1
|
Akyürek EG. Temporal integration as an adaptive process in visual perception, attention, and working memory. Neurosci Biobehav Rev 2025; 170:106041. [PMID: 39922439 DOI: 10.1016/j.neubiorev.2025.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
I propose that temporal integration is ubiquitous in visual perception, because it serves an adaptive role. To support this idea, I draw together evidence from historically separated research fields that target different timescales. At one extreme, this concerns the detection and discrimination of successive stimuli within intervals of less than a quarter of a second. At an intermediate level, associated with attentional episodes, intervals between half a second up to a few seconds are considered. Finally, at the other extreme, this involves high-level, conceptual events across intervals of multiple seconds or even minutes. Across such varying intervals, the nature of temporal integration and the resultant perceptual events are clearly different. I nevertheless propose that temporal integration should be understood as a continuous process that serves a common adaptive goal: To maximize the amount of useful information, at minimal costs, tailored to the observer's current needs and circumstances. Emerging from this viewpoint are several research directions that might be pursued on the topic of temporal integration, and on its consequences for perception and memory.
Collapse
Affiliation(s)
- Elkan G Akyürek
- Department of Experimental Psychology, University of Groningen, the Netherlands.
| |
Collapse
|
2
|
Şekerci Y, Kahraman MU, Özturan Ö, Çelik E, Ayan SŞ. Neurocognitive responses to spatial design behaviors and tools among interior architecture students: a pilot study. Sci Rep 2024; 14:4454. [PMID: 38396070 PMCID: PMC10891056 DOI: 10.1038/s41598-024-55182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
The impact of emotions on human behavior is substantial, and the ability to recognize people's feelings has a wide range of practical applications including education. Here, the methods and tools of education are being calibrated according to the data gained over electroencephalogram (EEG) signals. The issue of which design tools would be ideal in the future of interior architecture education, is an uncertain field. It is important to measure the students' emotional states while using manual and digital design tools to determine the different impacts. Brain-computer interfaces have made it possible to monitor emotional states in a way that is both convenient and economical. In the research of emotion recognition, EEG signals have been employed, and the resulting literature explains basic emotions as well as complicated scenarios that are created from the combination of numerous basic emotions. The objective of this study is to investigate the emotional states and degrees of attachment experienced by interior architecture students while engaging in their design processes. This includes examining the use of 2D or 3D tools, whether manual or digital, and identifying any changes in design tool usage and behaviors that may be influenced by different teaching techniques. Accordingly, the hierarchical clustering which is a technique used in data analysis to group objects into a hierarchical structure of clusters based on their similarities has been conducted.
Collapse
Affiliation(s)
- Yaren Şekerci
- Interior Architecture and Environmental Design, Antalya Bilim University, Antalya, 07190, Turkey.
| | - Mehmet Uğur Kahraman
- Interior Architecture and Environmental Design, Antalya Bilim University, Antalya, 07190, Turkey
| | - Özgü Özturan
- Akdeniz University, Interior Architecture, Antalya, 07070, Turkey
| | - Ertuğrul Çelik
- Electrical and Computer Engineering, Antalya Bilim University, Antalya, 07190, Turkey
| | - Sevgi Şengül Ayan
- Industrial Engineering, Antalya Bilim University, Antalya, 07190, Turkey
| |
Collapse
|
3
|
Kauttonen J, Paekivi S, Kauramäki J, Tikka P. Unraveling dyadic psycho-physiology of social presence between strangers during an audio drama - a signal-analysis approach. Front Psychol 2023; 14:1153968. [PMID: 37928563 PMCID: PMC10622809 DOI: 10.3389/fpsyg.2023.1153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
A mere co-presence of an unfamiliar person may modulate an individual's attentive engagement with specific events or situations to a significant degree. To understand better how such social presence affects experiences, we recorded a set of parallel multimodal facial and psychophysiological data with subjects (N = 36) who listened to dramatic audio scenes alone or when facing an unfamiliar person. Both a selection of 6 s affective sound clips (IADS-2) followed by a 27 min soundtrack extracted from a Finnish episode film depicted familiar and often intense social situations familiar from the everyday world. Considering the systemic complexity of both the chosen naturalistic stimuli and expected variations in the experimental social situation, we applied a novel combination of signal analysis methods using inter-subject correlation (ISC) analysis, Representational Similarity Analysis (RSA) and Recurrence Quantification Analysis (RQA) followed by gradient boosting classification. We report our findings concerning three facial signals, gaze, eyebrow and smile that can be linked to socially motivated facial movements. We found that ISC values of pairs, whether calculated on true pairs or any two individuals who had a partner, were lower than the group with single individuals. Thus, audio stimuli induced more unique responses in those subjects who were listening to it in the presence of another person, while individual listeners tended to yield a more uniform response as it was driven by dramatized audio stimulus alone. Furthermore, our classifiers models trained using recurrence properties of gaze, eyebrows and smile signals demonstrated distinctive differences in the recurrence dynamics of signals from paired subjects and revealed the impact of individual differences on the latter. We showed that the presence of an unfamiliar co-listener that modifies social dynamics of dyadic listening tasks can be detected reliably from visible facial modalities. By applying our analysis framework to a broader range of psycho-physiological data, together with annotations of the content, and subjective reports of participants, we expected more detailed dyadic dependencies to be revealed. Our work contributes towards modeling and predicting human social behaviors to specific types of audio-visually mediated, virtual, and live social situations.
