around the world. The search for solutions to this problem has involved both the introduction of newer types of antibiotics and, increasingly, the development of alternative strategies to prevent infections due to multidrug-resistant bacteria. In this article, we review the pathophysiological connection between the use of antibiotics and the occurrence of such infections. We also discuss some alternative strategies that are currently under development. METHODS This review is based on pertinent articles that appeared from January 2000 to April 2019 and were retrieved by a selective search in the PubMed database employing the search term "(microbiota OR microbiome) AND infection." Further suggestions by our author team regarding relevant literature were considered as well. RESULTS The spectrum of preventive strategies encompasses measures for the protection of the intestinal microbiota (antimicrobial stewardship, neutralization of antibiotic residues in the bowel, use of phages and species-specific antibiotics) as well as measures for its reconstitution (prebiotics, probiotics, and fecal microbiota transfer). CONCLUSION In view of the major problem that multidrug-resistant bacteria pose for the world's population and the resources now being spent on the search for a solution, derived both from public funding and from the pharmaceutical industry, we hope to see new, clinically useful approaches being developed and implemented in the near future.
Collapse
Affiliation(s)
- Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main; Department of Internal Medicine, Hematology/Oncology, University Hospital Frankfurt, Johann Wolfgang Goethe University, Frankfurt am Main; Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Aachen, Bonn, Köln, Düsseldorf; German Center for Infection Research (DZIF), Bonn-Cologne
| | | | | | | |
Collapse
|
21
|
Scheeler A. Where Stool is a Drug: International Approaches to Regulating the use of Fecal Microbiota for Transplantation. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2019; 47:524-540. [PMID: 31957572 DOI: 10.1177/1073110519897729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulatory agencies vary widely in their classification of FMT, with significant impact on patient access. This article conducts a global survey of national regulations and collates existing FMT classification statuses, ultimately suggesting that the human cell and tissue product designation best fits FMT's characteristics and that definitional objectives to that classification may be overcome.
Collapse
Affiliation(s)
- Alexandra Scheeler
- Alexandra Scheeler, M.T.S., is a M.B.A. student at the Georgetown McDonough School of Business, and also holds degrees from Princeton University and Harvard Divinity School. She was previously the Regulatory Affairs Manager at OpenBiome, a non-profit stool bank in Cambridge, MA
| |
Collapse
|
22
|
Aira A, Fehér C, Rubio E, Soriano A. The Intestinal Microbiota as a Reservoir and a Therapeutic Target to Fight Multi-Drug-Resistant Bacteria: A Narrative Review of the Literature. Infect Dis Ther 2019; 8:469-482. [PMID: 31654298 PMCID: PMC6856238 DOI: 10.1007/s40121-019-00272-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
The appearance and dissemination of antibiotic-resistant bacteria, particularly in specific closed environments such as intensive care units of acute care hospitals, have become a major health concern. The intestinal microbiota has various functions including host protection from overgrowth or colonization by unwanted bacteria. The exposure to antibiotics significantly reduces the bacterial density of intestinal microbiota leaving an ecologic void that can be occupied by potentially pathogenic and/or resistant bacteria frequently present in hospital settings. Consequently, the intestinal microbiota of inpatients acts as a major reservoir and plays a critical role in perpetuating the spread of resistant bacteria. There are novel innovative methods to protect the host microbiota during antibiotic treatment, but they do not offer a solution for already established colonization by resistant microorganisms. Fecal microbiota transfer (FMT) is a promising intervention to achieve this goal; however, controlled trials report lower success rates than initial retrospective studies, especially in case of gram negatives. The aim of the present article is to highlight the importance of the intestinal microbiota in the global spread of multi-drug-resistant (MDR) microorganisms and to review the recent advances to protect the human microbiota from the action of antibiotics as well as a critical discussion about the evidence of decolonization of MDR microorganisms by FMT.
Collapse
Affiliation(s)
- Andrea Aira
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS, Catalonia, Barcelona, Spain
| | - Csaba Fehér
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS, Catalonia, Barcelona, Spain
| | - Elisa Rubio
- Department of Clinical Microbiology, Hospital Clínic, Catalonia, Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS, Catalonia, Barcelona, Spain.
- University of Barcelona, IDIBAPS, Catalonia, Barcelona, Spain.
| |
Collapse
|
23
|
Murray TS, Herbst J. The Ethics of Fecal Microbiota Transplant as a Tool for Antimicrobial Stewardship Programs. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2019; 47:541-554. [PMID: 31957576 DOI: 10.1177/1073110519897730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multidrug resistant organisms (MDROs) are a public health threat that have reduced the effectiveness of many available antibiotics. Antimicrobial stewardship programs (ASPs) have been tasked with reducing antibiotic use and therefore the emergence of MDROs. While fecal microbiota transplant (FMT) has been proposed as therapy to reduce patient colonization of MDROs, this will require additional evidence to support an expansion of the current clinical indication for FMT. This article discusses the evidence and ethics of the expanded utilization of FMT by ASPs for reasons other than severe recurrent or refractory Clostridioides (formerly Clostridium) difficile infection.
