1
|
Yu H, Kohno S, Voon DC, Hussein NH, Zhang Y, Nakayama J, Takegami Y, Takahashi C. RECK/GPR124-driven WNT signaling in pancreatic and gastric cancer cells. Cancer Sci 2024; 115:3013-3025. [PMID: 38923741 PMCID: PMC11462976 DOI: 10.1111/cas.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
RECK has been described to modulate extracellular matrix components through negative regulation of MMP activities. Recently, RECK was demonstrated to bind to an orphan G protein-coupled receptor GPR124 to mediate WNT7 signaling in nontumor contexts. Here, we attempted to clarify the role of RECK in driving WNT signaling in cancer cells. RECK and GPR124 formed a complex in 293T cells, and when both were expressed, WNT signaling was significantly enhanced in a WNT7-dependent manner. This cooperation was abolished when RECK mutants unable to bind to GPR124 were transduced. RECK stimulated the growth of KRAS-mutated pancreatic ductal adenocarcinoma (PDAC) cells with increased sensitivity to WNT inhibitor in a GPR124-dependent manner. A gastric cancer cell line SH10TC endogenously expresses both RECK and GPR124 under regular culture conditions. In this cell line, inhibited cell growth and WNT signaling as well as increased apoptosis in the GPR124 depletion was dominantly found over those in the RECK deletion. These findings suggest that RECK promotes tumor cell growth by positively modulating WNT signaling through GPR124. This study proposes that the RECK/GPR124 complex might be a good therapeutic target in PDAC and gastric cancer.
Collapse
Affiliation(s)
- Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | | | - Nada Hamdy Hussein
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Yuanyuan Zhang
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Joji Nakayama
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
2
|
Qi F, Wang Y, Yu B, Li F. Identification of RECK as a protective prognostic indicator and a tumor suppressor through regulation of the ERK/MAPK signaling pathway in gastric cancer. J Transl Med 2023; 21:766. [PMID: 37904179 PMCID: PMC10614389 DOI: 10.1186/s12967-023-04644-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks as the fifth most common cancer worldwide and is characterized by its significant heterogeneity and unfavorable prognosis. Thus, identifying efficient prognostic factors and understanding the underlying molecular mechanisms in GC are essential for improving patient outcomes. In this study, we aimed to investigate the role of RECK (reversion-inducing cysteine-rich protein with Kazal motifs) in the prognostic significance and molecular mechanisms of its biological function in GC. METHODS Multiple bioinformatics strategies were performed to detect the potential functions and prognostic efficiency of RECK in GC. Rescue experiments revealed that the molecular mechanism by which RECK in inhibited tumor proliferation, migration, and invasion was mediated by ERK/MAPK signaling in AGS and HGC-27 cells. Using integrated bioinformatics analysis and western blot assay, we investigated the potential interaction between CALD1 and RECK. RESULTS Our findings revealed significantly decreased RECK expression in GC samples compared to normal samples and RECK was identified as a promising predictor for the prognosis of GC patients. Moreover, upregulation of RECK demonstrated a distinctly positive association with a high-immunity and low-metastasis microenvironment in GC. Mechanistically, the antitumour effects of RECK on hampering tumor cell growth, migration, and invasion were mediated by the ERK/MAPK signaling pathway. In addition, we also illustrated that RECK inhibited the phosphorylation of CALD1 mediated by decreased phosphorylation of ERK. CONCLUSIONS RECK is a promising prognostic biomarker and may shape a high-tumor-immunity and low-metastasis microenvironment in patients with GC. Moreover, RECK exerted its tumor-suppressive effects by the inactivation of ERK/MAPK signaling in GC cells.
Collapse
Affiliation(s)
- Fangyuan Qi
- The Key Laboratory of Zoonosis, Department of Pathogenobiology, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No. 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Yaru Wang
- The Key Laboratory of Zoonosis, Department of Pathogenobiology, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No. 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Bingxin Yu
- Department of Ultrasound, The Third Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Fan Li
- The Key Laboratory of Zoonosis, Department of Pathogenobiology, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No. 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
- The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, People's Republic of China.
- Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, People's Republic of China.
- Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, People's Republic of China.