Collapse
Affiliation(s)
- Janne Kauttonen
- Competences, RDI and Digitalization, Haaga-Helia University of Applied Sciences, Helsinki, Finland
- School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Sander Paekivi
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Jaakko Kauramäki
- School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Tikka
- School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Enactive Virtuality Lab, Baltic Film, Media and Arts School (BFM), Centre of Excellence in Media Innovation and Digital Culture (MEDIT), Tallinn University, Tallinn, Estonia
| |
Collapse
|
4
|
Human voices escape the auditory attentional blink: Evidence from detections and pupil responses. Brain Cogn 2023; 165:105928. [PMID: 36459865 DOI: 10.1016/j.bandc.2022.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Attentional selection of a second target in a rapid stream of stimuli embedding two targets tends to be briefly impaired when two targets are presented in close temporal proximity, an effect known as an attentional blink (AB). Two target sounds (T1 and T2) were embedded in a rapid serial auditory presentation of environmental sounds with a short (Lag 3) or long lag (Lag 9). Participants were to first identify T1 (bell or sine tone) and then to detect T2 (present or absent). Individual stimuli had durations of either 30 or 90 ms, and were presented in streams of 20 sounds. The T2 varied in category: human voice, cello, or dog sound. Previous research has introduced pupillometry as a useful marker of the intensity of cognitive processing and attentional allocation in the visual AB paradigm. Results suggest that the interplay of stimulus factors is critical for target detection accuracy and provides support for the hypothesis that the human voice is the least likely to show an auditory AB (in the 90 ms condition). For the other stimuli, accuracy for T2 was significantly worse at Lag 3 than at Lag 9 in the 90 ms condition, suggesting the presence of an auditory AB. When AB occurred (at Lag 3), we observed smaller pupil dilations, time-locked to the onset of T2, compared to Lag 9, reflecting lower attentional processing when 'blinking' during target detection. Taken together, these findings support the conclusion that human voices escape the AB and that the pupillary changes are consistent with the so-called T2 attentional deficit. In addition, we found some indication that salient stimuli like human voices could require a less intense allocation of attention, or noradrenergic potentiation, compared to other auditory stimuli.
Collapse
|
5
|
It's time for attentional control: Temporal expectation in the attentional blink. Conscious Cogn 2023; 107:103461. [PMID: 36584439 DOI: 10.1016/j.concog.2022.103461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The attentional blink (AB) reveals a limitation in conscious processing of sequential targets. Although it is widely held that the AB derives from a structural bottleneck of central capacity, how the central processing is constrained is still unclear. As the AB reflects the dilemma of deploying attentional resources in the time dimension, research on temporal allocation provides an important avenue for understanding the mechanism. Here we reviewed studies regarding the role of temporal expectation in modulating the AB performance primarily based on two temporal processing strategies: interval-based and rhythm-based timings. We showed that both temporal expectations can help to organize limited resources among multiple attentional episodes, thereby mitigating the AB effect. As it turns out, scrutinizing on the AB from a temporal perspective is a promising way to comprehend the mechanisms behind the AB and conscious cognition. We also highlighted some unresolved issues and discussed potential directions for future research.
Collapse
|
6
|
Dellert T, Krebs S, Bruchmann M, Schindler S, Peters A, Straube T. Neural correlates of consciousness in an attentional blink paradigm with uncertain target relevance. Neuroimage 2022; 264:119679. [PMID: 36220535 DOI: 10.1016/j.neuroimage.2022.119679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Several event-related potentials (ERPs) have been proposed as neural correlates of consciousness (NCC), most prominently the early visual awareness negativity (VAN) and the late P3b component. Highly influential support for the P3b comes from studies utilizing the attentional blink (AB), where conscious perception of a first visual target (T1) impairs reporting a second target (T2) presented shortly afterwards. Recent no-report studies using other paradigms suggest that the P3b component may reflect post-perceptual processes associated with decision-making rather than awareness. However, no-report studies are limited in their awareness assessment, and their conclusions have not been tested in an AB paradigm. The present study (N = 38) addressed these issues using a novel AB paradigm, which reduced decision-making processes by omitting a discrimination task on T2 stimuli and rendering their relevance uncertain. Nevertheless, awareness was assessed trial by trial. Comparing ERPs in response to seen versus unseen T2 stimuli revealed a VAN but no enhanced P3b regardless of whether they were marked as distinct from distractor stimuli or not. Our results corroborate the VAN and challenge the P3b as NCC despite rigorous trial-by-trial assessment of conscious perception. Thus, they support the idea that awareness emerges during early sensory processing.