Collapse
Affiliation(s)
- Thomas S Murray
- Thomas S. Murray, M.D., Ph.D., is affiliated with Yale School of Medicine, Department of Pediatrics Section Infectious Diseases, New Haven CT. Jennifer Herbst, J.D., M.Bioethics, LL.M., is affiliated with Quinnipiac University School of Law and Frank H. Netter, MD, School of Medicine, North Haven CT
| | - Jennifer Herbst
- Thomas S. Murray, M.D., Ph.D., is affiliated with Yale School of Medicine, Department of Pediatrics Section Infectious Diseases, New Haven CT. Jennifer Herbst, J.D., M.Bioethics, LL.M., is affiliated with Quinnipiac University School of Law and Frank H. Netter, MD, School of Medicine, North Haven CT
| |
Collapse
|
24
|
Yoon YK, Suh JW, Kang EJ, Kim JY. Efficacy and safety of fecal microbiota transplantation for decolonization of intestinal multidrug-resistant microorganism carriage: beyond Clostridioides difficile infection. Ann Med 2019; 51:379-389. [PMID: 31468999 PMCID: PMC7877873 DOI: 10.1080/07853890.2019.1662477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Persistent reservoirs of multidrug-resistant microorganisms (MDRO) that are prevalent in hospital settings and communities can lead to the spread of MDRO. Currently, there are no effective decolonization strategies, especially non-pharmacological strategies without antibiotic regimens. Our aim was to evaluate the efficacy and safety of fecal microbiota transplantation (FMT) for the eradication of MDRO. A systematic literature search was performed to identify studies on the use of FMT for the decolonization of MDRO. PubMed, EMBASE, Web of Science, and Cochrane Library were searched from inception through January 2019. Of the 1395 articles identified, 20 studies met the inclusion and exclusion criteria. Overall, the efficacy of FMT for the eradication of each MDRO was 70.3% (102/146) in 121 patients from the 20 articles. The efficacy rates were 68.2% (30/44) for gram-positive bacteria and 70.6% (72/102) for gram-negative bacteria. Minor adverse events, including vomiting, diarrhea, abdominal pain, and ileus, were reported in patients who received FMT. FMT could be a promising strategy to eradicate MDRO in patients. Further studies are needed to confirm these findings and establish a comprehensive FMT protocol for standardized treatment.Key messagesThe development of new antibiotics lags behind the emergence of multidrug-resistant microorganisms (MDRO). New strategies are needed.Theoretically, fecal microbiota transplantation (FMT) might recover the diversity and function of commensal microbiota from dysbiosis in MDRO carriers and help restore colonization resistance to pathogens.A literature review indicated that FMT could be a promising strategy to eradicate MDRO in patients.
Collapse
Affiliation(s)
- Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jin Woong Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eun-Ji Kang
- Korea University Medical Library, Seoul, Korea
| | - Jeong Yeon Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation. Microorganisms 2019; 7:microorganisms7090338. [PMID: 31510101 PMCID: PMC6780752 DOI: 10.3390/microorganisms7090338] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
The change in the gut microbiome and microbial metabolites in a patient suffering from severe and enduring anorexia nervosa (AN) and diagnosed with small intestinal bacterial overgrowth syndrome (SIBO) was investigated. Microbial gut dysbiosis is associated with both AN and SIBO, and therefore gut microbiome changes by serial fecal microbiota transplantation (FMT) is a possible therapeutic modality. This study assessed the effects of FMT on gut barrier function, microbiota composition, and the levels of bacterial metabolic products. The patient treatment with FMT led to the improvement of gut barrier function, which was altered prior to FMT. Very low bacterial alpha diversity, a lack of beneficial bacteria, together with a great abundance of fungal species were observed in the patient stool sample before FMT. After FMT, both bacterial species richness and gut microbiome evenness increased in the patient, while the fungal alpha diversity decreased. The total short-chain fatty acids (SCFAs) levels (molecules presenting an important source of energy for epithelial gut cells) gradually increased after FMT. Contrarily, one of the most abundant intestinal neurotransmitters, serotonin, tended to decrease throughout the observation period. Overall, gut microbial dysbiosis improvement after FMT was considered. However, there were no signs of patient clinical improvement. The need for an in-depth analysis of the donor´s stool and correct selection pre-FMT is evident.
