1
|
Dewi N, Gartika M, Gustiono D, Kurnia D, Cahyanto A. Antimicrobial and Antibiofilm Properties of Hydroxyapatite/Nano-Hydroxyapatite in Preventing Dental Caries: A Systematic Review. Eur J Dent 2025. [PMID: 40311636 DOI: 10.1055/s-0045-1802568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Controlling biofilm is a crucial strategy and an essential component of preventing dental caries. Considerable research has been conducted in recent years on the clinical application of hydroxyapatite (HAp) and hydroxyapatite nanoparticles (nHAp) in preventing dental caries. However, these studies have yet to investigate the effectiveness or mechanism of these substances as antibacterial and antibiofilm agents. This study aimed to provide a thorough analysis of the current evidence on the antibacterial and antibiofilm characteristics of HAp/nHAp in the prevention of dental caries. Searches were conducted across five databases: Cochrane Library, PubMed, Scopus, EBSCOhost, and ScienceDirect. Google Scholar was also searched. Titles, abstracts, and full text were evaluated following the guidelines set by the Preferred Reporting Item for Systematic Review and Meta-Analyses (PRISMA). A methodological quality assessment of the studies was conducted using the QUIN tool. The initial retrieval totaled 15,047 studies, from which 3,487 were excluded. A total of 11,560 studies were screened based on the title and abstract, resulting in 24 full-text studies considered potentially eligible for inclusion (κ = 0.9599). Finally, 19 studies met all the defined inclusion criteria and were included in this comprehensive systematic review (κ = 0.8837). HAp/nHAp demonstrates antimicrobial activities against gram-negative and gram-positive bacteria and fungi. However, nHAp's antibiofilm efficacy remains limited. Further investigation is required to improve the efficacy of antibacterial and antibiofilm agents.
Collapse
Affiliation(s)
- Nurdiana Dewi
- Doctoral Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Lambung Mangkurat, Banjarmasin, Kalimantan Selatan, Indonesia
| | - Meirina Gartika
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
| | - Dwi Gustiono
- Research Center for Advanced Materials, National Research and Innovation Agency, Tangerang Selatan, Banten, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Jawa Barat, Indonesia
| | - Arief Cahyanto
- Department of Restorative Dentistry, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
2
|
Salama E, Abo El-Ela FI, Hassan WH, Farghali AA, Eweis AA, Hafez SHM, Mahmoud R. Environmental innovation: polyaniline-cuttlebone nanocomposite as a potent antimicrobial agent and a synergistic barrier against doxorubicin-induced toxicity. RSC Adv 2025; 15:6474-6491. [PMID: 40017643 PMCID: PMC11865944 DOI: 10.1039/d4ra07471h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 03/01/2025] Open
Abstract
This work emphasizes the importance of utilizing cuttlebone waste as a sustainable solution for waste management and the development of antimicrobial materials by incorporating it as a supporting phase for polyaniline (PANI) to form a nanocomposite. The three prepared materials were fully characterized using various techniques, including FTIR, XRD, SEM, EDX for elemental analysis, Brunauer-Emmett-Teller (BET) surface area measurements, particle size distribution analysis, and zeta potential measurements. The study focuses on the development of novel molecules with potential antibacterial and antifungal activity against clinical pathogens responsible for infectious diseases. The antibacterial and antifungal activities of the polyaniline/cuttlebone (PANI/CB) composite were evaluated using methods such as minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and disk diffusion for bacterial samples, as well as MIC, minimum fungicidal concentration (MFC), antifungal percentage, and disk diffusion for fungal samples. Notably, the PANI/CB composite exhibited a distinct crystallite size and characteristic XRD pattern, along with a significant BET surface area, demonstrating strong antimicrobial properties. Cuttlebone not only serves as a bioactive agent but also acts as a sustainable support to enhance the properties of polyaniline, forming a nanocomposite with a low MIC range (8-66 μg mL-1) and effective action against Gram-positive bacteria such as S. aureus, although it showed less susceptibility against Gram-negative bacteria like E. coli. The MTT assay results