1
|
He C, Chen Y, Xie J, Luo M, Fisher D, Hien NTT, Musabaev E, Dang Y, Zhao L, Xia Y. Dihydromyricetin: an emerging compound with comprehensive effects on multiple systems. Front Pharmacol 2025; 15:1488003. [PMID: 39830336 PMCID: PMC11739078 DOI: 10.3389/fphar.2024.1488003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Dihydromyricetin (DHM or DMY) is a flavonoid derived from natural sources with a range of confirmed biological benefits. It exhibits anti-inflammatory, antioxidant, anti-tumor, and anti-viral activities. DHM is recognized for its high biosafety, making it a promising subject for further research. This article offers a comprehensive overview of DHM's pharmacological properties, mechanisms, and recent research developments in the cardiovascular, urinary, digestive, nervous, and respiratory systems. The review summarizes DHM's biological effects and associated signaling pathways, providing novel insights for its clinical application.
Collapse
Affiliation(s)
- Chengyi He
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Xie
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of The Western Cape, Cape Town, South Africa
| | | | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Xia
- Department of Vascular Surgery, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
2
|
Gao Y, Wu H, Luo Y, Deng X, Chen J, Wu T. Mechanisms of Dihydromyricetin for Improving Hepatic Fibrosis through the Integration of Metabolomics and Gut Microbiota. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:889-908. [PMID: 40374379 DOI: 10.1142/s0192415x25500338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
It is crucial to prevent and treat liver fibrosis in patients with chronic liver disease. Dihydromyricetin (DMY) is a natural flavonoid compound from traditional Chinese medicine, known to alleviate chronic liver injury. However, its role in regulating inflammatory responses through gut microbiota and metabolic changes remains unclear. In this study, a mouse model of liver fibrosis was induced with carbon tetrachloride (CCl4), and DMY was administered via gavage. Histopathology, immunohistochemistry, Reverse Transcription Polymerase Chain Reaction (RT-PCR), 16S rRNA sequencing, and untargeted metabolomics were employed to evaluate DMY's pharmacological effects on CCl4-induced liver fibrosis and explore its underlying mechanisms. Our results show that DMY reduced the aspartate transaminase (AST) and alanine transaminase (ALT) serum levels in liver fibrosis model mice, and lowered the mRNA expression of pro-inflammatory cytokines and fibrosis markers. Additionally, DMY restored the richness and diversity of the gut microbiota, with several microbiota taxa significantly correlating with inflammatory markers. Metabolomic analysis of serum and liver tissue revealed that DMY significantly altered the liver metabolite disturbances induced by CCl4. Pearson correlation analysis demonstrated a strong relationship between microbial composition and liver metabolites. These results suggest that DMY alleviates liver fibrosis in mice by reshaping the gut microbiota and host metabolism, thereby improving the inflammatory response.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wu
- Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoliang Deng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junming Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Ding Q, Liu X, Zhang S, Chai G, Ma S, Sun S, Shen L, Gao Y, Ding C, Zhao T, Liu W. Chitosan-modified dihydromyricetin liposomes promote the repair of liver injury in mice suffering from diabetes mellitus. Int J Biol Macromol 2024; 273:133040. [PMID: 38857721 DOI: 10.1016/j.ijbiomac.2024.133040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Liver injury caused by type-II diabetes mellitus (DM) is a significant public-health concern worldwide. We used chitosan (CS) to modify dihydromyricetin (DHM)-loaded liposomes (DL) through charge interaction. The effect of CS-modified DL (CDL) on liver injury in mice suffering from DM was investigated in vivo and in vitro. CDL exhibited superior antioxidant capacity and stability. Pharmacokinetic analyses revealed a 3.23- and 1.92-fold increase in the drug concentration-time curve (953.60 ± 122.55 ng/mL/h) in the CDL-treated group as opposed to the DHM-treated group (295.15 ± 25.53 ng/mL/h) and DL-treated group (495.31 ± 65.21 ng/mL/h). The maximum drug concentration in blood (Tmax) of the CDL group saw a 2.26- and 1.21-fold increase compared with that in DHM and DL groups. We observed a 1.49- and 1.31-fold increase in the maximum drug concentration in blood (Cmax) in the CDL group compared with that in DHM and DL groups. Western blotting suggested that CDL could alleviate liver injury in mice suffering from DM by modulating inflammatory factors and the transforming growth factor-β1/Smad2/Smad3 signaling pathway. In conclusion, modification of liposomes using CS is a viable approach to address the limitations of conventional liposomes and insoluble drugs.
