1
|
Fang Y, Liu Y, Li D, Miu Y, Chen K, Zhou J, Xie L, Chen X, Wu J, Zhu Y, Lv L, Li W. Role of integrin α4 in the inhibition of fibrosis in activated hepatic stellate cells by Periplaneta americana extract. Front Pharmacol 2025; 16:1517491. [PMID: 40103586 PMCID: PMC11913867 DOI: 10.3389/fphar.2025.1517491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
This study aims to investigate the role of integrin α4 (ITGA4) in the inhibition of hepatic stellate cells (HSCs) fibrosis by Periplaneta americana extract (PAE), as well as to explore its molecular mechanisms. In vitro experiments utilized TGFβ-induced LX2 and HSC-T6 cells to examine the anti-fibrotic effects of PAE, particularly through ITGA4 overexpression, to elucidate its involvement in PAE-mediated inhibition via the PI3K-AKT signaling pathway. Cell viability was assessed using the CCK-8 method, and the IC50 for PAE was determined through statistical analysis. We evaluated cell proliferation using scratch and EDU assays, and migration capabilities using Transwell assays. Molecular mechanisms were investigated through western blot (WB), quantitative PCR (QPCR), and transcriptome analysis. Results indicate that PAE reduces hepatic fibrosis by curbing hepatic stellate cells (HSCs) proliferation, migration, collagen synthesis, inflammatory cytokine production, and epithelial-mesenchymal transition (EMT). Additionally, while PAE suppressed ITGA4's high expression in activated HSCs, ITGA4 overexpression counteracted PAE's effects on HSC proliferation, migration, and collagen synthesis. These findings demonstrate that PAE primarily mitigates fibrosis in activated HSCs by inhibiting ITGA4, thus delivering anti-fibrotic effects in the liver.
Collapse
Affiliation(s)
- Ying Fang
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Ye Liu
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingchun Li
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yi Miu
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Kexuan Chen
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Jv Zhou
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Lijuan Xie
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Xinting Chen
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Jingyan Wu
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Lechun Lv
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Yunnan, China
| | - Wu Li
- Department of Infectious Disease, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
2
|
Wu M, Li K, Wu J, Ding X, Ma X, Wang W, Xiao W. Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases. Pharmacol Res 2025; 212:107571. [PMID: 39756553 DOI: 10.1016/j.phrs.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C. A. Meyer) is a tonic traditional Chinese herbal medicine, and natural products, including ginsenoside Rg1 (G-Rg1), which is a kind of 20(S)-protopanaxatriol saponin with a relatively high biological activity, can be isolated from the roots or stems of ginseng. Given these information, this review aimed to summarise and discuss the metabolic mechanisms of G-Rg1 in the regulation of diverse liver diseases and the measures to improve its bioavailability. As a kind of monomer in Chinese medicine with multitarget pharmacological effects, G-Rg1 can provide significant therapeutic benefits in the alleviation of alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, viral hepatitis, etc., which mainly rely on the inhibition of apoptosis, strengthening endogenous anti-inflammatory and antioxidant mechanisms, activation of immune responses and regulation of efflux transport signals, to improve pathological changes in the liver caused by lipid deposition, inflammation, oxidative stress, accumulation of hepatotoxic product, etc. However, the poor bioavailability of G-Rg1 must be overcome to improve its clinical application value. In summary, focusing on the hepatoprotective benefits of G-Rg1 will provide new insights into the development of natural Chinese medicine resources and their pharmaceutical products to target the treatment of liver diseases.