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
3
|
Xing S, Zhu Y, You Y, Wang S, Wang H, Ning M, Jin H, Liu Z, Zhang X, Yu C, Lu ZJ. Cell-free RNA for the liquid biopsy of gastrointestinal cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1791. [PMID: 37086051 DOI: 10.1002/wrna.1791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaxian You
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ning
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Zhang
- Department of Health Care, Jiangsu Women and Children Health Hospital, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Shahin RK, Elkady MA, Abulsoud AI, Abdelmaksoud NM, Abdel Mageed SS, El-Dakroury WA, Zewail MB, Elazazy M, Sobhy MH, Nomier Y, Elazazy O, Elballal MS, Mohammed OA, Midan HM, Elrebehy MA, Ziada BO, Doghish AS. miRNAs orchestration of gallbladder cancer - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154684. [PMID: 37454489 DOI: 10.1016/j.prp.2023.154684] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud Elazazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Sobhy
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Yousra Nomier
- Pharmacology Department, Pharmacy College, Jazan University, Saudi Arabia
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City, 11765 Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
5
|
Zhou Y, Chen S, Wu Y, Li L, Lou Q, Chen Y, Xu S. Multi-clinical index classifier combined with AI algorithm model to predict the prognosis of gallbladder cancer. Front Oncol 2023; 13:1171837. [PMID: 37234992 PMCID: PMC10206143 DOI: 10.3389/fonc.2023.1171837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Objectives It is significant to develop effective prognostic strategies and techniques for improving the survival rate of gallbladder carcinoma (GBC). We aim to develop the prediction model from multi-clinical indicators combined artificial intelligence (AI) algorithm for the prognosis of GBC. Methods A total of 122 patients with GBC from January 2015 to December 2019 were collected in this study. Based on the analysis of correlation, relative risk, receiver operator characteristic curve, and importance by AI algorithm analysis between clinical factors and recurrence and survival, the two multi-index classifiers (MIC1 and MIC2) were obtained. The two classifiers combined eight AI algorithms to model the recurrence and survival. The two models with the highest area under the curve (AUC) were selected to test the performance of prognosis prediction in the testing dataset. Results The MIC1 has ten indicators, and the MIC2 has nine indicators. The combination of the MIC1 classifier and the "avNNet" model can predict recurrence with an AUC of 0.944. The MIC2 classifier and "glmet" model combination can predict survival with an AUC of 0.882. The Kaplan-Meier analysis shows that MIC1 and MIC2 indicators can effectively predict the median survival of DFS and OS, and there is no statistically significant difference in the prediction results of the indicators (MIC1: χ2 = 6.849, P = 0.653; MIC2: χ2 = 9.14, P = 0.519). Conclusions The MIC1 and MIC2 combined with avNNet and mda models have high sensitivity and specificity in predicting the prognosis of GBC.
Collapse
Affiliation(s)
- Yun Zhou
- Physical Examination Center, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- The Clinical Laboratory Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Siyu Chen
- The Clinical Laboratory Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yuchen Wu
- The Clinical Laboratory Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lanqing Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qinqin Lou
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yongyi Chen
- The Clinical Laboratory Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Songxiao Xu
- The Clinical Laboratory Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Li S, Meng W, Guo Z, Liu M, He Y, Li Y, Ma Z. The miR-183 Cluster: Biogenesis, Functions, and Cell Communication via Exosomes in Cancer. Cells 2023; 12:1315. [PMID: 37174715 PMCID: PMC10177187 DOI: 10.3390/cells12091315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is one of the leading causes of human death. MicroRNAs have been found to be closely associated with cancer. The miR-183 cluster, comprising miR-183, miR-96, and miR-182, is transcribed as a polycistronic miRNA cluster. Importantly, in most cases, these clusters promote cancer development through different pathways. Exosomes, as extracellular vesicles, play an important role in cellular communication and the regulation of the tissue microenvironment. Interestingly, the miR-183 cluster can be detected in exosomes and plays a functional regulatory role in tumor development. Here, the biogenesis and functions of the miR-183 cluster in highly prevalent cancers and their relationship with other non-coding RNAs are summarized. In addition, the miR-183 cluster in exosomes has also been discussed. Finally, we discuss the miR-183 cluster as a promising target for cancer therapy. This review is expected to provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Shuhui Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Meng