Collapse
Affiliation(s)
- Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
4
|
He W, Xu C, Mao D, Zheng Y, Wang N, Wang M, Mao N, Wang T, Li Y. Recent advances in pyroptosis, liver disease, and traditional Chinese medicine: A review. Phytother Res 2023; 37:5473-5494. [PMID: 37622684 DOI: 10.1002/ptr.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.
Collapse
Affiliation(s)
- Wenxing He
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Canli Xu
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yang Zheng
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nan Mao
- Department of Acupuncture-Moxibustion and Tuina, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ting Wang
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanjie Li
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Lu J, Chen Z, Bu X, Chen S, Guan S. Elaidic acid induced hepatocyte pyroptosis via autophagy-CTSB-NLRP3 pathway. Food Chem Toxicol 2023; 181:114060. [PMID: 37748573 DOI: 10.1016/j.fct.2023.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Elaidic acid (EA, C18:1 trans) is a kind of principal Trans fatty acid (TFA) and is widely found in processed food. Pyroptosis is a form of programmed cell death, distinct from apoptosis and traditional necrosis. Excessive pyroptosis could induce body injury and serious inflammation. However, the effect of EA on pyroptosis has not been reported. In the study, we found that EA exposure caused liver damage and hepatocyte pyroptosis by testing GSDMD-N, Caspase 1, IL-18, and IL-1β in mice and HepG2 cells. Further exploring the mechanisms, we found that EA-induced pyroptosis depended on Cathepsin B (CTSB)-mediated NLRP3 inflammasome activation. Cell autophagy was closely related to lysosomes. Our study revealed that EA promoted hepatocyte autophagy, and activated autophagy induced lysosomal membrane permeabilization (LMP) and CTSB leakage. Inhibition of autophagy by 3-MA mitigated the CTSB leak, reduced the activation of the NLRP3 inflammasome, and then attenuated the EA-induced pyroptosis. In summary, these results indicated that EA induced hepatocyte pyroptosis via autophagy-CTSB-NLRP3 inflammasome pathway. The study revealed new insights into the toxicity mechanism of EA.
Collapse
Affiliation(s)
- Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Ziheng Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shanshan Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
6
|
Liu L, Sun S, Li X. A network pharmacology-based approach to explore the effect of dihydromyricetin on non-alcoholic fatty liver rats via regulating PPARG and CASP3. Mol Cell Probes 2023; 71:101926. [PMID: 37567321 DOI: 10.1016/j.mcp.2023.101926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Non-alcohol fatty liver disease (NAFLD) is the most prevalent hepatopathy in China, with few effective cures currently. This work aimed to confirm the effect of DHM in vivo/vitro and explore the potential mechanism based on a network pharmacology-based approach. METHODS The rats were fed using a high-fat diet (HFD) to accumulate lipid. DHM at different concentrations was used to treat the HFD rats. The serum total cholesterol (TC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were detected using ELISA kits. The target genes of DHM against NAFLD were screened by online databases. Then, the cytotoxicity of DHM in primary hepatocytes and HepG2 cells was determined by MTT reagent. qRT-PCR was used to quantify the expression level of PPAGR and CASP3 mRNA. Cell apoptosis and intracellular triglyceride (TG) were detected. RESULTS HFD diet increased rat liver weight/body weight ratio, serum TC, ALT, and AST. But DHM treatment can reduce these elevated indicators. DHM targeted 14 potential genes in NAFLD. PPARG and CASP3 were two hub genes for DHM against NAFLD, with score factor coefficients of -7.1 and -6.8 kcal/mol. DHM reduced the increased PPARG mRNA level and intracellular TG induced by palmitic acid. DHM can reduce the increased CASP3 mRNA level and cell apoptosis induced by palmitic acid. CONCLUSION This work demonstrates a mechanism of DHM that alleviates lipid metabolism disorder and cell apoptosis for the treatment of NAFLD, evidencing the potential application of DHM in NAFLD.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Sen Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, 200433, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| |
Collapse
|
7
|