Collapse
Affiliation(s)
- Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany.
| | - Sophie Krebs
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Antje Peters
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| |
Collapse
|
7
|
Kawashima T, Shibusawa S, Amano K. Frequency- and Phase-Dependent Effects of Auditory Entrainment on Attentional Blink. Eur J Neurosci 2022; 56:4411-4424. [PMID: 35796700 DOI: 10.1111/ejn.15760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Attentional blink (AB) is the impaired detection of a second target (T2) after a first target has been identified. In this paper, we investigated the functional roles of alpha and theta oscillations on AB by determining how much preceding rhythmic auditory stimulation affected the performance of AB. Healthy young adults participated in the experiment online. We found that when two targets were embedded in rapid serial visual presentation (RSVP) of distractors at 10 Hz (i.e., alpha frequency), the magnitude of AB increased with auditory stimuli. The increase was limited to the case when the frequency and phase of auditory stimuli matched the following RSVP stream. On the contrary, when only two targets were presented without a distractor, auditory stimuli at theta, not alpha, increased the AB magnitude. These results indicate that neural oscillations at two different frequencies, namely, alpha and theta, are involved in attentional blink.
Collapse
Affiliation(s)
- Tomoya Kawashima
- Graduate School of Human Sciences, Osaka University.,Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Shuka Shibusawa
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT) and Osaka University.,Japan Society for the Promotion of Science
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT) and Osaka University.,Graduate School of Information Science and Technology, The University of Tokyo
| |
Collapse
|
8
|
Keil A, Bernat EM, Cohen MX, Ding M, Fabiani M, Gratton G, Kappenman ES, Maris E, Mathewson KE, Ward RT, Weisz N. Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series. Psychophysiology 2022; 59:e14052. [PMID: 35398913 PMCID: PMC9717489 DOI: 10.1111/psyp.14052] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 01/29/2023]
Abstract
Since its beginnings in the early 20th century, the psychophysiological study of human brain function has included research into the spectral properties of electrical and magnetic brain signals. Now, dramatic advances in digital signal processing, biophysics, and computer science have enabled increasingly sophisticated methodology for neural time series analysis. Innovations in hardware and recording techniques have further expanded the range of tools available to researchers interested in measuring, quantifying, modeling, and altering the spectral properties of neural time series. These tools are increasingly used in the field, by a growing number of researchers who vary in their training, background, and research interests. Implementation and reporting standards also vary greatly in the published literature, causing challenges for authors, readers, reviewers, and editors alike. The present report addresses this issue by providing recommendations for the use of these methods, with a focus on foundational aspects of frequency domain and time-frequency analyses. It also provides publication guidelines, which aim to (1) foster replication and scientific rigor, (2) assist new researchers who wish to enter the field of brain oscillations, and (3) facilitate communication among authors, reviewers, and editors.
Collapse
Affiliation(s)
- Andreas Keil
- Department and Psychology and Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Edward M. Bernat
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Michael X. Cohen
- Radboud University and University Medical Center, Nijmegen, the Netherlands
| | - Mingzhou Ding
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Emily S. Kappenman
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Eric Maris
- Donders Institute for Brain, Cognition, and Behaviour & Faculty of Social Sciences Radboud University, Nijmegen, the Netherlands
| | - Kyle E. Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Richard T. Ward
- Department and Psychology and Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Nathan Weisz
- Psychology, University of Salzburg, Salzburg, Austria,Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
The temporal dynamics of attention: Thinking about oneself comes at a cost in sub-clinical depression but not in healthy participants. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Yao F, Zhou B, Zhuang Y, Wang X. Immediate Temporal Information Modulates the Target Identification in the Attentional Blink. Brain Sci 2022; 12:brainsci12020278. [PMID: 35204041 PMCID: PMC8870607 DOI: 10.3390/brainsci12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
It has been shown that learned temporal information can be exploited to help facilitate the target identification in the attentional blink task. Here, we tested whether similar exploitation also worked on short-term temporal information, even when it did not reliably predict the target onset. In two experiments, we randomly manipulated either the interval between targets (T1 and T2; Experiment 1) or the temporal regularity of stimulus presentation (Experiment 2) in each trial. The results revealed evidence of effects of immediate temporal experience mainly on T2 performances but also occasionally on T1 performances. In general, the accuracy of T2 was enhanced when a longer inter-target interval was explicitly processed in the preceding trial (Experiment 1) or the temporal regularity, regardless of being explicitly or implicitly processed, was present in the stimulus stream, especially after T1 (Experiment 2). These results suggest that, under high temporal uncertainty, both interval and rhythmic cues can still be exploited to regulate the allocation of processing resources, thus, modulating the target identification in the attentional blink task, consistent with the view of flexible attentional allocation, and further highlighting the importance of the interplay between temporal processing and attentional control in the conscious visual perception.
Collapse
Affiliation(s)
- Fangshu Yao
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (Y.Z.)
| | - Bin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (B.Z.); (X.W.)
| | - Yiyun Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (Y.Z.)
| | - Xiaochun Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (Y.Z.)