Collapse
Affiliation(s)
- Mingyu Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xianyi Ding
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaotong Ma
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Zhong X, Sun Y, Lin Y, Deng S, Wang H, Zhou X, Lu J, Zheng Y, Luo R, Huang M, Song J. Ginsenoside Rd protects against acute liver injury by regulating the autophagy NLRP3 inflammasome pathway. Sci Rep 2025; 15:3569. [PMID: 39875579 PMCID: PMC11775168 DOI: 10.1038/s41598-025-87991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.H. Chen ex C.H. Chow, both species belonging to genus Panax in the Araliaceae family. However, its hepatic protective effect against acute liver injury and related mechanistic action remain unexplored. To investigate the protective effect of Rd against thioacetamide (TAA)-induced acute liver injury and assess its underlying regulatory mechanisms related to autophagy and inflammation. Forty-eight 8 weeks old C57BL/6 mice were treated with saline (control or model group), Rd (12.5 mg/kg, 25 mg/kg or 50 mg/kg), and diammonium glycyrrhizinate (DG, 30 mg/kg) for three days. Then the mice were stimulated with TAA to establish acute liver injury model, excluding the control group. HSC-T6 cells were treated with Rd at concentrations of 2.5, 5, or 10 µM, for 12 h with or without Lipopolysaccharide (LPS) stimulation at 100 ng/mL. Immunofluorescence staining, qPCR and Western blot were employed to analyze the expressions of genes and proteins associated with inflammation and autophagy. To validate the role of Rd in regulating autophagy and inflammation, the autophagy inducers, rapamycin and GSK621, were utilised in reverse validation experiments in cells. Rd exhibited significant hepatic protective effects in mice by reducing the serum levels of Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Glutathione S-transferase (GST) and Lactate dehydrogenase (LDH) with acute liver injury. It exhibited strong anti-inflammatory effect by reducing inflammation associated protein, such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), nod-like receptor protein 3 (NLRP3), associated speck-like protein containing a CARD (ASC), interleukin-18 (IL-18) and interleukin-1β(IL-1β) proteins and the mRNA expression levels of COX-2, Tumor Necrosis Factor α (TNF α), interleukin-6 (IL-6) and iNOS were decreased in liver tissue. And Rd inhibited LPS-induced inflammation by reducing the expression of COX-2 and NLRP3 in HSC-T6 cells. Moreover, not only in vivo but also in vitro, Rd downregulated the expression of LC3II, Beclin1, phosphorylation-AMP-activated protein kinase (p-AMPK), phosphorylation-ULK1 (p-ULK1) and upregulated the expression of p62 and phosphorylation-mechanistic target of rapamycin (p-mTOR) to suppress autophagy via the AMPK/mTOR/ULK1 pathway. Finally, the inhibitory effects of Rd on autophagy and inflammation in HSC-T6 cells were partially blocked by rapamycin and GSK621. Rd is a promising therapeutic agent to protect liver against TAA-induced acute liver injury by regulating the autophagy-NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiaomei Zhong
- The Affiliated People's Hospital, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Yibin Sun
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, China
| | - Yanxiang Lin
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Shan Deng
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Huan Wang
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2006, Australia
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China
| | - Yanfang Zheng
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Ruoyin Luo
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Belfast, UK.
