1
|
Gong T, Jaratlerdsiri W, Jiang J, Willet C, Chew T, Patrick SM, Lyons RJ, Haynes AM, Pasqualim G, Brum IS, Stricker PD, Mutambirwa SBA, Sadsad R, Papenfuss AT, Bornman RMS, Chan EKF, Hayes VM. Genome-wide interrogation of structural variation reveals novel African-specific prostate cancer oncogenic drivers. Genome Med 2022; 14:100. [PMID: 36045381 PMCID: PMC9434886 DOI: 10.1186/s13073-022-01096-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND African ancestry is a significant risk factor for advanced prostate cancer (PCa). Mortality rates in sub-Saharan Africa are 2.5-fold greater than global averages. However, the region has largely been excluded from the benefits of whole genome interrogation studies. Additionally, while structural variation (SV) is highly prevalent, PCa genomic studies are still biased towards small variant interrogation. METHODS Using whole genome sequencing and best practice workflows, we performed a comprehensive analysis of SVs for 180 (predominantly Gleason score ≥ 8) prostate tumours derived from 115 African, 61 European and four ancestrally admixed patients. We investigated the landscape and relationship of somatic SVs in driving ethnic disparity (African versus European), with a focus on African men from southern Africa. RESULTS Duplication events showed the greatest ethnic disparity, with a 1.6- (relative frequency) to 2.5-fold (count) increase in African-derived tumours. Furthermore, we found duplication events to be associated with CDK12 inactivation and MYC copy number gain, and deletion events associated with SPOP mutation. Overall, African-derived tumours were 2-fold more likely to present with a hyper-SV subtype. In addition to hyper-duplication and deletion subtypes, we describe a new hyper-translocation subtype. While we confirm a lower TMPRSS2-ERG fusion-positive rate in tumours from African cases (10% versus 33%), novel African-specific PCa ETS family member and TMPRSS2 fusion partners were identified, including LINC01525, FBXO7, GTF3C2, NTNG1 and YPEL5. Notably, we found 74 somatic SV hotspots impacting 18 new candidate driver genes, with CADM2, LSAMP, PTPRD, PDE4D and PACRG having therapeutic implications for African patients. CONCLUSIONS In this first African-inclusive SV study for high-risk PCa, we demonstrate the power of SV interrogation for the identification of novel subtypes, oncogenic drivers and therapeutic targets. Identifying a novel spectrum of SVs in tumours derived from African patients provides a mechanism that may contribute, at least in part, to the observed ethnic disparity in advanced PCa presentation in men of African ancestry.
Collapse
Affiliation(s)
- Tingting Gong
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Cali Willet
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Ruth J Lyons
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Anne-Maree Haynes
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Gabriela Pasqualim
- Endocrine and Tumor Molecular Biology Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genetics, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ilma Simoni Brum
- Endocrine and Tumor Molecular Biology Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Phillip D Stricker
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Urology, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, Ga-Rankuwa, South Africa
| | - Rosemarie Sadsad
- Sydney Informatics Hub, University of Sydney, Sydney, NSW, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Riana M S Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Eva K F Chan
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- NSW Health Pathology, Sydney, Australia
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, Mankweng, South Africa.
| |
Collapse
|
2
|
Mukhopadhyay S, Tokumaru Y, Oshi M, Endo I, Yoshida K, Takabe K. Low adipocyte hepatocellular carcinoma is associated with aggressive cancer biology and with worse survival. Am J Cancer Res 2022; 12:4028-4039. [PMID: 36119828 PMCID: PMC9442007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and non-alcoholic fatty liver disease is strongly associated with its development. To explore the role of adipocytes in HCC, we investigated intratumoral adipocytes, also known as cancer-associated adipocytes (CAA). Based on our prior breast cancer findings, we hypothesized that low intratumoral adipocytes would be associated with aggressive cancer biology, worse tumor microenvironment (TME), and clinical outcomes. The Cancer Genome Atlas (TCGA) was used and validated by the Gene Expression Omnibus (GEO) cohort. xCell algorithm was used to quantify intratumoral adipocytes and top 90% were defined as adipocyte high (AH) and bottom 10% as adipocyte low (AL). We found that AL-HCC was significantly associated with worse disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). AL-HCC were higher-grade, had high MKI67 expression, enriched cell proliferation-related gene sets, and had increased altered fraction, aneuploidy, and homologous recombination defects. Also, anti-cancer immune cells, CD8, Th1, and M1 cells, as well as pro-cancer Th2 cells were increased in AL-HCC. Micro-RNAs miR-122 (associated with cholesterol metabolism) and miR-885 (associated with liver pathologies) were significantly increased in the AL TME. In conclusion, we found that AL-HCC has worse patient outcomes and is biologically more aggressive with enhanced cell proliferation. Our findings take initial steps to clarify the role of adipocytes in HCC.
Collapse
Affiliation(s)
- Swagoto Mukhopadhyay
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, New York 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
| |
Collapse
|
3
|
Zhang H, Zhuo C, Zhou D, Zhang M, Zhang F, Chen M, Xu S, Chen Z. Small Nucleolar RNA Host Gene 1 (SNHG1) and Chromosome 2 Open Reading Frame 48 (C2orf48) as Potential Prognostic Signatures for Liver Cancer by Constructing Regulatory Networks. Med Sci Monit 2020; 26:e920482. [PMID: 32036380 PMCID: PMC7029818 DOI: 10.12659/msm.920482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Liver cancer is a common malignant tumor with poor prognosis. The present study sought to identify potential signatures that can predict the prognosis of patients with liver cancer. Material/Methods The RNA sequencing (RNA-seq) and clinical information of liver cancer patients were obtained from the Cancer Genome Atlas (TCGA) database. Differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were identified between liver cancer and adjacent normal tissues. After predicting lncRNA–miRNA and miRNA–mRNA pairs using online databases, the competing endogenous RNA (ceRNA) networks were constructed. Furthermore, the prognostic value of these differentially expressed genes was evaluated using univariate and multivariate Cox regression analyses. Results After constructing the ceRNA network, 2 lncRNAs small nucleolar RNA host gene 1 (SNHG1) and chromosome 2 open reading frame 48 (C2orf48) with the most nodes were identified. Correlation analysis revealed that SNHG1 was correlated with miR-195 and C2orf48 was correlated with miR-195 and miR-93. High expression of SNHG1, C2orf48, and miR-93 can contribute to poorer clinical outcomes compared to low expression. Furthermore, low miR-195 expression was correlated with shorter survival time than was high expression. SNHG1 and C2orf48 were closely associated with histology grade. Univariate and multivariate Cox regression analyses confirmed that SNHG1 and C2orf48 are risk factors for liver cancer. Conclusions Our findings revealed that SNHG1 and C2orf48 possess potential prognostic value and should be considered as possible biomarkers for predicting clinical outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Changhua Zhuo
- Department of Gastrointestinal Tumor Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Dong Zhou
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Mingji Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Fan Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Minyong Chen
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Shaohua Xu
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| | - Zhaoshuo Chen
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China (mainland)
| |
Collapse
|