demonstrated that while PANI and CB alone exhibited minimal cytotoxicity on Huh7 cells, the combination of doxorubicin (DOX) with PANI/CB significantly enhanced the cytotoxic effect, suggesting a synergistic interaction that could improve the therapeutic efficacy of DOX. Additionally, the effectiveness of the polyaniline/cuttlebone composite in protecting against DOX-induced hepatic and renal damage in rats was evaluated. Tissue damage was assessed using serum markers such as alanine transaminase (ALT), aspartate transaminase (AST), urea, and creatinine. The results demonstrated a decrease in oxidative damage and significant improvements in liver and kidney function markers in the polyaniline/cuttlebone-treated groups compared to those treated with individual components. Specifically, ALT levels decreased from 48 ± 2.8 IU L-1 to 21 ± 0.4 IU L-1, AST from 195 ± 0.7 IU L-1 to 13 ± 1.08 IU L-1, urea from 86 ± 1.4 mg dL-1 to 39 ± 0.7 mg dL-1, and creatinine from 1.05 ± 0.03 mg dL-1 to 0.53 ± 0.01 mg dL-1. These findings highlight the potential of utilizing cuttlebone waste as a sustainable material in antimicrobial applications, offering an eco-friendly solution for waste management while contributing to the development of potent antimicrobial nanocomposites.
Collapse
Affiliation(s)
- Esraa Salama
- Chemistry Department, Faculty of Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University Beni-Suef 62511 Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University 62511 Beni-Suef Egypt
| | - Ahmed A Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abdullah A Eweis
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Sarah H M Hafez
- Physics Department, Higher Technology Institute in New Heliopolis Cairo Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
3
|
Habiburrohman MR, Jamilludin MA, Cahyati N, Herdianto N, Yusuf Y. Fabrication and in vitro cytocompatibility evaluation of porous bone scaffold based on cuttlefish bone-derived nano-carbonated hydroxyapatite reinforced with polyethylene oxide/chitosan fibrous structure. RSC Adv 2025; 15:5135-5150. [PMID: 39963456 PMCID: PMC11831101 DOI: 10.1039/d4ra08457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
A novel porous bone scaffold based on nano-carbonated hydroxyapatite reinforced with fibrous-like structured polyethylene oxide/chitosan network (nCHA/PEO/CS) was introduced and fabricated via freeze-drying. Prior to this, the nCHA was synthesized through a hydrothermal reaction based on cuttlefish bone (CFB, Sepia officinalis). The raw cuttlefish bone (raw-CFB) was first decomposed to obtain cuttlefish bone-derived calcium oxide (CaO-CFB) by calcination at 1000 °C, which was used for synthesizing nCHA. The chemical composition analysis showed that the nCHA formed AB-type CHA with a high carbonate content of 7.38 wt%, which is in the range of carbonate content in native bone (2-9 wt%). The Ca/P molar ratio of nCHA was 1.712, very close to the Ca/P of biological apatite of 1.71. Morphological analysis revealed that nCHA consists of nanosized particles, potentially offering a large surface area to volume to promote ion exchange and cell interaction. The excellent physicochemical and morphological properties of nCHA proposed suitability as a bone scaffold precursor combined with PEO and CS. The nCHA/PEO/CS scaffolds were freeze-dried with varying PEO/CS concentrations. Physicochemical analysis indicated that increasing the PEO/CS concentration decreased the crystallinity of the scaffold, causing it to be lower than the nCHA crystallinity, which may be beneficial for cell growth. Morphological analysis revealed that the scaffold structure comprised nCHA cross-linked within a fibrous-like structured PEO/CS network, which appropriately mimics the fibrous structure of extracellular matrix (ECM) in natural bone. However, the nCHA/PEO/CS-11 scaffold formed more appropriate pores with suitable porosity for cell development, blood vessel formation, and nutrient perfusion. The nCHA/PEO/CS-11 scaffold also demonstrated sufficient compressive strength and good swelling behavior, which may favor bone regeneration. The nCHA/PEO/CS-11 scaffold demonstrated high cytocompatibility and facilitated the adherence of MC3T3E1 cells on the scaffold surface. The nCHA/PEO/CS-11 scaffold also promoted cell osteogenic differentiation. Owing to its desirable and suitable characteristics, the nCHA/PEO/CS-11 scaffold is promising in bone tissue engineering.