| | - Mingqing Huang
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Jianyuan Song
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
4
|
Zheng S, Xue C, Li S, Qi W, Zao X, Li X, Wang W, Liu Q, Cao X, Zhang P, Ye Y. Research Progress of Chinese Medicine in the Regulation of Liver Fibrosis-Related Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1693-1728. [PMID: 39343991 DOI: 10.1142/s0192415x24500666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Liver fibrosis is a common complication of chronic liver disease, significantly affecting patients' quality of life and potentially leading to cirrhosis and hepatocellular carcinoma. Despite advancements in modern medicine, the treatment of liver fibrosis remains limited and challenging. Thus, identifying new therapeutic strategies is of great clinical importance. Signaling pathways related to liver fibrosis play a crucial regulatory role in immune response and inflammation. Aberrant activation of specific pathways, such as the NF-κB signaling pathway, results in the overexpression of genes associated with liver inflammation and fibrosis, thereby promoting the progression of liver fibrosis. Chinese medicine offers unique potential advantages as a therapeutic approach. Recent studies have increasingly demonstrated that certain Chinese medicines can effectively treat liver fibrosis by regulating relevant signaling pathways. The active ingredients in these medicines can inhibit hepatic inflammatory responses and fibrotic processes by interfering with these pathways, thus reducing the severity of liver fibrosis. This paper aims to investigate the mechanisms of Chinese medicine in treating liver fibrosis and its modulation of related signaling pathways. Additionally, it discusses the prospects of the clinical application of these treatments and provides valuable references for further research and clinical practice.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine Beijing, P. R. China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
5
|
Gao W, Zhao Y, Guo L, Wang Y, Gong H, Zhang B, Yan M. Comparative effectiveness of glycyrrhizic acid preparations aimed at improving liver function of patients with chronic hepatitis B: A network meta-analysis of 53 randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154883. [PMID: 37224775 DOI: 10.1016/j.phymed.2023.154883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND OBJECTIVES Entecavir (ETV) has disadvantages, such as poor improvement in liver function, during the treatment of Chronic hepatitis B (CHB). Thus ETV is often used in clinical therapy with glycyrrhizic acid (GA) preparations. However, due to the lack of reliable and direct clinical studies, it remains controversial whether glycyrrhizic acid preparations have the best efficacy in CHB. Therefore, we aimed to compare and rank the different GA preparations in the treatment of CHB using network meta-analysis (NMA). METHODS We systematically searched MEDLINE, EMBASE, Cochrane Library, Web of Science, China national knowledge internet (CNKI), Wanfang, VIP, and SinoMed databases as of August 4, 2022. Literature was screened according to predefined inclusion and exclusion criteria to extract meaningful information. A Bayesian approach was used for random effects model network meta-analysis, and Stata 17 software was used for data analysis. RESULTS From 1074 papers, we included 53 relevant randomized clinical trials (RCTs). For the primary outcome, we used the overall effective rate in assessing the effectiveness of treatment for CHB (31 RCTs including 3007 patients): CGI, CGT, DGC and MgIGI significantly reduced the incidence of overall response compared to controls (RRs range from 1.16 to 1.24); SUCRA results showed that MgIGI was the best (SUCRA 0.923). In terms of secondary outcomes, we assessed the effect of treatment for CHB according to the level of reduction in ALT and AST: for ALT (37 RCTs including 3752 patients), CGI, CGT, DGC, DGI and MgIGI significantly improved liver function index compared to controls (MD range from 14.65 to 20.41); SUCRA results showed that CGI was the best (SUCRA 0.87); for AST, GI, CGT, DGC, DGI and MgIGI significantly improved liver function index compared to the control group (MD range from 17.46 to 24.42); SUCRA results showed that MgIGI was the best (SUCRA 0.871). CONCLUSION In this study, we verified that the combination of GA and Entecavir is more effective than entecavir monotherapy in the treatment of hepatitis B. MgIGI and CGI showed clinically significant effects on liver function recovery compared with other GA preparations. MgIGI appeared to be the best choice among all GA preparations for the treatment of CHB. Our study provides some references for the treatment of CHB.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
6
|
Shi L, Zhou L, Han M, Zhang Y, Zhang Y, Yuan XX, Lu HP, Wang Y, Yang XL, Liu C, Wang J, Liang P, Liu SA, Liu XJ, Cheng J, Lin SM. Calcitriol attenuates liver fibrosis through hepatitis C virus nonstructural protein 3-transactivated protein 1-mediated TGF β1/Smad3 and NF-κB signaling pathways. World J Gastroenterol 2023; 29:2798-2817. [PMID: 37274069 PMCID: PMC10237113 DOI: 10.3748/wjg.v29.i18.2798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a serious condition, and the development of hepatic fibrosis can lead to a series of complications. However, the pathogenesis of hepatic fibrosis remains unclear, and effective therapy options are still lacking. Our group identified hepatitis C virus nonstructural protein 3-transactivated protein 1 (NS3TP1) by suppressive subtractive hybridization and bioinformatics analysis, but its role in diseases including hepatic fibrosis remains undefined. Therefore, additional studies on the function of NS3TP1 in hepatic fibrosis are urgently needed to provide new targets for treatment.