张 蒙, 张 源, 牛 梦, 朱 悦, 童 诗, 寇 现. [Dihydromyricetin alleviates pyroptosis and necroptosis in mice with MPTP-induced chronic Parkinson's disease by inducing autophagy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1268-1278. [PMID: 37712262 PMCID: PMC10505583 DOI: 10.12122/j.issn.1673-4254.2023.08.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To investigate the effect of 8-week dihydromyricetin (DHM) treatment on motor ability of mice with MPTP/probenecid-induced Parkinson's disease (PD) and explore the molecular mechanism. METHODS Sixty C57BL/6 mice were randomized into the control group, PD model group, PD+DHM group and PD+NEC-1 group (n=15). In the latter 3 groups, the mice were treated with 25 mg·kg-1·d-1 MPTP and 250 mg·kg-1·d-1 probenecid twice a week for 5 weeks to establish PD models; DHM (100 mg·kg-1·d-1) was administered 5 times a week via gavage for 8 weeks and NEC-1 (6.25 mg·kg-1·d-1, twice a week) via intraperitoneal injection for 5 weeks. The changes in motor function of the mice were assessed, and the expressions of TH, GFAP and Iba-1 in the substantia nigra were detected with immunofluorescence assay; serum levels of IL-1β and LDH were detected using ELISA. The mRNA expressions of TNF-α and IL-6 were determined with RT-PCR, and the expressions of TH and proteins associated with pyroptosis, neuroinflammation, necroptosis and autophagy in the striatum were detected using Western blotting. MPP +-activated Bv-2 cells were treated with different concentrations of DHM or 3-MA, and the expressions of proteins associated with autophagy and NLRP3 were detected using Western blotting; PI staining was used to detect cell necroptosis. RESULTS The PD mouse models showed significantly reduced TH-positive cells and TH protein expression (P < 0.001). DHM obviously ameliorated motor deficits and TH loss in PD mice, increased TH expression (P=0.0023), decreased α-syn levels (P < 0.001), lowered the protein expressions of GFAP (P=0.045) and Iba-1 (P < 0.001) and the mRNA and protein levels of TNF-α (P=0.0015) and IL-6 (P < 0.001), and increased IL-4 level (P < 0.001). The 8-week DHM treatment significantly suppressed pyroptosis and necroptosis and activated autophagy in the striatum of the PD mice. In MPP +-induced Bv-2 cells, DHM treatment effectively reversed autophagy impairment and inhibited NLRP3 and TNF-α, IL-6 and IL-1β release, and the anti--inflammatory effects of DHM was obviously blunted by 3-MA. CONCLUSION DHM can improve motor function of PD mice probably by activating autophagy to inhibit pyroptosis and necroptosis and reduce neuroinflammation.
Collapse
Affiliation(s)
- 蒙 张
- 武汉体育学院运动医学院,湖北 武汉 430079College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
- 运动训练监控湖北省重点实验室,湖北 武汉 430079Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China
| | - 源源 张
- 武汉体育学院运动医学院,湖北 武汉 430079College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
- 运动训练监控湖北省重点实验室,湖北 武汉 430079Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China
| | - 梦竹 牛
- 武汉体育学院运动医学院,湖北 武汉 430079College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
- 运动训练监控湖北省重点实验室,湖北 武汉 430079Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China
| | - 悦 朱
- 武汉体育学院运动医学院,湖北 武汉 430079College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
- 运动训练监控湖北省重点实验室,湖北 武汉 430079Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China
| | - 诗逸 童
- 武汉体育学院运动医学院,湖北 武汉 430079College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
- 运动训练监控湖北省重点实验室,湖北 武汉 430079Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China
| | - 现娟 寇
- 武汉体育学院运动医学院,湖北 武汉 430079College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
- 运动训练监控湖北省重点实验室,湖北 武汉 430079Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China
| |
Collapse
|
8
|
Guo T, Wang X, Zhang G, Xia T, Zhu R, Tou J. Dihydromyricetin functions as a tumor suppressor in hepatoblastoma by regulating SOD1/ROS pathway. Front Oncol 2023; 13:1160548. [PMID: 37256172 PMCID: PMC10225683 DOI: 10.3389/fonc.2023.1160548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Hepatoblastoma has an unsatisfactory prognosis, and traditional chemotherapy has strong side effects. Dihydromyricetin is a flavonoid extracted from a woody vine of the genus Serpentine in the family Vitaceae, with effects such as preventing alcoholic liver and reducing the incidence of liver cancer. However, the effect of DHM on hepatoblastoma and its specific pathway are still unclear. Purpose The purpose of this study was to investigate the effects of DHM on children's hepatoblastoma and its related mechanisms. Methods CCK-8 assays were used to measure proliferation. Apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry. Apoptotic cells were observed using Hoechst 33342 staining and fluorescence microscopy. Protein expression levels in HuH-6 and HepG2 cells were determined by western blotting. Results We found that DHM was able to inhibit the growth and increase cellular mortality in HuH-6 and HepG2 cells. Furthermore, DHM decreased the intracellular ROS level and increased the expression of SOD1. ROS scavenger NAC promoted apoptosis, while the use of SOD1 inhibitor LCS-1 weakened the ROS scavenging effect of DHM , and to some extent reduced the killing effect of DHM on hepatoblastoma cells. Conclusion These results suggest that regulating SOD1/ROS pathway to induce apoptosis is one of the potential mechanisms of DHM as a tumor suppressor in hepatoblastoma. Therefore, DHM may be a novel candidate for inhibiting hepatoblastoma growth and deserves further study.