Collapse
Affiliation(s)
- Musyafa Riziq Habiburrohman
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Muhammad Amir Jamilludin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Nilam Cahyati
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Nendar Herdianto
- Research Centre for Advanced Material, National Research and Innovation Agency (BRIN) South Tangerang 15314 Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| |
Collapse
|
4
|
Sivaperumal VR, Sadhasivam S, Manikandan R, Pugazhendi I, Sekar S, Lee Y, Lee S, Sekar S. Cuttlefish-Bone-Derived Hybrid Composite Scaffolds for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:196. [PMID: 39940172 PMCID: PMC11820519 DOI: 10.3390/nano15030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Current investigations into the fabrication of innovative biomaterials that stimulate cartilage development result from increasing interest due to emerging bone defects. In particular, the investigation of biomaterials for musculoskeletal therapies extensively depends on the development of various hydroxyapatite (HA)/sodium alginate (SA) composites. Cuttlefish bone (CFB)-derived composite scaffolds for hard tissue regeneration have been effectively illustrated in this investigation using a hydrothermal technique. In this, the HA was prepared from the CFB source without altering its biological properties. The as-developed HA nanocomposites were investigated through XRD, FTIR, SEM, and EDX analyses to confirm their structural, functional, and morphological orientation. The higher the interfacial density of the HA/SA nanocomposites, the more the hardness of the scaffold increased with the higher applied load. Furthermore, the HA/SA nanocomposite revealed a remarkable antibacterial activity against the bacterial strains such as E. coli and S. aureus through the inhibition zones measured as 18 mm and 20 mm, respectively. The results demonstrated a minor decrease in cell viability compared with the untreated culture, with an observed percentage of cell viability at 97.2% for the HA/SA nanocomposites. Hence, the proposed HA/SA scaffold would be an excellent alternative for tissue engineering applications.
Collapse
Affiliation(s)
- Vignesh Raj Sivaperumal
- Department of Pharmaceutical Technology, Dhanalakshmi Srinivasan Engineering College (Autonomous), Perambalur 621 212, Tamil Nadu, India;
| | - Sutha Sadhasivam
- Department of Chemistry, CMS College of Engineering, Ernapuram, Namakkal 637 003, Tamil Nadu, India;
| | - Ramalingam Manikandan
- Department of Analytical Chemistry, University of Madras, Chennai 600 025, Tamil Nadu, India;
| | - Ilanchezhiyan Pugazhendi
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (I.P.); (Y.L.); (S.L.)
| | - Saravanan Sekar
- Department of Mechanical Engineering, K. Ramakrishnan College of Technology, Trichy 621 112, Tamil Nadu, India;
| | - Youngmin Lee
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (I.P.); (Y.L.); (S.L.)
- Division of System Semiconductor, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sejoon Lee
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (I.P.); (Y.L.); (S.L.)
- Division of System Semiconductor, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sankar Sekar
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (I.P.); (Y.L.); (S.L.)
- Division of System Semiconductor, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
5
|
Balabadra KM, Panneer Selvam S, Ramadoss R, Sundar S. Hydroxyapatite synthesis and characterization from marine sources: A comparative study. J Oral Biol Craniofac Res 2024; 14:706-711. [PMID: 39391769 PMCID: PMC11466627 DOI: 10.1016/j.jobcr.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Background Hydroxyapatite (HAP) is a biocompatible material widely used in biomedical applications. Recent studies have explored various marine sources for HAP synthesis, demonstrating its potential for diverse applications. Objective This study aims to compare the characteristics of hydroxyapatite synthesized from sea shells and fish bones, specifically from the shells of Scylla olivacea (orange mud crab) and bones of Eleutheronema tetradactylum (fourfinger threadfin). Materials & methods HAP was synthesized from Scylla olivacea shells and Eleutheronema tetradactylum bones. The synthesized HAP underwent comprehensive characterization, including scanning electron microscopy (SEM) for structural analysis, hemocompatibility testing, antibacterial assays, and energy-dispersive X-ray spectroscopy (EDS) analysis. Results SEM revealed a complex structure of HAP with a clustered arrangement and biofilm-like features. HAP derived from crab shells exhibited superior structural properties compared to that from fish bones. Both sources demonstrated good hemocompatibility, essential for biomedical applications. The antibacterial assays indicated effective antibacterial properties for both HAP sources, with crab shell-derived HAP showing slightly better performance. EDS analysis confirmed the presence of key elements necessary for HAP, with a consistent composition in both sources. Conclusion Our study concludes that hydroxyapatite derived from Scylla olivacea shells exhibits superior properties compared to that from Eleutheronema tetradactylum bones. This research establishes a precedent for future investigations into other marine species, thereby broadening the scope and potential of hydroxyapatite synthesis from natural sources.