Collapse
|
26
|
Gargiullo L, Del Chierico F, D’Argenio P, Putignani L. Gut Microbiota Modulation for Multidrug-Resistant Organism Decolonization: Present and Future Perspectives. Front Microbiol 2019; 10:1704. [PMID: 31402904 PMCID: PMC6671974 DOI: 10.3389/fmicb.2019.01704] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is of great concern to global public health. Treatment of multi-drug resistant (MDR) infections is a major clinical challenge: the increase in antibiotic resistance leads to a greater risk of therapeutic failure, relapses, longer hospitalizations, and worse clinical outcomes. Currently, there are no validated treatments for many MDR or pandrug-resistant (PDR) infections, and preventing the spread of these pathogens through hospital infection control procedures and antimicrobial stewardship programs is often the only tool available to healthcare providers. Therefore, new solutions to control the colonization of MDR pathogens are urgently needed. In this narrative review, we discuss current knowledge of microbiota-mediated mechanisms of AMR and strategies for MDR colonization control. We focus particularly on fecal microbiota transplantation for MDR intestinal decolonization and report updated literature on its current clinical use.
Collapse
Affiliation(s)
- Livia Gargiullo
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | | | - Patrizia D’Argenio
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit and Parasitology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
27
|
Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota. Mediators Inflamm 2019; 2019:8373060. [PMID: 31281229 PMCID: PMC6589192 DOI: 10.1155/2019/8373060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
Given the association between a range of neurological disorders and changes in the gut microbiota, interest in the gut microbiota has recently increased. In particular, the significant involvement of the autoimmune processes in the development of epilepsy, one of the most serious and widespread neurological diseases, has led to a suggested link with the gut microbiome. Because the constitution of the gut microbiome can be influenced by diet, dietary therapy has been shown to have a positive impact on a wide range of conditions via alteration of the gut microbiota. An example of one such diet is the ketogenic diet (KD), which promotes a diet that contains high levels of fat, adequate levels of protein, and low levels of carbohydrate. Due to the near-total elimination of carbohydrates from the individual's food in this ultra-high-fat diet, ketone bodies become an important source of energy. Although the ketogenic diet has proven successful in the treatment of refractory epilepsy and other illnesses, the underlying mechanisms of its neuroprotective effects have yet to be fully elucidated. Nevertheless, recent studies strongly indicate a role for the gut microbiota in the effective treatment of epilepsy with the ketogenic diet. The latest advances regarding the links between the ketogenic diet, gut microbiota, and epilepsy are reviewed in this article, with a particular focus on the role of the gut microbiota in the treatment outcome.
Collapse
|
28
|
Peri R, Aguilar RC, Tüffers K, Erhardt A, Link A, Ehlermann P, Angeli W, Frank T, Storr M, Glück T, Sturm A, Rosien U, Tacke F, Bachmann O, Solbach P, Stallmach A, Goeser F, Vehreschild MJGT. The impact of technical and clinical factors on fecal microbiota transfer outcomes for the treatment of recurrent Clostridioides difficile infections in Germany. United European Gastroenterol J 2019; 7:716-722. [PMID: 31210950 PMCID: PMC6545715 DOI: 10.1177/2050640619839918] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Fecal microbiota transfer (FMT) is highly effective in the treatment and prevention of recurrent Clostridioides difficile infection (rCDI) with cure rates of about 80% after a single treatment. Nevertheless, the reasons for failure in the remaining 20% remain largely elusive. The aim of the present study was to investigate different potential clinical predictors of response to FMT in Germany. METHODS Information was extracted from the MicroTrans Registry (NCT02681068), a retrospective observational multicenter study, collecting data from patients undergoing FMT for recurrent or refractory CDI in Germany. We performed binary logistic regression with the following covariates: age, gender, ribotype 027, Eastern Co-operative Oncology Group score, immunosuppression, preparation for FMT by use of proton pump inhibitor, antimotility agents and bowel lavage, previous recurrences, severity of CDI, antibiotic induction treatment, fresh or frozen FMT preparation, and route of application. RESULTS Treatment response was achieved in 191/240 evaluable cases (79.6%) at day 30 (D30) post FMT and 78.1% at day 90 (D90) post FMT. Assessment of clinical predictors for FMT failure by forward and confirmatory backward-stepwise regression analysis yielded higher age as an independent predictor of FMT failure (p = 0.001; OR 1.060; 95%CI 1.025-1.097). CONCLUSION FMT in Germany is associated with high cure rates at D30 and D90. No specific pre-treatment, preparation or application strategy had an impact on FMT success. Only higher age was identified as an independent risk factor for treatment failure. Based on these and external findings, future studies should focus on the assessment of microbiota and microbiota-associated metabolites as factors determining FMT success.