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanyun He
- Experimental Center of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Alipoor SD, Chang H. Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells 2023; 12:cells12071030. [PMID: 37048103 PMCID: PMC10092980 DOI: 10.3390/cells12071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P5X9+7F9, Iran
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
8
|
Circulating microRNAs in gallbladder cancer: Is serum assay of diagnostic value? Pathol Res Pract 2023; 242:154320. [PMID: 36682281 DOI: 10.1016/j.prp.2023.154320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The microRNAs (miRNAs) in circulation could serve as biomarkers for cancer detection. Gallbladder carcinoma (GBC) is mostly asymptomatic; therefore, using microRNAs (miRNAs) as an early diagnostic biomarker could be a valuable tool. We aimed to identify the tumor-associated miR-1, miR130, miR-146, miR-182, and miR-21expression in serum as a biomarker for early detection of GBC and identify their possible diagnostic role. The study group comprised of paired serum and tissue samples from 34 GBC, 19 cholecystitis (CC), 21 normal controls (uninflamed gall bladder), and additional 29 serum-only samples of GBC. Total RNA was isolated using a commercially available RNA isolation kit (Applied Biosystem, USA) and reverse transcribed using Advanced Taqman MicroRNA reverse transcription kit. The relative expression of miRNAs was analyzed using Quantitative real-time polymerase chain reaction. The diagnostic potential of these miRNAs was assessed by ROC analysis. In paired samples, the trend towards up and down regulation for miR-182, miR-21, miR-1, miR-130, and miR-146 was similar in both tissue and sera of GBC. The expression pattern of serum miR-1, miR130, and miR-146 gradually decreased from normal control (NC) to CC to GBC, while miR-21 and miR-182 gradually increased from NC to CC to GBC. The miR-1, miR-121, miR-182, and miR-146 significantly differed between CC vs. early stage and early stage vs. NC. Among these miRNAs, the sensitivity of miR-1 (85.71 %) was the highest, and the specificity of miR-21 was the highest (92.73 %). The combined sensitivity for miRNAs ranged from 73.13 % (CI: 60.90-83.24 %) to 98.63 % (CI: 89.0-99.61 %); however, the specificity was lower. In stage I&II vs. III&IV discrimination, the diagnostic sensitivity of miR-1 was highest (89.36 %, CI: 76.90-96.45). The two miRNAs, in combination, increase the diagnostic sensitivity. Circulating serum miRNAs may provide a new approach for clinical application. Panels of specific circulating miRNA, which require further validation, could be potential non-invasive diagnostic biomarkers for GBC in combination with abnormal radio diagnostic scans.
Collapse
|
9
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Construction of a miRNA-mRNA Network Related to Exosomes in Colon Cancer. DISEASE MARKERS 2022; 2022:2192001. [PMID: 35845138 PMCID: PMC9277152 DOI: 10.1155/2022/2192001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
Background The competing endogenous RNA (CeRNA) network plays important roles in the occurrence and development of colon cancer. This research is aimed at constructing a miRNA-mRNA network associated with exosomes in colon cancer. Methods We explored the GEO database and then analyzed the RNAs of 722 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of colon cancer. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEM target genes and DEGs were performed. In addition, a miRNA-mRNA network related to exosomes in colon cancer was constructed based on DEMs and DEGs. Finally, the expression of miRNA and mRNA in the network was verified by GEPIA2 on the base of TCGA database. Results Through our analysis, 19 DEMs (17 up and 2 down) and 1672 DEGs (954 up and 718 down) were screened. The GO and KEGG results show that these DEGs were mainly enriched in ribonucleoprotein complex biogenesis, noncoding RNA metabolic process, cell-substrate junction, cadherin binding, transcription coregulator activity, and regulation of the human T-cell leukemia virus 1 infection-related pathway. Besides, a miRNA-mRNA network, including 4 miRNAs (hsa-miR-623, hsa-miR-320c, hsa-miR-486-5p, and hsa-miR-1290) and 7 mRNAs (GNAI1, CADM1, PGRMC2, etc.), was constructed. Three of these seven mRNAs were downregulated in colon cancer. Ultimately, the GNAI1, CADM1, and PGRMC2 expression levels were verified by TCGA database. Conclusions This study reveals the network relationship between colon cancer exosome-derived miRNA and targeted mRNA. It deepens our understanding of new molecular mechanisms and pathways that may play a role in the occurrence and metastasis of colon cancer.