Collapse
Affiliation(s)
- Krishna Meghal Balabadra
- Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Suganya Panneer Selvam
- Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramya Ramadoss
- Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Sandhya Sundar
- Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| |
Collapse
|
6
|
Al-Rawe RA, Al-Rammahi HM, Cahyanto A, Ma'amor A, Liew YM, Sukumaran P, Wan Hassan WN. Cuttlefish-Bone-Derived Biomaterials in Regenerative Medicine, Dentistry, and Tissue Engineering: A Systematic Review. J Funct Biomater 2024; 15:219. [PMID: 39194657 DOI: 10.3390/jfb15080219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Marine ecosystems, covering 70% of Earth's surface, hold immense biodiversity and potential for biomaterials. Cuttlefish bone (CB) and marine resources have gained attention as eco-friendly biomaterials. OBJECTIVES We aim to comprehensively study biomedical applications of CB-derived materials. By evaluating both in vivo and in vitro investigations, the review seeks to uncover the diverse potential of CB in the biomedical field. METHODS A comprehensive search of electronic databases yielded 51 articles from 2408 studies. These studies encompassed in vivo animal studies and in vitro investigations. RESULTS In vivo studies employed for bone repair, dorsal subcutaneous defects, thermal wound healing, muscle injections, and avian blood testing. In vitro studies focused on HAp synthesis, scaffold development, dental material enhancement, and antimicrobial properties. Risk of bias assessments revealed varying degrees of methodological quality in both animal and in vitro studies, underscoring the need for standardised reporting and rigorous study design in future research. CONCLUSIONS This review fills a gap in the literature by providing a comprehensive overview of the applications of CB-derived materials in the biomedical field. Additionally, it offers valuable insights for researchers, clinicians, and policymakers interested in sustainable and effective biomaterials for diverse medical purposes, advancing the fields of regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Rihab Adel Al-Rawe
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- College of Dentistry, Al-Iraqia University, Baghdad 10011, Iraq
| | - Hasan M Al-Rammahi
- Department of Conservative Dentistry, Faculty of Dentistry, University of Babylon, AL Hillah City 51002, Iraq
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Restorative Dentistry, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Azman Ma'amor
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Prema Sukumaran
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London Bridge, London SE1 9RT, UK
| | - Wan Nurazreena Wan Hassan
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Baghaban Eslaminejad M. Engineering Wet-Resistant and Osteogenic Nanocomposite Adhesive to Control Bleeding and Infection after Median Sternotomy. Adv Healthc Mater 2024; 13:e2304349. [PMID: 38593272 DOI: 10.1002/adhm.202304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Median sternotomy surgery stands as one of the prevailing strategies in cardiac surgery. In this study, the cutting-edge bone adhesive is designed, inspired by the impressive adhesive properties found in mussels and sandcastle worms. This work has created an osteogenic nanocomposite coacervate adhesive by integrating a cellulose-polyphosphodopamide interpenetrating network, quaternized chitosan, and zinc, gallium-doped hydroxyapatite nanoparticles. This adhesive is characterized by robust catechol-metal coordination which effectively adheres to both hard and soft tissues with a maximum adhesive strength of 900 ± 38 kPa on the sheep sternum bone, surpassing that of commercial bone adhesives. The release of zinc and gallium cations from nanocomposite adhesives and quaternized chitosan matrix imparts remarkable antibacterial properties and promotes rapid blood coagulation, in vitro and ex vivo. It is also proved that this nanocomposite adhesive exhibits significant in vitro bioactivity, stable degradability, biocompatibility, and osteogenic ability. Furthermore, the capacity of nanocomposite coacervate to adhere to bone tissue and support osteogenesis contributes to the successful healing of a sternum bone defect in a rabbit model in vivo. In summary, these nanocomposite coacervate adhesives with promising characteristics are expected to provide solutions to clinical issues faced during median sternotomy surgery.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hossein Ahmadi Tafti
