1
|
McCreery CV, Alessi D, Mollo K, Fasano A, Zomorrodi AR. Investigating intestinal epithelium metabolic dysfunction in celiac disease using personalized genome-scale models. BMC Med 2025; 23:95. [PMID: 39984962 PMCID: PMC11846356 DOI: 10.1186/s12916-025-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Celiac disease (CeD) is an autoimmune condition characterized by an aberrant immune response triggered by the ingestion of gluten, which damages epithelial cells lining the small intestine. Small intestinal epithelial cells (sIECs) play key roles in the enzymatic digestion and absorption of nutrients, maintaining gut barrier integrity, and regulating immune response. Chronic inflammation and tissue damage associated with CeD disrupt the intricate network of metabolic processes in sIECs that support these functions, impairing their ability to perform their essential roles. However, the specific disrupted metabolic processes underlying sIECs dysfunction in CeD remain largely undefined. METHODS To address this knowledge gap, personalized, sex-specific genome-scale models of sIECs metabolism were constructed using transcriptional data from intestinal biopsies of 42 subjects with active CeD, CeD in remission (on a gluten-free diet), and non-CeD controls. These models were computationally simulated under relevant dietary conditions for each group of subjects to assess the activity of several metabolic tasks essential for sIECs function and to profile metabolite secretion into the bloodstream and intestinal lumen. RESULTS Significant alterations in the activity of 28 essential metabolic tasks were observed in active CeD and remission CeD, impacting critical processes integral to sIECs function such as oxidative stress regulation, nucleotide synthesis and DNA repair, energy production, and polyamine and amino acid metabolism. Additionally, altered secretion profiles of several metabolites, encompassing amino acids, vitamins, polyamines, lipids, and fatty acids, into the bloodstream were detected in active CeD and remission CeD patients. These findings were partially supported by comparisons with independent external datasets and further corroborated through extensive review of existing literature. Furthermore, a drug target analysis was performed, identifying 22 FDA-approved drugs that target genes encoding impaired sIECs metabolic functions in CeD, potentially helping to restore their normal activity. CONCLUSIONS This study unveils new insights into the metabolic reprogramming of sIECs in CeD, highlighting specific dysregulated metabolic processes that compromise cellular functions essential for gut health. These findings offer a foundation for developing therapeutic interventions targeting impaired metabolic processes in CeD.
Collapse
Affiliation(s)
- Chloe V McCreery
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Drew Alessi
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Katarina Mollo
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Ali R Zomorrodi
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Lamjadli S, Oujamaa I, Souli I, Eddehbi FE, Lakhouaja N, M’raouni B, Salami A, Guennouni M, Belghali MY, Hazime R, Admou B. Micronutrient deficiencies in patients with celiac disease: A systematic review and meta-analysis. Int J Immunopathol Pharmacol 2025; 39:3946320241313426. [PMID: 39959924 PMCID: PMC11831651 DOI: 10.1177/03946320241313426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/22/2024] [Indexed: 02/20/2025] Open
Abstract
This study aimed to characterize micronutrient deficiencies, including iron, ferritin, folic acid, vitamin D, zinc (Zn), vitamin B12, and copper, in patients with celiac disease, and evaluated the effects of these deficiencies on selected hematological parameters, including hemoglobin and mean corpuscular volume (MCV). Celiac disease (CeD), an immune-mediated disorder affecting the small bowel, is associated with genetic factors and micronutrient deficiencies. This meta-analysis was performed in accordance with the PRISMA guidelines. Literature searches of multiple databases retrieved 4140 studies, of which 45 were selected. Risk of Bias was performed in accordance with the STROBE checklist. Meta-analysis revealed a significant difference in hemoglobin levels between patients with CeD and controls (standardized mean difference (SMD) -0.59 (95% confidence interval (CI) -0.8459 to -0.3382); P = 0.0003). Iron levels were lower in patients with CeD (SMD ≈ -0.4 (95% CI -0.7385 to -0.0407); P = 0.0334), as were ferritin (SMD -0.6358 (95% CI -0.8962 to -0.3755); P = 0.0002), folic acid (SMD -0.5446 (95% CI -0.9749 to -0.1142); P = 0.0187), and vitamin D (SMD -0.4011 (95% CI -0.8020 to -0.0001); P = 0.0499) levels, while Zn levels were significantly reduced (SMD -1.1398 (95% CI -2.0712 to -0.2084); P = 0.0242). No significant differences were found in MCV, or copper or vitamin B12 levels between patients with CeD and controls. This study highlighted significantly higher micronutrient deficiencies in patients diagnosed with CeD than in controls, underscoring the importance of systematic nutritional assessment and multidisciplinary management to address micronutrient deficiencies and minimize negative health impact(s).