Collapse
Affiliation(s)
- Tong Guo
- Department of Neonatal Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xitong Wang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gensheng Zhang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian Xia
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Runzhi Zhu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinfa Tou
- Department of Neonatal Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
9
|
Wang H, Su J, Yu M, Xia Y, Wei Y. PGC-1α in osteoarthritic chondrocytes: From mechanism to target of action. Front Pharmacol 2023; 14:1169019. [PMID: 37089944 PMCID: PMC10117990 DOI: 10.3389/fphar.2023.1169019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases, often involving the entire joint. The degeneration of articular cartilage is an important feature of OA, and there is growing evidence that the mitochondrial biogenesis master regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) exert a chondroprotective effect. PGC-1α delays the development and progression of OA by affecting mitochondrial biogenesis, oxidative stress, mitophagy and mitochondrial DNA (mtDNA) replication in chondrocytes. In addition, PGC-1α can regulate the metabolic abnormalities of OA chondrocytes and inhibit chondrocyte apoptosis. In this paper, we review the regulatory mechanisms of PGC-1α and its effects on OA chondrocytes, and introduce potential drugs and novel nanohybrid for the treatment of OA which act by affecting the activity of PGC-1α. This information will help to further elucidate the pathogenesis of OA and provide new ideas for the development of therapeutic strategies for OA.
Collapse
Affiliation(s)
- Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yang Xia, ; Yingliang Wei,
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yang Xia, ; Yingliang Wei,
| |
Collapse
|
10
|
Hepatic HRC induces hepatocyte pyroptosis and HSCs activation via NLRP3/caspase-1 pathway. J Mol Med (Berl) 2022; 100:1787-1799. [PMID: 36371595 DOI: 10.1007/s00109-022-02270-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
The histidine-rich calcium-binding protein (HRC) is a regulator of Ca2 + homeostasis and it plays a significant role in liver fibrosis. Pyroptosis, a specific inflammatory cell death, can lead to hepatic stellate cells (HSCs) activation and liver fibrosis. However, the role of HRC in pyroptosis has not been explored. In this study, we demonstrated that HRC, mainly located in the hepatocyte, was over expressed in fibrotic liver tissues. We further found that enforced expression of HRC in hepatocytes induced pyroptosis and HMGB1 release, and subsequently led to HSCs activation by NLRP3/caspase-1 pathway. In addition, the proliferation and migration of HSCs were also enhanced by HRC overexpression in hepatocytes. Furthermore, NLRP3 inhibitor MCC950 and caspase-1 inhibitor VX-765 alleviated hepatic HRC-mediated hepatocytes pyroptosis and HSCs activation. This study demonstrated that hepatic HRC promoted HSCs activation by inducing hepatocyte pyroptosis, which suggests that HRC may be a promising therapeutic target to prevent liver fibrosis.