- Correspondence: (B.Z.); (X.W.)
| |
Collapse
|
11
|
Malloggi E, Menicucci D, Cesari V, Frumento S, Gemignani A, Bertoli A. Lavender aromatherapy: A systematic review from essential oil quality and administration methods to cognitive enhancing effects. Appl Psychol Health Well Being 2021; 14:663-690. [PMID: 34611999 PMCID: PMC9291879 DOI: 10.1111/aphw.12310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Modern society is reviving the practice of aromatherapy, and lavender is reported being the most worldwide purchased plant for essential oil (EO) extraction. Since recent studies reported cognitive enhancing effects of lavender besides the hypno-inducing effects, a literature review is needed. Considering EO quality and diffusion devices, we conducted a systematic review on the effects of lavender EO inhalation on arousal, attention and memory in healthy subjects. Starting from this new multidisciplinary perspective, cognitive effects were reviewed to link outcomes to effective and reproducible protocols. A systematic search on MEDLINE, ERIC, PsycInfo, Google Scholar, and Scopus databases using Cognitive Atlas and plant-related keywords was conducted. Among the 1,203 articles yielded, 11 met eligibility criteria. Subjects administered with lavender EO displayed arousal decrease and sustained attention increase. Controversial results emerged regarding memory. Lack of EO quality assessment and protocols heterogeneity did not allow assessing whether different EO composition differentially modulates cognition and whether placebo effect can be discerned from EO effect itself. However, GABAergic pathway modulation exerted by linalool, a major lavender EO constituent, might explain cognitive functions empowerment. We speculate aromatherapy could be a burgeoning cognition enhancing tool, although further investigation is required to reach robust conclusions.
Collapse
Affiliation(s)
- Eleonora Malloggi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Sergio Frumento
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
12
|
What processes are disrupted during the attentional blink? An integrative review of event-related potential research. Psychon Bull Rev 2021; 29:394-414. [PMID: 34291430 DOI: 10.3758/s13423-021-01973-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Reporting the second of two targets is impaired when these appear in close succession, a phenomenon known as the attentional blink (AB). Despite decades of research, what factors limit our ability to process multiple sequentially presented events remains unclear. Specifically, two central issues remain open: does failure to report the second target (T2) reflect a structural limitation in working memory (WM) encoding or a disruption to attentional processes? And is perceptual processing of the stimulus that we fail to report impaired, or only processes that occur after this stimulus is identified? We address these questions by reviewing event-related potential (ERP) studies of the AB, after providing a brief overview of the theoretical landscape relevant to these debates and clarifying key concepts essential for interpreting ERP studies. We show that failure to report the second target is most often associated with disrupted attentional engagement (associated with a smaller and delayed N2pc component). This disruption occurs after early processing of T2 (associated with an intact P1 component), weakens its semantic processing (typically associated with a smaller N400 component), and prevents its encoding into WM (associated with absent P3b). However, failure to encode T2 in WM can occur despite intact attentional engagement and semantic processing. We conclude that the AB phenomenon, which reflects our limited ability to process sequential events, emerges from the disruption of both attentional engagement and WM encoding.
Collapse
|
13
|
Ghiani A, Maniglia M, Battaglini L, Melcher D, Ronconi L. Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS. Front Psychol 2021; 12:643677. [PMID: 33828509 PMCID: PMC8019716 DOI: 10.3389/fpsyg.2021.643677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8-12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40-60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.
Collapse
Affiliation(s)
- Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy
- Neuro Vis.U.S. Laboratory, University of Padua, Padua, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
14
|
Ashinoff BK, Abu-Akel A. Hyperfocus: the forgotten frontier of attention. PSYCHOLOGICAL RESEARCH 2021; 85:1-19. [PMID: 31541305 PMCID: PMC7851038 DOI: 10.1007/s00426-019-01245-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/09/2019] [Indexed: 01/20/2023]
Abstract
'Hyperfocus' is a phenomenon that reflects one's complete absorption in a task, to a point where a person appears to completely ignore or 'tune out' everything else. Hyperfocus is most often mentioned in the context of autism, schizophrenia, and attention deficit hyperactivity disorder, but research into its effect on cognitive and neural functioning is limited. We propose that hyperfocus is a critically important aspect of cognition, particularly with regard to clinical populations, and that it warrants significant investigation. Hyperfocus, though ostensibly self-explanatory, is poorly defined within the literature. In many cases, hyperfocus goes undefined, relying on the assumption that the reader inherently knows what it entails. Thus, there is no single consensus to what constitutes hyperfocus. Moreover, some studies do not refer to hyperfocus by name, but describe processes that may be related. In this paper, we review how hyperfocus (as well as possibly related phenomena) has been defined and measured, the challenges associated with hyperfocus research, and assess how hyperfocus affects both neurotypical and clinical populations. Using this foundation, we provide constructive criticism about previously used methods and analyses. We also propose an operational definition of hyperfocus for researchers to use moving forward.
Collapse
Affiliation(s)
- Brandon K Ashinoff
- Department of Psychiatry, Columbia University, 1051 Riverside Dr, New York, NY, 10032, USA.