Collapse
Affiliation(s)
- Saad Lamjadli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ider Oujamaa
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Fatima ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouine Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Moulay Yassine Belghali
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
3
|
Peroxiredoxins and Hypoxia-Inducible Factor-1α in Duodenal Tissue: Emerging Factors in the Pathophysiology of Pediatric Celiac Disease Patients. Curr Issues Mol Biol 2023; 45:1779-1793. [PMID: 36826059 PMCID: PMC9954839 DOI: 10.3390/cimb45020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy. Peroxiredoxins (PRDXs) are powerful antioxidant enzymes having an important role in significant cellular pathways including cell survival, apoptosis, and inflammation. This study aimed at investigating the expression levels of all PRDX isoforms (1-6) and their possible relationships with a transcription factor, HIF-1α, in the small intestinal tissue samples of pediatric CD patients. The study groups consisted of first-diagnosed CD patients (n = 7) and non-CD patients with functional gastrointestinal tract disorders as the controls (n = 7). The PRDXs and HIF-1α expression levels were determined by using real-time PCR and Western blotting in duodenal biopsy samples. It was observed that the mRNA and protein expression levels of PRDX 5 were significantly higher in the CD patients, whereas the PRDX 1, -2, and -4 expressions were decreased in each case compared to the control group. No significant differences were detected in the PRDX 3 and PRDX 6 expressions. The expression of HIF-1α was also significantly elevated in CD patients. These findings indicate, for the first time, that PRDXs, particularly PRDX 5, may play a significant role in the pathogenesis of CD. Furthermore, our results suggest that HIF-1α may upregulate PRDX-5 transcription in the duodenal tissue of CD.
Collapse
|
4
|
Shree T, Banerjee P, Senapati S. A meta-analysis suggests the association of reduced serum level of vitamin D and T-allele of Fok1 (rs2228570) polymorphism in the vitamin D receptor gene with celiac disease. Front Nutr 2023; 9:996450. [PMID: 36741989 PMCID: PMC9893277 DOI: 10.3389/fnut.2022.996450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Purpose As an immune-modulator, vitamin D is known to regulate immune response and is implicated in disease pathogenesis. Celiac disease (CD) is a systemic autoimmune disease and susceptibility conferred by vitamin D metabolism is under investigation. Studies on the association of vitamin D metabolism and genetic polymorphisms are expected to explain CD pathogenesis. We performed a systematic review-based meta-analysis to investigate the 25(OH)D serum levels and susceptibility conferred by the genetic variants of VDR in CD. Methods Systematic review was conducted through a web-based literature search following stringent study inclusion-exclusion criteria. The Newcastle-Ottawa Scale and GRADE tools were used to assess the quality of evidence in studies and the study outcome. Cohen's κ value was estimated to access the reviewer's agreement. RevMan 5.4.1 was used to perform the meta-analyses. Weighted mean difference and Meta p-value was assessed for 25(OH)D serum levels. Meta-odds ratio and Z-test p-value were evaluated to estimate the allelic susceptibility of VDR variants. Results A total of 8 out of 12 studies were evaluated for "25(OH)D" serum level, while four studies were found eligible for SNPs (Bsm1, Apa1, Fok1, and Taq1) of VDR. Significantly higher levels [WMD = 5.49, p < 0.00001] of 25(OH)D were observed in healthy controls than in patients with CD. rs2228570-T (Fok1) [Meta-OR = 1.52, p = 0.02] was confirmed to be predisposing allele for CD. Conclusion Reduced serum level of 25(OH)D and association of Fok1 T-allele of VDR confirmed in this study plays a critical role in immunomodulation and maintaining barrier integrity, which is majorly implicated in CD.