AIM To elucidate the mechanism of NS3TP1 in hepatic fibrosis and the regulatory effects of calcitriol on NS3TP1.
METHODS Twenty-four male C57BL/6 mice were randomized and separated into three groups, comprising the normal, fibrosis, and calcitriol treatment groups, and liver fibrosis was modeled by carbon tetrachloride (CCl4). To evaluate the level of hepatic fibrosis in every group, serological and pathological examinations of the liver were conducted. TGF-β1 was administered to boost the in vitro cultivation of LX-2 cells. NS3TP1, α-smooth muscle actin (α-SMA), collagen I, and collagen III in every group were examined using a Western blot and real-time quantitative polymerase chain reaction. The activity of the transforming growth factor beta 1 (TGFβ1)/Smad3 and NF-κB signaling pathways in each group of cells transfected with pcDNA-NS3TP1 or siRNA-NS3TP1 was detected. The statistical analysis of the data was performed using the Student’s t test.
RESULTS NS3TP1 promoted the activation, proliferation, and differentiation of hepatic stellate cells (HSCs) and enhanced hepatic fibrosis via the TGFβ1/Smad3 and NF-κB signaling pathways, as evidenced by the presence of α-SMA, collagen I, collagen III, p-smad3, and p-p65 in LX-2 cells, which were upregulated after NS3TP1 overexpression and downregulated after NS3TP1 interference. The proliferation of HSCs was lowered after NS3TP1 interference and elevated after NS3TP1 overexpression, as shown by the luciferase assay. NS3TP1 inhibited the apoptosis of HSCs. Moreover, both Smad3 and p65 could bind to NS3TP1, and p65 increased the promoter activity of NS3TP1, while NS3TP1 increased the promoter activity of TGFβ1 receptor I, as indicated by coimmunoprecipitation and luciferase assay results. Both in vivo and in vitro, treatment with calcitriol dramatically reduced the expression of NS3TP1. Calcitriol therapy-controlled HSCs activation, proliferation, and differentiation and substantially suppressed CCl4-induced hepatic fibrosis in mice. Furthermore, calcitriol modulated the activities of the above signaling pathways via downregulation of NS3TP1.
CONCLUSION Our results suggest that calcitriol may be employed as an adjuvant therapy for hepatic fibrosis and that NS3TP1 is a unique, prospective therapeutic target in hepatic fibrosis.
Collapse
Affiliation(s)
- Liu Shi
- Department of Infectious Disease Medicine, The First Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Li Zhou
- China-Japan Friendship Hospital, Department of Infectious Disease China-Japan Friendship Hospital, Beijing 100029, China
| | - Ming Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yu Zhang
- The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yang Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Xue Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hong-Ping Lu
- Institute of Liver Diseases, Beijing Pan-Asia Tongze Institute of Biomedicine Co., Ltd, Beijing 100015, China
| | - Yun Wang
- The Division of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xue-Liang Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chen Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jun Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing 100015, China
| | - Pu Liang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shun-Ai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Jing Liu
- Department of Infectious Disease Medicine, The First Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shu-Mei Lin
- Department of Infectious Disease Medicine, The First Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
7
|
Garbuzenko DV. Current strategies for targeted therapy of liver fibrosis. BULLETIN OF SIBERIAN MEDICINE 2022; 21:154-165. [DOI: 10.20538/1682-0363-2022-3-154-165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver fibrosis (LF) is an unfavorable event in the natural course of chronic liver diseases (CLD), therefore, early implementation and widespread use of antifibrotic therapy methods is a pressing issue in hepatology. The aim of the review was to describe current approaches to targeted therapy of LF.PubMed database, Google Scholar search engine, Cochrane Database of Systematic Reviews, eLIBRARY.RU scientific electronic library, as well as reference lists of articles were used to search for scientific articles. The publications that corresponded to the aim of the study were selected for the period from 1998 to 2021 by the terms “liver fibrosis”, “pathogenesis”, and “treatment”. Inclusion criteria were restricted to targeted therapy of LF.Despite the growing evidence for reversibility of LF, there are currently no effective or clinically approved regimens for its specific therapy. However, taking into account the relevance of the issue, scientific research in this area is necessary. Multiple drugs with a good safety profile have been studied, which, though intended for other purposes, can have a positive effect on LF. In addition, a number of innovative approaches that differ from pharmacotherapy inspire optimism about finding a solution to this problem. It is obvious that studies focused on well-characterized groups of patients with confirmed histologic, elastography, clinical, and radiological parameters are required. This is a challenging task, since the key point will be stratification of risk based on ethnicity, etiology, and clinical status, and very large samples will be required for a reliable assessment. Nevertheless, the solution will increase efficiency of treatment for patients with CLD, improve their prognosis and quality of life, and significantly reduce the need for liver transplantation, a demand for which remains extremely high worldwide.