Collapse
|
11
|
Matouk AI, Awad EM, El-Tahawy NF, El-Sheikh AA, Waz S. Dihydromyricetin alleviates methotrexate-induced hepatotoxicity via suppressing the TLR4/NF-κB pathway and NLRP3 inflammasome/caspase 1 axis. Biomed Pharmacother 2022; 155:113752. [DOI: 10.1016/j.biopha.2022.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022] Open
|
12
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
13
|
Chen R, Lian Y, Wen S, Li Q, Sun L, Lai X, Zhang Z, Zhu J, Tang L, Xuan J, Yuan E, Sun S. Shibi Tea (Adinandra nitida) and Camellianin A Alleviate CCl4-Induced Liver Injury in C57BL-6J Mice by Attenuation of Oxidative Stress, Inflammation, and Apoptosis. Nutrients 2022; 14:nu14153037. [PMID: 35893891 PMCID: PMC9332116 DOI: 10.3390/nu14153037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Liver injury is a significant public health issue nowadays. Shibi tea is a non-Camellia tea prepared from the dried leaves of Adinandra nitida, one of the plants with the greatest flavonoid concentration, with Camellianin A (CA) being the major flavonoid. Shibi tea is extensively used in food and medicine and has been found to provide a variety of health advantages. The benefits of Shibi tea and CA in preventing liver injury have not yet been investigated. The aim of this study was to investigate the hepatoprotective effects of extract of Shibi tea (EST) and CA in mice with carbon tetrachloride (CCl4)-induced acute liver injury. Two different concentrations of EST and CA were given to model mice by gavage for 3 days. Treatment with two concentrations of EST and CA reduced the CCl4-induced elevation of the liver index, liver histopathological injury score, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Western blotting and immunohistochemical analysis demonstrated that EST and CA regulated the oxidative stress signaling pathway protein levels of nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1), the expression of inflammatory cytokines, the phosphorylated nuclear factor-kappaB p65 (p-NF-κB)/nuclear factor-kappaB p65 (NF-κB) ratio, the phospho-p44/42 mitogen-activated protein kinase (p-MAPK), and the apoptosis-related protein levels of BCL2-associated X (Bax)/B cell leukemia/lymphoma 2 (Bcl2) in the liver. Taken together, EST and CA can protect against CCl4-induced liver injury by exerting antioxidative stress, anti-inflammation, and anti-apoptosis.
Collapse
Affiliation(s)
- Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Yingyi Lian
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510641, China;
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
| | - Junquan Zhu
- Guangdong Society of Plant Protection, Guangzhou 510640, China;
| | - Linsong Tang
- Taihongyuan Agriculture Co., Ltd., Xinyi, Maoming 525000, China;
| | - Ji Xuan
- Hospital of South China University of Technology, Guangzhou 510641, China;
| | - Erdong Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510641, China;
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-04218 (E.Y.); +86-20-8516-1045 (S.S.)
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (S.W.); (Q.L.); (L.S.); (X.L.); (Z.Z.)
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-04218 (E.Y.); +86-20-8516-1045 (S.S.)
| |
Collapse
|
14
|
Chen X, Zhang Z, Shen M, Ma X, Qiu D, Li S, Gao L. Downregulation of the NLRP3/Caspse-1 Pathway Ameliorates Ketamine-Induced Liver Injury and Inflammation in Developing Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092931. [PMID: 35566282 PMCID: PMC9103672 DOI: 10.3390/molecules27092931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022]
Abstract
Ketamine is an anesthetic drug that is widely used in human and veterinary medicine. In the developmental stage, long-term exposure to ketamine may cause serious side effects. MCC950 and VX765 play protective roles in many disease models by regulating the NLRP3/Caspase-1 pathway. This study aims to explore the potential protective effect of MCC950 and VX765 on ketamine-induced liver injury in neonatal rats and clarify its underlying mechanism. After administration of MCC950 and VX765 in a ketamine-induced liver injury rat model, liver function and inflammatory factors were determined, and immunohistochemistry and western blotting were performed. We found that ketamine caused liver injury in 7-day-old SD rats, decreased liver function indexes, and increased inflammation. MCC950 and VX765 effectively alleviated liver damage and inflammation, and downregulated the expression of proteins such as NLRP3, Caspase-1, and GSDMD-N. In summary, these results indicated that MCC950 and VX765 could have potential protective effects on ketamine-induced liver injury through inhibiting the NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Xinzhang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.Z.); (M.S.); (X.M.); (D.Q.); (S.L.)
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin 150030, China
| | - Zhiheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.Z.); (M.S.); (X.M.); (D.Q.); (S.L.)