Collapse
Affiliation(s)
| | | | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
5
|
Perez F, Ruera CN, Miculan E, Carasi P, Chirdo FG. Programmed Cell Death in the Small Intestine: Implications for the Pathogenesis of Celiac Disease. Int J Mol Sci 2021; 22:7426. [PMID: 34299046 PMCID: PMC8306608 DOI: 10.3390/ijms22147426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The small intestine has a high rate of cell turnover under homeostatic conditions, and this increases further in response to infection or damage. Epithelial cells mostly die by apoptosis, but recent studies indicate that this may also involve pro-inflammatory pathways of programmed cell death, such as pyroptosis and necroptosis. Celiac disease (CD), the most prevalent immune-based enteropathy, is caused by loss of oral tolerance to peptides derived from wheat, rye, and barley in genetically predisposed individuals. Although cytotoxic cells and gluten-specific CD4+ Th1 cells are the central players in the pathology, inflammatory pathways induced by cell death may participate in driving and sustaining the disease through the release of alarmins. In this review, we summarize the recent literature addressing the role of programmed cell death pathways in the small intestine, describing how these mechanisms may contribute to CD and discussing their potential implications.
Collapse
Affiliation(s)
- Federico Perez
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (C.N.R.); (E.M.); (P.C.)
| | | | | | | | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (C.N.R.); (E.M.); (P.C.)
| |
Collapse
|
6
|
Hearn NL, Chiu CL, Lind JM. Comparison of DNA methylation profiles from saliva in Coeliac disease and non-coeliac disease individuals. BMC Med Genomics 2020; 13:16. [PMID: 32014011 PMCID: PMC6998322 DOI: 10.1186/s12920-020-0670-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Coeliac disease (CD) is a autoimmune disease characterised by mucosal inflammation in the small intestine in response to dietary gluten. Genetic factors play a key role with CD individuals carrying either the HLA-DQ2 or HLA-DQ8 haplotype, however these haplotypes are present in half the general population making them necessary but insufficient to cause CD. Epigenetic modifications, including DNA methylation that can change in response to environmental exposure could help to explain how interactions between genes and environmental factors combine to trigger disease development. Identifying changes in DNA methylation profiles in individuals with CD could help discover novel genomic regions involved in the onset and development of CD. METHODS The Illumina InfiniumMethylation450 Beadchip array (HM450) was used to compare DNA methylation profiles in saliva, in CD and non-CD affected individuals. CD individuals who had been diagnosed at least 2 years previously; were on a GFD; and who were currently asymptomatic; were compared to age and sex-matched non-CD affected healthy controls. Bisulphite pyrosequencing was used to validate regions found to be differentially methylated. These regions were also validated in a second larger cohort of CD and non-CD affected individuals. RESULTS Methylation differences within the HLA region at HLA-DQB1 were identified on HM450 but could not be confirmed with pyrosequencing. Significant methylation differences near the SLC17A3 gene were confirmed on pyrosequencing in the initial pilot cohort. Interestingly pyrosequencing sequencing of these same sites within a second cohort of CD and non-CD affected controls produced significant methylation differences in the opposite direction. CONCLUSION Altered DNA methylation profiles appear to be present in saliva in CD individuals. Further work to confirm whether these differences are truly associated with CD is needed.