Collapse
Affiliation(s)
- Rosemarie Peri
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Bonn-Cologne, Germany
| | - Rebeca Cruz Aguilar
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Bonn-Cologne, Germany
| | - Kester Tüffers
- Department II of Internal Medicine, St. Johannes Hospital, Dortmund, Germany
| | - Andreas Erhardt
- Department II of Internal Medicine, St. Petrus Hospital, Wuppertal, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Philipp Ehlermann
- Department of Internal Medicine, SRH Kurpfalzkrankenhaus Heidelberg, Heidelberg, Germany
| | - Wolfgang Angeli
- Department of Gastroenterology, Kempten-Oberallgäu Clinic, Kempten, Germany
| | - Thorsten Frank
- Department of Internal Medicine II, St. Katharinen Hospital, Frechen, Germany
| | - Martin Storr
- Department of Gastroenterology, Ludwig-Maximilians-University, Munich, and Center of Endoscopy, Starnberg, Germany
| | - Thomas Glück
- Department of Internal Medicine, Trostberg Clinic, Trostberg, Germany
| | - Andreas Sturm
- Department of Internal Medicine and Gastroenterology, DRK Kliniken Westend, Berlin, Germany
| | - Ulrich Rosien
- Visceral Medical Center, Israelitic Hospital Hamburg, Hamburg, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Oliver Bachmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Philipp Solbach
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectiology), University Hospital Jena, Jena, Germany
| | - Felix Goeser
- German Centre for Infection Research (DZIF), Bonn-Cologne, Germany
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Maria JGT Vehreschild
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Bonn-Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany *These authors contributed equally
| | | |
Collapse
|
29
|
Manipulation of the microbiota to eradicate multidrug-resistant Enterobacteriaceae from the human intestinal tract. Clin Microbiol Infect 2019; 25:786-789. [PMID: 30965098 DOI: 10.1016/j.cmi.2019.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 01/24/2023]
|
30
|
Tavoukjian V. Faecal microbiota transplantation for the decolonization of antibiotic-resistant bacteria in the gut: a systematic review and meta-analysis. J Hosp Infect 2019; 102:174-188. [PMID: 30926290 DOI: 10.1016/j.jhin.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
Abstract
Antibiotic resistance is a growing global problem associated with increased morbidity and mortality, and presents a significant financial and economic burden on healthcare. Faecal microbiota transplantation (FMT) has been proven effective for curing recurrent Clostridium difficile infections, however no systematic review to date has addressed its effectiveness for decolonization of antibiotic-resistant bacteria from the gut. The aim of this study was to establish whether faecal microbiota transplantation decolonizes antibiotic-resistant bacteria from the gut of colonized adults. A systematic review was performed by undertaking a comprehensive search on MEDLINE, Embase, CENTRAL, PubMed and CINAHL databases for evidence up until May 2018. Randomized and non-randomized studies evaluating the effects of FMT on gut colonization of antibiotic-resistant bacteria in adults were eligible. Studies were assessed using the Joanna Briggs Institution critical appraisal checklists. Quality of reporting was assessed using PROCESS and CARE checklists. Data was synthesized narratively, along with a meta-analysis of proportions for the primary outcome. Five studies with a total number of 52 participants were included. Evidence of low quality showed that decolonization was achieved in half of the cases one month after FMT with higher response noted in Pseudomonas aeruginosa, and lower response in Klebsiella pneumoniae with New Delhi metallo-beta-lactamase 1 (NDM-1) and extended-spectrum β-lactamase (ESBL) mechanisms of resistance. In successful cases, 70% of decolonization cases occurred within the first week after FMT. Few temporary adverse events were identified. Despite the limitations of the included studies, evidence from this review indicates a potential benefit of FMT as a decolonization intervention, which can only be confirmed by future well-designed RCTs.