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Piras S, Salathia S, Guzzini A, Zovi A, Jackson S, Smirnov A, Fragassa C, Santulli C. Biomimetic Use of Food-Waste Sources of Calcium Carbonate and Phosphate for Sustainable Materials-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:843. [PMID: 38399094 PMCID: PMC10890559 DOI: 10.3390/ma17040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Natural and renewable sources of calcium carbonate (CaCO3), also referred to as "biogenic" sources, are being increasingly investigated, as they are generated from a number of waste sources, in particular those from the food industry. The first and obvious application of biogenic calcium carbonate is in the production of cement, where CaCO3 represents the raw material for clinker. Overtime, other more added-value applications have been developed in the filling and modification of the properties of polymer composites, or in the development of biomaterials, where it is possible to transform calcium carbonate into calcium phosphate for the substitution of natural hydroxyapatite. In the majority of cases, the biological structure that is used for obtaining calcium carbonate is reduced to a powder, in which instance the granulometry distribution and the shape of the fragments represent a factor capable of influencing the effect of addition. As a result of this consideration, a number of studies also reflect on the specific characteristics of the different sources of the calcium carbonate obtained, while also referring to the species-dependent biological self-assembly process, which can be defined as a more "biomimetic" approach. In particular, a number of case studies are investigated in more depth, more specifically those involving snail shells, clam shells, mussel shells, oyster shells, eggshells, and cuttlefish bones.
Collapse
Affiliation(s)
- Sara Piras
- School of Science and Technology, Chemistry Section, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (S.P.); (A.G.)
| | - Saniya Salathia
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Alessandro Guzzini
- School of Science and Technology, Chemistry Section, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (S.P.); (A.G.)
| | - Andrea Zovi
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Stefan Jackson
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Aleksei Smirnov
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Cristiano Fragassa
- Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, 40133 Bologna, Italy;
| | - Carlo Santulli
- School of Science and Technology, Geology Section, Università di Camerino, Via Gentile III da Varano 7, 62032 Camerino, Italy
| |
Collapse
|
9
|
Fernández-Penas R, Verdugo-Escamilla C, Triunfo C, Gärtner S, D'Urso A, Oltolina F, Follenzi A, Maoloni G, Cölfen H, Falini G, Gómez-Morales J. A sustainable one-pot method to transform seashell waste calcium carbonate to osteoinductive hydroxyapatite micro-nanoparticles. J Mater Chem B 2023; 11:7766-7777. [PMID: 37476854 DOI: 10.1039/d3tb00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
We have developed a straightforward, one-pot, low-temperature hydrothermal method to transform oyster shell waste particles (bCCP) from the species Crassostrea gigas (Mg-calcite, 5 wt% Mg) into hydroxyapatite (HA) micro/nanoparticles. The influence of the P reagents (H3PO4, KH2PO4, and K2HPO4), P/bCCP molar ratios (0.24, 0.6, and 0.96), digestion temperatures (25-200 °C), and digestion times (1 week-2 months) on the transformation process was thoroughly investigated. At 1 week, the minimum temperature to yield the full transformation significantly reduced from 160 °C to 120 °C when using K2HPO4 instead of KH2PO4 at a P/bCCP ratio of 0.6, and even to 80 °C at a P/bCCP ratio of 0.96. The transformation took place via a dissolution-reprecipitation mechanism driven by the favorable balance between HA precipitation and bCCP dissolution, due to the lower solubility product of HA than that of calcite at any of the tested temperatures. Both the bCCP and the derived HA particles were cytocompatible for MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells, and additionally, they promoted the osteogenic differentiation of m17.ASC, especially the HA particles. Because of their physicochemical features and biological compatibility, both particles could be useful osteoinductive platforms for translational applications in bone tissue engineering.