Collapse
Affiliation(s)
- Nerissa L. Hearn
- Western Sydney University, School of Medicine, Sydney, Australia
| | - Christine L. Chiu
- Macquarie University, Faculty of Medicine and Health Sciences, Sydney, Australia
| | - Joanne M. Lind
- Western Sydney University, School of Medicine, Sydney, Australia
- Macquarie University, Faculty of Medicine and Health Sciences, Sydney, Australia
| |
Collapse
|
7
|
Oxidative stress, DNA stability and evoked inflammatory signaling in young celiac patients consuming a gluten-free diet. Eur J Nutr 2019; 59:1577-1584. [PMID: 31144026 DOI: 10.1007/s00394-019-02013-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/24/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Celiac disease (CD) is a multifactorial, autoimmune, gluten-sensitive inflammatory disorder of the small intestine. Taking into account the pathogenesis of CD, a strict gluten-free diet (GFD) is the only treatment able to restore epithelium integrity and eliminate complications. The current study was designed to assess whether the use of a GFD is sufficient for maintaining a correct oxidative/antioxidant balance and ameliorating the evoked inflammatory signaling in young patients with CD. METHODS The study covered 80 children, aged between 7 and 18 years, attending the Gastroenterology Service of the Gastroenterology, Hepatology and Child Nutrition Service from the Virgen de las Nieves Hospital in Granada. Children with CD diagnosed were included in the celiac group who followed a strict GFD for 2 years (n = 40) and the control group (n = 40) included healthy children, with negative serological screening. Soluble superoxide dismutase 1 and 2, total antioxidant status, 8-hydroxy-2'-deoxyguanosine, cortisol, melatonin and inflammatory parameters in plasma, 15-F2t-isoprostanes in urine, and DNA breaks in peripheral blood lymphocytes were analysed. RESULTS No differences were found in oxidative stress between CD patients and controls; however, IFN-γ, IL-1α, IP-10 and TNF-β were higher in the CD patients. VEGF was also higher than in the control group. CONCLUSION The GFD in the CD patients is enough to reduce the oxidative stress; however, in the case of the inflammatory signaling, the initial exposure to gluten prior to stablish the GFD is strong enough to induce an inflammatory state which is maintained (even when consuming the GFD); meanwhile the increase in VEGF recorded in the CD group could be a compensatory mechanism to restore the damaged mucosa and duodenal villous atrophy, due to its role in endothelial activation and generation of new functional and stable vascular networks.
Collapse
|
8
|
KhalKhal E, Rezaei-Tavirani M, Razzaghi M, Rezaei-Tavirani S, Zali H, Rostamii-Nejad M. The critical role of dysregulation of antioxidant activity and carbohydrate metabolism in celiac disease. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:340-347. [PMID: 31749923 PMCID: PMC6820838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM Identification of the important processes and the related genes that are dis-regulated in the celiac disease (CD) was the aim of this study. BACKGROUND Celiac disease is an autoimmune disorder which is characterized by immune reaction response mostly to wheat gluten. The gluten-free diet is the best-known treatment of the patients. METHODS Significant differentially expressed proteins (DEPs) related to the CD are extracted from a published proteomics study and are included in protein-protein interaction PPI) network analysis by Cytoscape software and its applications. The central proteins and related processes are identified and discussed. RESULTS Among 53 queried genes, 51 individuals were recognized by the database, and after network construction, 48 ones included in the network, and three genes remained as isolated nodes. Following 50 neighbors, the network was analyzed, and eight central genes were identified as dis-regulated elements. Related processes and the role of the central genes in celiac are discussed in detail. CONCLUSION CAT, ENO1, PCK2, ACO2, ALDOOB, GALM, ADA, and ACTBADA as critical genes and Antioxidant activity, carbohydrate metabolism, inflammation, cell growth processes are highlighted as the dis-regulated individuals in CD.
Collapse
Affiliation(s)
- Ensieh KhalKhal
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei-Tavirani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostamii-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Lim SD, Min H, Youn E, Kawasaki I, Shim YH. Gliadin intake induces oxidative-stress responses in Caenorhabditis elegans. Biochem Biophys Res Commun 2018; 503:2139-2145. [DOI: 10.1016/j.bbrc.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
|