Collapse
|
11
|
Wang N, Pei B, Yuan X, Yi C, Wiredu Ocansey DK, Qian H, Mao F. Emerging roles of mesenchymal stem cell-derived exosomes in gastrointestinal cancers. Front Bioeng Biotechnol 2022; 10:1019459. [PMID: 36338118 PMCID: PMC9631450 DOI: 10.3389/fbioe.2022.1019459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal tumours are the most common solid tumours, with a poor prognosis and remain a major challenge in cancer treatment. Mesenchymal stem cells (MSC) are multipotent stromal cells with the potential to differentiate into multiple cell types. Several studies have shown that MSC-derived exosomes have become essential regulators of intercellular communication in a variety of physiological and pathological processes. Notably, MSC-derived exosomes support or inhibit tumour progression in different cancers through the delivery of proteins, RNA, DNA, and bioactive lipids. Herein, we summarise current advances in MSC-derived exosomes in cancer research, with particular reference to their role in gastrointestinal tumour development. MSC-derived exosomes are expected to be a novel potential strategy for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Naijian Wang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Hua Qian,
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Rana V, Parama D, Khatoon E, Girisa S, Sethi G, Kunnumakkara AB. Reiterating the Emergence of Noncoding RNAs as Regulators of the Critical Hallmarks of Gall Bladder Cancer. Biomolecules 2021; 11:biom11121847. [PMID: 34944491 PMCID: PMC8699045 DOI: 10.3390/biom11121847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 01/17/2023] Open
Abstract
Gall bladder cancer (GBC) is a rare and one of the most aggressive types of malignancies, often associated with a poor prognosis and survival. It is a highly metastatic cancer and is often not diagnosed at the initial stages, which contributes to a poor survival rate of patients. The poor diagnosis and chemoresistance associated with the disease limit the scope of the currently available surgical and nonsurgical treatment modalities. Thus, there is a need to explore novel therapeutic targets and biomarkers that will help relieve the severity of the disease and lead to advanced therapeutic strategies. Accumulating evidence has correlated the atypical expression of various noncoding RNAs (ncRNAs), including circular RNAs (circRNAs), long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and small nucleolar RNAs (snoRNA) with the increased cell proliferation, epithelial-mesenchymal transition (EMT), invasion, migration, metastasis, chemoresistance, and decreased apoptosis in GBC. Numerous reports have indicated that the dysregulated expression of ncRNAs is associated with poor prognosis and lower disease-free and overall survival in GBC patients. These reports suggest that ncRNAs might be considered novel diagnostic and prognostic markers for the management of GBC. The present review recapitulates the association of various ncRNAs in the initiation and progression of GBC and the development of novel therapeutic strategies by exploring their functional and regulatory role.
Collapse
Affiliation(s)
- Varsha Rana
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Dey Parama
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Elina Khatoon
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Sosmitha Girisa
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
13
|
Ren J, Chen S, Ye F, Gong X, Lu Y, Cai Q, Chen Y. Exploration of differentially-expressed exosomal mRNAs, lncRNAs and circRNAs from serum samples of gallbladder cancer and xantho-granulomatous cholecystitis patients. Bioengineered 2021; 12:6134-6143. [PMID: 34486489 PMCID: PMC8806659 DOI: 10.1080/21655979.2021.1972780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common biliary tract malignancy worldwide. Although a growing number of studies have explored the mechanism of GBC, thus far, few molecules have been discovered that can be utilized as specific biomarkers for the early diagnosis and therapeutic treatment of GBC. Recent studies have shown that exosomes not only participate in the progression of tumors, but also carry specific information that can define multiple cancer types. The present study investigated the expression profiles of coding (or messenger) ribonucleic acids (mRNAs) and non-coding RNAs (ncRNAs, including long non-coding RNAs [lncRNAs] and circular RNAs [circRNAs]) in plasma-derived exosomes from GBC patients. Using high-throughput RNA sequencing and subsequent bioinformatic analysis, a number of differentially expressed (DE) mRNAs, lncRNAs, and circRNAs were identified in GBC exosomes, compared to their expressions in xantho-granulomatous cholecystitis (XGC) exosomes. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) analyses were then conducted to investigate the potential functions of these DE RNAs. Furthermore, the interaction networks and competing endogenous RNA networks of these DE RNAs and their target genes were investigated, revealing a complex regulatory network among mRNAs and ncRNAs. In summary, this study demonstrates the diagnostic value of plasma-derived exosomes in GBC and provides a new perspective on the mechanism of GBC.