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ahmad Abu-Akel
- Institute of Psychology, University of Lausanne, Quartier UNIL-Mouline, Geopolis, Lausanne, 1015, Switzerland
| |
Collapse
|
15
|
Kaur A, Chaujar R, Chinnadurai V. Effects of Neural Mechanisms of Pretask Resting EEG Alpha Information on Situational Awareness: A Functional Connectivity Approach. HUMAN FACTORS 2020; 62:1150-1170. [PMID: 31461374 DOI: 10.1177/0018720819869129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE In this study, the influence of pretask resting neural mechanisms on situational awareness (SA)-task is studied. BACKGROUND Pretask electroencephalography (EEG) information and Stroop effect are known to influence task engagement independently. However, neural mechanisms of pretask resting absolute alpha (PRAA) and pretask resting alpha frontal asymmetry (PRAFA) in influencing SA-task which is undergoing Stroop effect is still not understood. METHOD The study involved pretask resting EEG measurements from 18 healthy individuals followed by functional magnetic resonance imaging (fMRI) acquisition during SA-task. To understand the effect of pretask alpha information and Stroop effect on SA, a robust correlation between mean reaction time, SA Index, PRAA, and PRAFA were assessed. Furthermore, neural underpinnings of PRAA, PRAFA in SA-task, and functional connectivity were analyzed through the EEG-informed fMRI approach. RESULTS Significant robust correlation of reaction time was observed with SA Index (Pearson: r = .50, pcorr = .05) and PRAFA (Pearson: r = .63; pcorr = .01), respectively. Similarly, SA Index significantly correlated with PRAFA (Pearson: r = .56, pcorr = .01; Spearman: r = .61, pcorr = .007), and PRAA (Pearson: r = .59, pcorr = .005; Spearman: r = .59, pcorr = .002). Neural underpinnings of SA-task revealed regions involved in visual-processing and higher-order cognition. PRAA was primarily underpinned at frontal-temporal areas and functionally connected to SA-task regions pertaining to the emotional regulation. PRAFA has correlated with limbic and parietal regions, which are involved in integration of visual, emotion, and memory information of SA-task. CONCLUSION The results suggest a strong association of reaction time with SA-task and PRAFA and strongly support the hypothesis that PRAFA, PRAA, and associated neural mechanisms significantly influence the outcome of SA-task. APPLICATION It is beneficial to study the effect of pretask resting information on SA-task to improve SA.
Collapse
Affiliation(s)
- Ardaman Kaur
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | |
Collapse
|
16
|
Wang YY, Sun L, Liu YW, Pan JH, Zheng YM, Wang YF, Zang YF, Zhang H. The Low-Frequency Fluctuation of Trial-by-Trial Frontal Theta Activity and Its Correlation With Reaction-Time Variability in Sustained Attention. Front Psychol 2020; 11:1555. [PMID: 32765356 PMCID: PMC7381245 DOI: 10.3389/fpsyg.2020.01555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Reaction-time variability is a critical index of sustained attention. However, researchers still lack effective measures to establish the association between neurophysiological activity and this behavioral variability. Here, the present study recorded reaction time (RT) and cortical electroencephalogram (EEG) in healthy subjects when they continuously performed an alternative responding task. The frontal theta activity and reaction-time variability were examined trial by trial using the measures of standard deviation (SD) in the time domain and amplitude of low-frequency fluctuation (ALFF) in the frequency domain. Our results showed that the SD of reaction-time variability did not have any correlation with the SD of trial-by-trial frontal theta activity, and the ALFF of reaction-time variability has a significant correlation with the ALFF of trial-by-trial frontal theta activity in 0.01–0.027 Hz. These results suggested the methodological significance of ALFF in establishing the association between neurophysiological activity and reaction-time variability. Furthermore, these findings also support the low-frequency fluctuation as a potential feature of sustained attention.
Collapse
Affiliation(s)
- Yao-Yao Wang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Li Sun
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yi-Wei Liu
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Jia-Hui Pan
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yu-Ming Zheng
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yu-Feng Wang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
| | - Yu-Feng Zang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Hang Zhang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
17
|
Ross B, Lopez MD. 40-Hz Binaural beats enhance training to mitigate the attentional blink. Sci Rep 2020; 10:7002. [PMID: 32332827 PMCID: PMC7181825 DOI: 10.1038/s41598-020-63980-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether binaural beat stimulation could accelerate the training outcome in an attentional blink (AB) task. The AB refers to the lapse in detecting a target T2 in rapid serial visual presentation (RSVP) after the identification of a preceding target T1. Binaural beats (BB) are assumed to entrain neural oscillations and support cognitive function. Participants were assigned into two groups and presented with BB sounds while performing the AB task on three subsequent days in a cross-over design. Group A was presented with 40-Hz BB during the first day and 16 Hz during the second day, while the order of beat frequencies was reversed in Group B. No sound was presented on the third day. MEG recordings confirmed a strong entrainment of gamma oscillations during 40-Hz BB stimulation and smaller gamma entrainment with 16-Hz BB. The rhythm of the visual stimulation elicited 10-Hz oscillations in occipital MEG sensors which were of similar magnitude for both BB frequencies. The AB performance did not increase within a session. However, participants improved between sessions, with overall improvement equal in both groups. Group A improved more after the first day than the second day. In contrast, group B gained more from the 40 Hz stimulation on the second day than from 16-Hz stimulation on the first day. Taken together, 40-Hz BB stimulation during training accelerates the training outcome. The improvement becomes evident not immediately, but after consolidation during sleep. Therefore, auditory beats stimulation is a promising method of non-invasive brain stimulation for enhancing training and learning which is well-suited to rehabilitation training.