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin 150030, China
| | - Meilun Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.Z.); (M.S.); (X.M.); (D.Q.); (S.L.)
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin 150030, China
| | - Xiangying Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.Z.); (M.S.); (X.M.); (D.Q.); (S.L.)
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin 150030, China
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.Z.); (M.S.); (X.M.); (D.Q.); (S.L.)
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin 150030, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.Z.); (M.S.); (X.M.); (D.Q.); (S.L.)
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.Z.); (M.S.); (X.M.); (D.Q.); (S.L.)
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin 150030, China
- Correspondence: ; Tel.: +86-139-0460-9917
| |
Collapse
|
15
|
Wang Y, Wang J, Xiang H, Ding P, Wu T, Ji G. Recent update on application of dihydromyricetin in metabolic related diseases. Biomed Pharmacother 2022; 148:112771. [PMID: 35247719 DOI: 10.1016/j.biopha.2022.112771] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
As a new type of natural flavonoids, dihydromyricetin (DMY) has attracted more and more attention. It has a series of pharmacological effects, such as anti-inflammatory, anti-tumor, anti-oxidation, antibacterial and so on, and it is almost no toxicity and with excellent safety. Therefore, even if the bioavailability is poor, it is often added to daily food, beverages and even medicines. In recent years, some researchers have found that DMY can treat some diseases by anti-oxidation, anti-inflammation, promoting cell death and regulate the activity of lipid and glucose metabolism. In addition, the mechanism of DMY on these diseases was also related to the signal pathway of AMPK, PI3K/Akt, PPAR and the participation of microRNAs. This review describes the mechanism of DMY in metabolic related diseases from three aspects: metabolic diseases, liver diseases, and cancers, hoping to provide some new ideas for clinical researches.
Collapse
Affiliation(s)
- Yirong Wang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
16
|
Shao S, Zhang Y, Li G, Yu Z, Cao Y, Zheng L, Zhang K, Han X, Shi Z, Cui H, Song X, Hong W, Han T. The dynamics of cell death patterns and regeneration during acute liver injury in mice. FEBS Open Bio 2022; 12:1061-1074. [PMID: 35184410 PMCID: PMC9063440 DOI: 10.1002/2211-5463.13383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022] Open
Abstract
Acute liver injury is a serious clinical syndrome with multiple causes and unclear pathological process. Here, CCl4‐ and D‐galactosamine/lipopolysaccharide (D‐gal/LPS)‐induced acute liver injury was established to explore the cell death patterns and determine whether or not liver regeneration occurred. In CCl4‐induced hepatic injury, three phases, including the early, progressive, and recovery phase, were considered based on alterations of serum transaminases and liver morphology. Moreover, in this model, cytokines exhibited double‐peak fluctuations; apoptosis and pyroptosis persisted throughout all phases; autophagy occurred in the early and the progressive phases; and sufficient and timely hepatocyte regeneration was observed only during the recovery phase. All of these phenomena contribute to mild liver injury and subsequent regeneration. Strikingly, only the early and progressive phases were observed in the D‐gal/LPS model. Slight pyroptosis occurred in the early phase but diminished in the progressive phase, while apoptosis, reduced autophagy, and slight but subsequently diminished regeneration occurred only during the progressive phase, accompanied by a strong cytokine storm, resulting in severe liver injury with high mortality. Taken together, our work reveals variable modes and dynamics of cell death and regeneration, which lead to different consequences for mild and severe acute liver injury, providing a helpful reference for clinical therapy and prognosis.