Collapse
Affiliation(s)
- Jiajun Ren
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Feng Ye
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaoyong Gong
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ye Lu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Cai
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yongjun Chen
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zheng W, Ji D, Zhou Y, Yu L, Huang P, Zheng Y, Meng N, Wang H, Bai X, Huang Z, Chen W, Yam JWP, Xu Y, Cui Y. Exosomal non-coding RNAs in Hepatobiliary Cancer: A Rising Star. Mol Cancer Ther 2021; 20:1777-1788. [PMID: 34376575 DOI: 10.1158/1535-7163.mct-21-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Hepatobiliary cancers are a heterogeneous group of malignancies with a dismal prognosis. Despite intensive research efforts focused on these tumors, methods for early diagnosis and effective targeted therapies are still lacking. Exosomes, released by most cells, exist in all kinds of body fluids and play an important role in cell-to-cell communication. They are small membranous vesicles containing biological molecules, such as noncoding RNAs (ncRNAs), which are not translated into proteins, but they exert effects on the regulation of gene transcription and translation. There is growing evidence for the essential roles of ncRNAs in exosomes in both physiological and pathological conditions of hepatobiliary cancers. They have been identified as sensitive diagnostic biomarkers as well as potential therapeutic targets. The present review discusses recent findings in the crosstalk between hepatobiliary cancers cells and the surrounding cells of the microenvironment and discuss their potential clinical usage.
Collapse
Affiliation(s)
- Wangyang Zheng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Daolin Ji
- Forth Affiliated Hospital of Harbin Medical University
| | - Yongxu Zhou
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Liang Yu
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Peng Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Yuling Zheng
- Department of Pediatric, Second Affiliated Hospital of Harbin Medical University
| | - Nanfeng Meng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Hang Wang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xue Bai
- Department of Renal Cancer and Melanoma/Cancer Center, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute/Massachusetts General Hospital
| | - ZiYue Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Wangming Chen
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Judy W P Yam
- Department of Pathology, University of Hong Kong
| | - Yi Xu
- Department of Pathology, University of Hong Kong
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
15
|
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling. Cell Signal 2021; 83:109993. [PMID: 33781845 DOI: 10.1016/j.cellsig.2021.109993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The Reversion Inducing Cysteine Rich Protein With Kazal Motifs (RECK) is a glycosylphosphatidylinositol (GPI) anchored membrane-bound regulator of matrix metalloproteinases (MMPs). It is expressed throughout the body and plays a role in extracellular matrix (ECM) homeostasis and inflammation. In initial studies, RECK expression was found to be downregulated in various invasive cancers and associated with poor prognostic outcome. Restoring RECK, however, has been shown to reverse the metastatic phenotype. Downregulation of RECK expression is also reported in non-malignant diseases, such as periodontal disease, renal fibrosis, and myocardial fibrosis. As such, RECK induction has therapeutic potential in several chronic diseases. Mechanistically, RECK negatively regulates various matrixins involved in cell migration, proliferation, and adverse remodeling by targeting the expression and/or activation of multiple MMPs, A Disintegrin And Metalloproteinase Domain-Containing Proteins (ADAMs), and A Disintegrin And Metalloproteinase With Thrombospondin Motifs (ADAMTS). Outside of its role in remodeling, RECK has also been reported to exert anti-inflammatory effects. In cardiac diseases, for example, it has been shown to counteract several downstream effectors of Angiotensin II (Ang-II) that play a role in adverse cardiac and vascular remodeling, such as Interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/glycoprotein 130 (IL-6 signal transducer) signaling and Epidermal Growth Factor Receptor (EGFR) transactivation. This review article focuses on the current understanding of the multifunctional effects of RECK and how its downregulation may contribute to adverse cardiovascular remodeling.
Collapse
Affiliation(s)
- Jacob J Russell
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America.