Collapse
Affiliation(s)
- Bernhard Ross
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, M6A 2E1, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| | - Marc Danzell Lopez
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, M6A 2E1, Canada.,Faculty of Arts and Sciences, University of Toronto, Scarborough, ON, M1C 1A4, Canada
| |
Collapse
|
18
|
Akça M, Laeng B, Godøy RI. No Evidence for an Auditory Attentional Blink for Voices Regardless of Musical Expertise. Front Psychol 2020; 10:2935. [PMID: 31998190 PMCID: PMC6966238 DOI: 10.3389/fpsyg.2019.02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/11/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Attending to goal-relevant information can leave us metaphorically "blind" or "deaf" to the next relevant information while searching among distracters. This temporal cost lasting for about a half a second on the human selective attention has been long explored using the attentional blink paradigm. Although there is evidence that certain visual stimuli relating to one's area of expertise can be less susceptible to attentional blink effects, it remains unexplored whether the dynamics of temporal selective attention vary with expertise and objects types in the auditory modality. Methods: Using the auditory version of the attentional blink paradigm, the present study investigates whether certain auditory objects relating to musical and perceptual expertise could have an impact on the transient costs of selective attention. In this study, expert cellists and novice participants were asked to first identify a target sound, and then to detect instrumental timbres of cello or organ, or human voice as a second target in a rapid auditory stream. Results: The results showed moderate evidence against the attentional blink effect for voices independent of participants' musical expertise. Experts outperformed novices in their overall accuracy levels of target identification and detection, reflecting a clear benefit of musical expertise. Importantly, the musicianship advantage disappeared when the human voices served as the second target in the stream. Discussion: The results are discussed in terms of stimulus salience, the advantage of voice processing, as well as perceptual and musical expertise in relation to attention and working memory performances.
Collapse
Affiliation(s)
- Merve Akça
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
| | - Bruno Laeng
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Rolf Inge Godøy
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Abstract
Anne Treisman investigated many aspects of perception, and in particular the roles of different forms of attention. Four aspects of her work are reviewed here, including visual search, set mean perception, perception in special populations, and binocular rivalry. The importance of the breakthrough in each case is demonstrated. Search is easy or slow depending on whether it depends on the application of global or focused attention. Mean perception depends on global attention and affords simultaneous representation of the means of at least two sets of elements, and then of comparing them. Deficits exhibited in Balint's or unilateral neglect patients identify basic sensory system mechanisms. And, the ability to integrate binocular information for stereopsis despite simultaneous binocular rivalry for color, demonstrates the division of labor underlying visual system computations. All these studies are related to an appreciation of the difference between perceiving the gist of a scene, its elements or objects, versus perceiving the details of the scene and its components. This relationship between Anne Treisman's revolutionary discoveries and the concept of gist perception is the core of the current review.
Collapse
|
20
|
Attention differentially modulates the amplitude of resonance frequencies in the visual cortex. Neuroimage 2019; 203:116146. [PMID: 31493535 DOI: 10.1016/j.neuroimage.2019.116146] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 11/22/2022] Open
Abstract
Rhythmic visual stimuli (flicker) elicit rhythmic brain responses at the frequency of the stimulus, and attention generally enhances these oscillatory brain responses (steady state visual evoked potentials, SSVEPs). Although SSVEP responses have been tested for flicker frequencies up to 100 Hz [Herrmann, 2001], effects of attention on SSVEP amplitude have only been reported for lower frequencies (up to ~30 Hz), with no systematic comparison across a wide, finely sampled frequency range. Does attention modulate SSVEP amplitude at higher flicker frequencies (gamma band, 30-80 Hz), and is attentional modulation constant across frequencies? By isolating SSVEP responses from the broadband EEG signal using a multivariate spatiotemporal source separation method, we demonstrate that flicker in the alpha and gamma bands elicit strongest and maximally phase stable brain responses (resonance), on which the effect of attention is opposite: positive for gamma and negative for alpha. Finding subject-specific gamma resonance frequency and a positive attentional modulation of gamma-band SSVEPs points to the untapped potential of flicker as a non-invasive tool for studying the causal effects of interactions between visual gamma-band rhythmic stimuli and endogenous gamma oscillations on perception and attention.
Collapse
|
21
|
Attentional blink and putative noninvasive dopamine markers: Two experiments to consolidate possible associations. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1444-1457. [PMID: 31396846 PMCID: PMC6861702 DOI: 10.3758/s13415-019-00717-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adaptive behavioral control involves a balance between top-down persistence and flexible updating of goals under changing demands. According to the metacontrol state model (MSM), this balance emerges from the interaction between the frontal and the striatal dopaminergic system. The attentional blink (AB) task has been argued to tap into the interaction between persistence and flexibility, as it reflects overpersistence—the too-exclusive allocation of attentional resources to the processing of the first of two consecutive targets. Notably, previous studies are inconclusive about the association between the AB and noninvasive proxies of dopamine including the spontaneous eye blink rate (sEBR), which allegedly assesses striatal dopamine levels. We aimed to substantiate and extend previous attempts to predict individual sizes of the AB in two separate experiments with larger sample sizes (N = 71 & N = 65) by means of noninvasive behavioral and physiological proxies of dopamine (DA), such as sEBR and mood measures, which are likely to reflect striatal dopamine levels, and color discrimination, which has been argued to tap into the frontal dopamine levels. Our findings did not confirm the prediction that AB size covaries with sEBR, mood, or color discrimination. The implications of this inconsistency with previous observations are discussed.