Collapse
Affiliation(s)
- V Tavoukjian
- Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, James Clerk Maxwell Building, 57 Waterloo Road, London SE1 8WA, UK.
| |
Collapse
|
31
|
Vaginal microbiota transplantation for the treatment of bacterial vaginosis: a conceptual analysis. FEMS Microbiol Lett 2019; 366:5304978. [DOI: 10.1093/femsle/fnz025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
|
32
|
Ramai D, Zakhia K, Ofosu A, Ofori E, Reddy M. Fecal microbiota transplantation: donor relation, fresh or frozen, delivery methods, cost-effectiveness. Ann Gastroenterol 2019; 32:30-38. [PMID: 30598589 PMCID: PMC6302197 DOI: 10.20524/aog.2018.0328] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has evolved into a robust and efficient means for treating recurrent Clostridium difficile infection (CDI). Our narrative review looks at the donor selection, preparation, delivery techniques and cost-effectiveness of FMT. We searched electronic databases, including PubMed, MEDLINE, Google Scholar, and Cochrane Databases, for studies that compared the biological effects of donor selection, fresh or frozen fecal preparation, and various delivery techniques. We also evaluated the cost-effectiveness and manually searched references to identify additional relevant studies. Overall, there is a paucity of studies that directly compare outcomes associated with related and non-related stool donors. However, inferences from prior studies indicate that the success of FMT does not depend on the donor-patient relationship. Over time, the use of unrelated donors has increased because of the formation of stool banks and the need to save processing time and capital. However, longitudinal studies are needed to clarify the optimal freezing time before microbial function declines. Several FMT techniques have been developed, such as colonoscopy, enema, nasogastric or nasojejunal tubes, and capsules. The comparable and high efficacy of FMT capsules, combined with their convenience, safety and aesthetically tolerable mode of delivery, makes it an attractive option for many patients. Cost-effective models comparing these various approaches support the use of FMT via colonoscopy as being the best strategy for the treatment of recurrent CDI.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Medicine, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Daryl Ramai)
| | - Karl Zakhia
- Department of Medicine, Elmhurst Medical Center, Queens (Karl Zakhia)
| | - Andrew Ofosu
- Division of Gastroenterology and Hepatology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Andrew Ofosu, Emmanuel Ofori, Madhavi Reddy), New York, USA
| | - Emmanuel Ofori
- Division of Gastroenterology and Hepatology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Andrew Ofosu, Emmanuel Ofori, Madhavi Reddy), New York, USA
| | - Madhavi Reddy
- Division of Gastroenterology and Hepatology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn (Andrew Ofosu, Emmanuel Ofori, Madhavi Reddy), New York, USA
| |
Collapse
|
33
|
Torres Soto M, Hammond S, Elshaboury RH, Johnson J, Hohmann EL. Recurrent Relatively Resistant Salmonella infantis Infection in 2 Immunocompromised Hosts Cleared With Prolonged Antibiotics and Fecal Microbiota Transplantation. Open Forum Infect Dis 2018; 6:ofy334. [PMID: 30648128 PMCID: PMC6329902 DOI: 10.1093/ofid/ofy334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
Two immunocompromised patients with relapsing gastrointestinal infection with relatively resistant Salmonella infantis were cured with prolonged ertapenem followed by encapsulated fecal transplant.
Collapse
Affiliation(s)
- Mariam Torres Soto
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Sarah Hammond
- Division of Infectious Diseases, Brigham and Womens Hospital, Boston, Massachusetts
| | - Ramy H Elshaboury
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Jacob Johnson
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth L Hohmann
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
34
|
Casals-Pascual C, Vergara A, Vila J. Intestinal microbiota and antibiotic resistance: Perspectives and solutions. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.humic.2018.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Jalanka J, Hillamaa A, Arkkila PE, Satokari R. Letter: improvements in mental health after faecal microbiota transplantation-an underexplored treatment-related benefit? Authors' reply. Aliment Pharmacol Ther 2018; 47:1563-1564. [PMID: 29878420 DOI: 10.1111/apt.14668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- J Jalanka
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - A Hillamaa
- Department of Gastroenterology, Helsinki University Central Hospital, Helsinki, Finland
| | - P E Arkkila
- Department of Gastroenterology, Helsinki University Central Hospital, Helsinki, Finland
| | - R Satokari
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Lehto M, Groop PH. The Gut-Kidney Axis: Putative Interconnections Between Gastrointestinal and Renal Disorders. Front Endocrinol (Lausanne) 2018; 9:553. [PMID: 30283404 PMCID: PMC6157406 DOI: 10.3389/fendo.2018.00553] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is a devastating condition associated with increased morbidity and premature mortality. The etiology of DKD is still largely unknown. However, the risk of DKD development and progression is most likely modulated by a combination of genetic and environmental factors. Patients with autoimmune diseases, like type 1 diabetes, inflammatory bowel disease, and celiac disease, share some genetic background. Furthermore, gastrointestinal disorders are associated with an increased risk of kidney disease, although the true mechanisms have still to be elucidated. Therefore, the principal aim of this review is to evaluate the impact of disturbances in the gastrointestinal tract on the development of renal disorders.
Collapse
Affiliation(s)
- Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- *Correspondence: Markku Lehto
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|