Collapse
|
8
|
Jiang N, Zhang J, Ping J, Xu L. Salvianolic acid B inhibits autophagy and activation of hepatic stellate cells induced by TGF-β1 by downregulating the MAPK pathway. Front Pharmacol 2022; 13:938856. [PMID: 35991894 PMCID: PMC9385955 DOI: 10.3389/fphar.2022.938856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
In liver fibrosis, transforming growth factor-β1 (TGF-β1) can stimulate autophagy and activation of hepatic stellate cells (HSCs). Autophagy, playing a crucial role in HSCs activation, is related to liver fibrosis. Increasing evidence have suggested that antifibrosis effects of salvianolic acid B (Sal B) and their mechanisms of action, however, remain unclear. The aim of the article is to understand the role of Sal B in HSCs autophagy in liver fibrosis. Herein, we demonstrated that inducing TGF-β1 led to dramatic increase in autophagosome formation and autophagic flux in JS1 and LX2, which was mediated through the ERK, JNK, and p38 MAPK cascades. TGF-β1 significantly increased the protein of autophagy and liver fibrosis, including LC3BⅡ, ATG5, α-SMA, and Col.I; Sal B inhibits JS1 autophagy and activation by inhibiting the formation of autophagosomes and autophagic flux. Sal B significantly decreased the LC3BⅡ, ATG5, α-SMA, and Col.I protein expressions; pretreatment with autophagy inhibitors, chloroquine (CQ) and 3-methyladenine (3-MA) or silencing ATG7 further increase these reductions. However, pretreatment with autophagy agonist, rapamycin (Rapa), or overexpressed ATG5 attenuated this decrease. To further assess the importance of this mechanism, the antibody chip was used to detect the change of phosphorylation protein expression of the MAPK signaling pathway after treating JS1 with Sal B. Eleven differentially expressed proteins were verified. Sal B inhibits activation and autophagy of JS1 induced by TGF-β1 through downregulating the ERK, p38, and JNK signaling pathways, as demonstrated by downregulating p-ERK, p-JNK, and p-p38 MAPK protein expressions. In conclusion, Sal B inhibits autophagy and activation induced by TGF-β1 of HSCs possibly by downregulating the MAPK pathway.