Collapse
|
22
|
Wagner J, Makeig S, Hoopes D, Gola M. Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Front Hum Neurosci 2019; 13:263. [PMID: 31427937 PMCID: PMC6689956 DOI: 10.3389/fnhum.2019.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recent applications of simultaneous scalp electroencephalography (EEG) and transcranial magnetic stimulation (TMS) suggest that adapting stimulation to underlying brain states may enhance neuroplastic effects of TMS. It is often assumed that longer-lasting effects of TMS on brain function may be mediated by phasic interactions between TMS pulses and endogenous cortical oscillatory dynamics. The mechanisms by which TMS exerts its neuromodulatory effects, however, remain unknown. Here, we discuss evidence concerning the functional effects on synaptic plasticity of oscillatory cross-frequency coupling in cortical networks as a potential framework for understanding the neuromodulatory effects of TMS. We first discuss evidence for interactions between endogenous oscillatory brain dynamics and externally induced electromagnetic field activity. Alpha band (8-12 Hz) activities are of special interest here because of the wide application and therapeutic effectiveness of rhythmic TMS (rTMS) using a stimulus repetition frequency at or near 10 Hz. We discuss the large body of literature on alpha oscillations suggesting that alpha oscillatory cycles produce periodic inhibition or excitation of neuronal processing through phase-amplitude coupling (PAC) of low-frequency oscillations with high-frequency broadband (or gamma) bursting. Such alpha-gamma coupling may reflect excitability of neuronal ensembles underlying neuroplasticity effects of TMS. We propose that TMS delivery with simultaneous EEG recording and near real-time estimation of source-resolved alpha-gamma PAC might be used to select the precise timing of TMS pulse deliveries so as to enhance the neuroplastic effects of TMS therapies.
Collapse
Affiliation(s)
- Johanna Wagner
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - Scott Makeig
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - David Hoopes
- Department of Radiation Medicine and Applied Sciences, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mateusz Gola
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States.,Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Vergara RC, Moënne-Loccoz C, Ávalos C, Egaña J, Maldonado PE. Finger Temperature: A Psychophysiological Assessment of the Attentional State. Front Hum Neurosci 2019; 13:66. [PMID: 30949037 PMCID: PMC6436084 DOI: 10.3389/fnhum.2019.00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Attention is a key cognitive phenomenon that is studied to understand cognitive disorders or even to estimate workloads to prevent accidents. Usually, it is studied using brain activity, even though it has many psychophysiological correlates. In the present study, we aim to evaluate if finger temperature, as a surrogate of peripheral vasoconstriction, can be used to obtain similar and complementary information to electroencephalography (EEG) brain activity measurements. To conduct this, 34 participants were recruited and submitted to performing four tasks-one as a baseline, and three attentional tasks. These three attentional tasks measured sustained attention, resilience to distractors, and attentional resources. During the tasks, the room, forehead, tympanic, and finger temperatures were measured. Furthermore, we included a 32-channel EEG recording. Our results showed a strong monotonic association between the finger temperature and the Alpha and Beta EEG spectral bands. When predicting attentional performance, the finger temperature was complementary to the EEG spectral measurements, through the prediction of aspects of attentional performance that had not been assessed by spectral EEG activity, or through the improvement of the model's fit. We also found that during the baseline task (non-goal-oriented task), the spectral EEG activity has an inverted correlation, as compared to a goal-oriented task. Our current results suggest that the psychophysiological assessment of attention is complementary to classic EEG approach, while also having the advantage of easy implementation of analysis tools in environments of reducing control (workplaces, student classrooms).
Collapse
Affiliation(s)
- Rodrigo C Vergara
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristóbal Moënne-Loccoz
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Ávalos
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Egaña
- Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Anestesiologiá y Medicina Perioperatoria, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro E Maldonado
- Departmento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Helfrich RF, Knight RT. Cognitive neurophysiology: Event-related potentials. HANDBOOK OF CLINICAL NEUROLOGY 2019; 160:543-558. [PMID: 31277875 DOI: 10.1016/b978-0-444-64032-1.00036-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Event-related potentials (ERPs) are one of the most commonly used tools to assess cognitive processing with a high temporal resolution. We provide an updated view of the cortical origins of evoked responses and discuss potential mechanisms contributing to ERP generation. In particular, we focus on the relationship between evoked and ongoing oscillatory activity and discuss the differences between ERPs and cortical activation as indexed by high-frequency activity in human intracranial electroencephalography (EEG). We highlight several possibilities for how ERPs can precisely index human perception and behavior in nontraditional approaches, such as neuronal entrainment through steady-state evoked potentials, multivariate decoding, and cross-frequency correlations. We argue that analyses of time-locked responses are beneficial to assess nonlinear and nonsinusoidal neuronal activity on a fine-grained temporal scale, since analyses in the time domain are less susceptible to artifacts than spectral decomposition techniques. Taken together, the current review provides a state-of-the-art overview of ERPs and their application in cognitive and clinical neurophysiology.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States.