Collapse
Affiliation(s)
- Shuai Shao
- The School of Medicine NanKai University Tianjin China
| | - Yu Zhang
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Guantong Li
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Zhenjun Yu
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Yingying Cao
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Lina Zheng
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Kun Zhang
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaohui Han
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Zhemin Shi
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Hongmei Cui
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaomeng Song
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Wei Hong
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Tao Han
- The School of Medicine NanKai University Tianjin China
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
- Department of Hepatology and Gastroenterology Tianjin Union Medical Center Nankai University Tianjin China
- Department of Hepatology and Gastroenterology Tianjin Third Central Hospital affiliated to Nankai University Tianjin China
| |
Collapse
|
17
|
Sun Y, Liu S, Yang S, Chen C, Yang Y, Lin M, Liu C, Wang W, Zhou X, Ai Q, Wang W, Chen N. Mechanism of Dihydromyricetin on Inflammatory Diseases. Front Pharmacol 2022; 12:794563. [PMID: 35115939 PMCID: PMC8804380 DOI: 10.3389/fphar.2021.794563] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammation plays a crucial role in a variety of diseases, including diabetes, arthritis, asthma, Alzheimer’s disease (AD), acute cerebral stroke, cancer, hypertension, and myocardial ischemia. Therefore, we need to solve the problem urgently for the study of inflammation-related diseases. Dihydromyricetin (DHM) is a flavonoid mainly derived from Nekemias grossedentata (Hand.-Mazz.) J.Wen and Z.L.Nie (N.grossedentata). DHM possesses many pharmacological effects, including anti-inflammatory (NLRP-3, NF-κB, cytokines, and neuroinflammation), antioxidant, improving mitochondrial dysfunction, and regulating autophagy and so on. In this review, we consulted the studies in the recent 20 years and summarized the mechanism of DHM in inflammation-related diseases. In addition, we also introduced the source, chemical structure, chemical properties, and toxicity of DHM in this review. We aim to deepen our understanding of DHM on inflammation-related diseases, clarify the relevant molecular mechanisms, and find out the problems and solutions that need to be solved urgently. Providing new ideas for DHM drug research and development, as well as broaden the horizons of clinical treatment of inflammation-related diseases in this review. Moreover, the failure of clinical transformation of DHM poses a great challenge for DHM as an inflammation related disease.
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shasha Liu
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chao Liu
- Zhangjiajie Meicha Technology Research Center, Hunan Qiankun Biotechnology Co., Ltd, Zhangjiajie, China
| | - Wenmao Wang
- Zhangjiajie Meicha Technology Research Center, Hunan Qiankun Biotechnology Co., Ltd, Zhangjiajie, China
| | - Xudong Zhou
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Qidi Ai, ; Wei Wang, ; Naihong Chen,
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Qidi Ai, ; Wei Wang, ; Naihong Chen,
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Qidi Ai, ; Wei Wang, ; Naihong Chen,
| |
Collapse
|
18
|
Cao P, Nie G, Luo J, Hu R, Li G, Hu G, Zhang C. Cadmium and molybdenum co-induce pyroptosis and apoptosis by PTEN/PI3K/AKT axis in the liver of ducks. Food Funct 2022; 13:2142-2154. [DOI: 10.1039/d1fo02855c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd) and excessive molybdenum (Mo) have adverse impacts on animals. However, the hepatotoxicity co-induced by Cd and Mo in ducks has not been fully elucidated. In order to explore...
Collapse
|
19
|
Chen J, Wang X, Xia T, Bi Y, Liu B, Fu J, Zhu R. Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother 2021; 142:111927. [PMID: 34339914 DOI: 10.1016/j.biopha.2021.111927] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies demonstrated that dihydromyricetin (DHM) has prominent therapeutic effects on liver injury and liver cancer. By summarizing the current preclinical in vitro and in vivo studies, the present review examines the preventive and therapeutic effects of DHM on liver disorders as well as its potential mechanisms. Briefly, in both chemical- and alcohol-induced liver injury models, DHM ameliorates hepatocyte necrosis and steatosis while promoting liver regeneration. In addition, DHM can alleviate nonalcoholic fatty liver disease (NAFLD) via regulating lipid/glucose metabolism, probably due to its anti-inflammatory or sirtuins-dependent mechanisms. Furthermore, DHM treatment inhibits cell proliferation, induces apoptosis and autophagy and regulates redox balance in liver cancer cells, thus exhibiting remarkable anti-cancer effects. The pharmacological mechanisms of DHM may be associated with its anti-inflammatory, anti-oxidative and apoptosis-regulatory benefits. With the accumulating interests in utilizing natural products to target common diseases, our work aims to improve the understanding of DHM acting as a novel drug candidate for liver diseases and to accelerate its translation from bench to bedside.
Collapse
Affiliation(s)
- Jingnan Chen
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, China
| | - Xitong Wang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China
| | - Tian Xia
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China
| | - Yanhua Bi
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China.
| | - Junfen Fu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, China.
| | - Runzhi Zhu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China; Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, China; Cancer Center, Zhejiang University, China.
| |
Collapse
|