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| | - B Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
16
|
Li C, Wu Q, Li Z, Wang Z, Tu Y, Chen C, Sun S, Sun S. Exosomal microRNAs in cancer-related sarcopenia: Tumor-derived exosomal microRNAs in muscle atrophy. Exp Biol Med (Maywood) 2021; 246:1156-1166. [PMID: 33554647 DOI: 10.1177/1535370221990322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated sarcopenia is a complex metabolic syndrome marked by muscle mass wasting. Muscle wasting is a serious complication that is a primary contributor to cancer-related mortality. The underlying molecular mechanisms of cancer-associated sarcopenia have not been completely described to date. In general, evidence shows that the main pathophysiological alterations in sarcopenia are associated with the degradation of cellular components, an exceptional inflammatory secretome and mitochondrial dysfunction. Importantly, we highlight the prospect that several miRNAs carried by tumor-derived exosomes that have shown the ability to promote inflammatory secretion, activate catabolism, and even participate in the regulation of cellular degradation pathways can be delivered to and exert effects on muscle cells. In this review, we aim to describe the current knowledge about the functions of exosomal miRNAs in the induction of cancer-associated muscle wasting and propose potential treatment strategies.
Collapse
Affiliation(s)
- Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| |
Collapse
|
17
|
Li G, Zhao C, Zhang H, Yu J, Sun Y, Zhang Y. Hsa_circ_0046263 Drives the Carcinogenesis and Metastasis of Non-Small Cell Lung Cancer Through the Promotion of NOVA2 by Absorbing Mir-940 as a Molecular Sponge. Cancer Manag Res 2020; 12:12779-12790. [PMID: 33364827 PMCID: PMC7751796 DOI: 10.2147/cmar.s272603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 01/21/2023] Open
Abstract
Background Circular RNAs (circRNAs) have increasingly been investigated in different cancers due to their regulatory roles. In this study, hsa_circ_0046263 will be detailedly researched in non-small cell lung cancer (NSCLC). Methods The analyses of hsa_circ_0046263, microRNA-940 (miR-940), and neuro-oncological ventral antigen 2 (NOVA2) levels were administrated by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation detection was conducted using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell cycle and apoptosis were evaluated by flow cytometry. Transwell assay for migration and invasion was used to determine cell metastatic capacity. Overall protein levels were examined adopting Western blot. Target binding analysis was completed via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The effect of hsa_circ_0046263 on NSCLC in vivo was studied by xenograft model in mice. Results Hsa_circ_0046263 was overtly upregulated in NSCLC with important prognostic value. In vitro experiments indicated that hsa_circ_0046263 knockdown caused inhibitory effects on NSCLC cell proliferation, cell cycle, and metastasis but stimulative effect on apoptosis. Molecular mechanism analysis demonstrated that hsa_circ_0046263 served as a miR-940 sponge to act in the development of NSCLC. Moreover, miR-940 targeted NOVA2 and NOVA2 was regulated by hsa_circ_0046263/miR-940 axis. NOVA2 overexpression also neutralized the miR-940-mediated progression inhibition of NSCLC cells. In vivo assays suggested that hsa_circ_0046263 enhanced NSCLC tumorigenesis by targeting miR-940/NOVA2 axis. Conclusion Hsa_circ_0046263 was identified as a cancer-promoting factor in NSCLC via sponging miR-940 and upregulating NOVA2, which presented a clear mechanism of NSCLC occurrence and progression.
Collapse
Affiliation(s)
- Guanghui Li
- Respiratory Department, Dongying People's Hospital, Dongying 257091, People's Republic of China
| | - Chunsheng Zhao
- Respiratory Department, Dongying People's Hospital, Dongying 257091, People's Republic of China
| | - Haining Zhang
- Respiratory Department, Dongying People's Hospital, Dongying 257091, People's Republic of China
| | - Jia Yu
- Respiratory Department, Dongying People's Hospital, Dongying 257091, People's Republic of China
| | - Yang Sun
- Respiratory Department, Dongying People's Hospital, Dongying 257091, People's Republic of China
| | - Yingying Zhang
- Respiratory Department, Dongying People's Hospital, Dongying 257091, People's Republic of China
| |
Collapse
|