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
25
|
Edelman S, Moyal R. Fundamental computational constraints on the time course of perception and action. PROGRESS IN BRAIN RESEARCH 2018; 236:121-141. [PMID: 29157408 DOI: 10.1016/bs.pbr.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cognitive system faced with contingent events that cause rapid changes in sensory data may (i) incrementally incorporate new data into the ongoing perceptual and motor processing; or (ii) restart processing on each new event; or (iii) sample the data and hold onto the sample until its processing is complete, while disregarding any contingent changes. We offer a set of computational first-principles arguments for a hypothesis, according to which any system that contends with certain classes of perception and behavioral control tasks must include the sample-and-hold option (possibly alongside the other two, which may be useful in other tasks). This hypothesis has implications for understanding the dynamics of perception and action. In particular, a sample-and-hold channel necessarily processes sensory data on some kind of cycle (which does not imply precise periodicity). Further, being prepared to face the world at all times requires that the sampling that initiates each cycle be triggered by every significant action on part of the agent itself, such as saccades. We survey a range of evidence for the sample-and-hold functionality, touching upon diverse phenomena such as attentional blink and backward masking, the yoking of olfaction to respiration, thalamocortical interactions, and metastable brain dynamics in perception and consciousness.
Collapse
Affiliation(s)
| | - Roy Moyal
- Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Gulbinaite R, van Viegen T, Wieling M, Cohen MX, VanRullen R. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention. J Neurosci 2017; 37:10173-10184. [PMID: 28931569 PMCID: PMC6596538 DOI: 10.1523/jneurosci.1163-17.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/05/2017] [Indexed: 11/21/2022] Open
Abstract
Rhythmic visual stimulation ("flicker") is primarily used to "tag" processing of low-level visual and high-level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (∼10 Hz) oscillations during a selective visuospatial attention task. We recorded EEG from human participants (both genders) while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-frequency, and single-trial linear mixed-effects modeling, we demonstrate that 10 Hz flicker interfered with stimulus processing more on incongruent than congruent trials (high vs low selective attention demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect on task performance was more strongly predicted by EEG flicker responses during stimulus processing than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with reactive than proactive selective attention. These findings are consistent with our hypothesis that visual flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is determined by the correspondence between the exogenous flicker frequency and the endogenous brain rhythms.SIGNIFICANCE STATEMENT Here we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 Hz) flicker impairs stimulus processing in a selective attention task when the stimulus flicker rate matches individual alpha peak frequency. The effect of sensory flicker on task performance was stronger when selective attention demands were high, and was stronger during stimulus processing and response selection compared with the prestimulus anticipatory period. These findings provide novel evidence that frequency-specific sensory flicker affects online attentional processing, and also demonstrate that the correspondence between exogenous and endogenous rhythms is an overlooked prerequisite when testing for frequency-specific cognitive effects of flicker.
Collapse
Affiliation(s)
- Rasa Gulbinaite
- Centre National de la Recherche Scientifique, Faculté de Médecine Purpan, Toulouse 31000, France,
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse 31052, France
| | - Tara van Viegen
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Martijn Wieling
- Department of Information Science, Faculty of Arts, University of Groningen, Groningen 9712 EK, The Netherlands, and
| | - Michael X Cohen
- Faculty of Science, Donders Center for Neuroscience, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Rufin VanRullen
- Centre National de la Recherche Scientifique, Faculté de Médecine Purpan, Toulouse 31000, France
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse 31052, France
| |
Collapse
|
27
|
Kranczioch C. Individual differences in dual-target RSVP task performance relate to entrainment but not to individual alpha frequency. PLoS One 2017; 12:e0178934. [PMID: 28604795 PMCID: PMC5467839 DOI: 10.1371/journal.pone.0178934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/22/2017] [Indexed: 11/18/2022] Open
Abstract
The attentional blink (AB) paradigm is widely used to study visual temporal attention. An important feature of the standard AB paradigm is repetitive visual stimulation, more precisely the rapid serial visual presentation (RSVP) of numerous distracters interspersed with two targets. The RSVP stream is likely to result in entrainment of visual cortex, which has been suggested to negatively affect target identification in the AB paradigm. The present EEG study tested this idea with an inter-individual differences approach. AB task performance and measures of entrainment were derived from 51 participants. Other than predicted, moderate positive correlations were observed for inter-trial coherence and performance, but only for targets not immediately preceded by other targets. A positive correlation with power was evident for targets presented in the critical AB time window. In a second step, it was tested whether the distance between individual alpha frequency and RSVP frequency mediated correlations with inter-trial coherence, as entrainment of the visual cortex through repetitive visual stimulation is particularly effective when the frequency of the stimulation matches the individual alpha frequency. However, no evidence was found supporting such link. While compatible with a number of findings related to the AB and to visual entrainment, the findings of the present study do not provide evidence for the notion that entrainment to the RSVP stream creates a neural environment unfavourable for detecting targets an RSVP stream.
Collapse
Affiliation(s)
- Cornelia Kranczioch
- School of Medicine and Health Sciences, Department of Psychology, Neuropsychology Lab, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- * E-mail:
| |
Collapse
|