Collapse
Affiliation(s)
- Na Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Ping
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| | - Lieming Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China,Institute of Liver Diseases, Shanghai University of TCM, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lieming Xu,
| |
Collapse
|
9
|
Zhao X, Li L, Li S, Liu J, Wang H, Lin Y, Cai D. Diammonium glycyrrhizinate ameliorates portal hypertension by regulating portal macrophage oxidation and superoxide dismutase 3. Eur J Pharmacol 2022; 929:175115. [PMID: 35738453 DOI: 10.1016/j.ejphar.2022.175115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Portal hypertension (PHT) is a complication of liver diseases. Increased intrahepatic vascular resistance is attributed to reduced bioavailability of vasodilator substances. The macrophage activation and superoxide dismutase 3 (SOD3) involve in the pathogenesis of PHT. Diammonium glycyrrhizinate (DG) is the salt form of glycyrrhizin derived from Radix glycyrrhizae, exerting anti-oxidant activities and be beneficial for liver injury. Here, we aimed to investigate effects of DG on PHT and explore its underlying mechanisms on regulation of macrophages and SOD3. The carbon tetrachloride induced PHT rats received administration of liposome-encapsulated clodronate for hepatic macrophage depletion, or PBS liposomes for matched control. DG (25 mg/kg) or vehicle was gavaged. Portal pressure in vivo, and serum biomarkers of macrophage activation were measured. The nitric oxide (NO) and prostacyclin (PGI2) bioavailability was evaluated in the isolated portal perfused rat livers. Liver tissues were collected to evaluate cirrhosis, macrophage oxidation, and SOD3 activity. Depletion of hepatic macrophages decreased portal pressure, increased bioavailability of NO and PGI2, and restored SOD3 activity. DG effectively decreased portal pressure, relieved cirrhosis, inhibited macrophage activation. DG increased bioavailability of NO and PGI2 to relax portal veins. DG relieved portal macrophage oxidation through decreasing nicotinamide adenine dinucleotide phosphate oxidase 2 and inducible NO synthase expressions, elevated SOD3 activities and increased SOD3 expressions at portal triads. These findings indicated that DG restored SOD3 activity, against portal macrophage oxidation, protected bioavailability of NO and PGI2, thereby reduced portal pressure. It suggested a potential use of DG for PHT treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Shuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jinyu Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Hongya Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Yulin Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Dayong Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
10
|
Mo C, Xie S, Zeng T, Lai Y, Huang S, Zhou C, Yan W, Huang S, Gao L, Lv Z. Ginsenoside-Rg1 acts as an IDO1 inhibitor, protects against liver fibrosis via alleviating IDO1-mediated the inhibition of DCs maturation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153524. [PMID: 33667840 DOI: 10.1016/j.phymed.2021.153524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1) has been reported as a hallmark of hepatic fibrosis. Ginseng Rg1(G-Rg1) is a characterized bioactive component isolated from a traditional Chinese medicinal herb Panax ginseng C. A. Meyer (Ginseng) that used in China widely. However, the anti-hepatic fibrosis property of G-Rg1 and the underlying mechanisms of action are poorly reported. PURPOSE Here, we researched the effect of G-Rg1 on experimental liver fibrosis in vivo and in vitro. STUDY DESIGN AND METHODS We applied a CCL4-induced liver fibrosis in mice (wild-type and those overexpressing IDO1 by in vivo AAV9 vector) and HSC-T6 cells to detect the anti-hepatic fibrosis effect of G-Rg1 in vivo and in vitro. RESULTS We found that G-Rg1 reduced serum levels of AST and ALT markedly. Histologic examination indicated that G-Rg1 dramatically improved the extent of liver fibrosis and suppressed the hepatic levels of fibrotic marker α-SMA in vivo and in vitro. The proliferation of HSC-T6 was significantly inhibited by G-Rg1 in vitro. Both TUNEL staining and flow cytometry demonstrated that G-Rg1 attenuated the levels of hepatocyte apoptosis in fibrotic mice. Additionally, G-Rg1 up-regulated the maturation of hepatic DCs via reducing the expression level of hepatic IDO1, which played an inverse role in the maturation of DCs. Furthermore, oral administration of G-Rg1 ameliorated IDO1 overexpression-induced worsen liver fibrosis as well as IDO1 overexpression-mediated more apparent inhibition of maturation of DCs. CONCLUSION These results suggest that G-Rg1, which exerts its antifibrotic properties via alleviating IDO1-mediated the inhibition of DCs maturation, may be a potential therapeutic drug in treating liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou510515, PR China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|