Collapse
Affiliation(s)
- Raquel Fernández-Penas
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras, no 4, 18100 Armilla, Spain.
| | | | - Carla Triunfo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032 Fano, Italy
| | - Stefanie Gärtner
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, D-78457 Konstanz, Germany
| | - Annarita D'Urso
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, A. Avogadro" Via Solaroli, 17, 28100 Novara, Italy
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, A. Avogadro" Via Solaroli, 17, 28100 Novara, Italy
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, A. Avogadro" Via Solaroli, 17, 28100 Novara, Italy
| | - Gabriele Maoloni
- Plant Ascoli Piceno, Finproject S.p.A., 3100 Ascoli Piceno, Italy
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, D-78457 Konstanz, Germany
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras, no 4, 18100 Armilla, Spain.
| |
Collapse
|
10
|
Bhagyaraj S, Al-Ghouti MA, Khan M, Kasak P, Krupa I. Modified os sepiae of Sepiella inermis as a low cost, sustainable, bio-based adsorbent for the effective remediation of boron from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71014-71032. [PMID: 35589901 PMCID: PMC9515050 DOI: 10.1007/s11356-022-20578-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of boron in low concentration is essential; however, a higher concentration of boron source in water has a toxic effect on humans as well as have retard effect on agricultural plant growth. Thus, the affordable and facile method to remediate water from higher boron concentrations is highly demanded. This report explores the ability of naturally occurring sustainable bio-waste os sepiae (cuttlefish bone, CFB) as an effective adsorbent for the removal of boron from water. Chemical activation of the os sepiae powder was examined to improve the efficiency of boron adsorption. A batch adsorption study for boron considering various parameters such as chemical modification of os sepiae, pH, initial boron concentration, and the temperature was scrutinized. Untreated (CFB), alkali-treated (CFB-D) and acid-treated (CFB-A) os sepiae powders were investigated and the adsorption capacities reached up to 53.8 ± 0.04 mg/g, 66.4 ± 0.02 mg/g and 69.8 ± 0.02 mg/g, respectively, at optimal pH 8 and 25 °C. Boron adsorption by CFB, CFB-D, and CFB-A were well fitted with the linear Freundlich adsorption isotherm model with a correlation coefficient of 99.4%, 99.8%, and 99.7% respectively. Thermodynamic parameters indicated that the adsorption of boron by CFB is an exothermic process and more feasible at a lower temperature around 25 °C. Moreover, detailed morphological and chemical characterization of the influence of adsorbed boron on adsorbents was conducted and discussed. The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis spectra confirms the involvement of various functional groups including amino, carbonate (CO3)2-, and hydroxyl groups on the adsorbent in the adsorption mechanisms for boron removal. The results indicate that CFB can be an excellent example for the recycling and reuse of biowaste for water remediation.
Collapse
Affiliation(s)
- Sneha Bhagyaraj
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mariam Khan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Igor Krupa
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
11
|
Paknia S, Izadi Z, Moosaipour M, Moradi S, Khalilzadeh B, Jaymand M, Samadian H. Fabrication and characterization of electroconductive/osteoconductive hydrogel nanocomposite based on poly(dopamine-co-aniline) containing calcium phosphate nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Mehnath S, Muthuraj V, Jeyaraj M. Biomimetic and osteogenic natural HAP coated three dimensional implant for orthopaedic application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
14
|
Parajuli K, Malla KP, Panchen N, G.C. G, Adhikari R. Isolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hydroxyapatite nanoparticles were isolated from a biowaste, buffalo bone, via the thermal decomposition method. The resulting white powdered material was characterized by Fourier Transformed Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) analysis. The FTIR spectra confirmed that a heat treatment of the bone powder at the temperature at or above 1223 K removed the organic moieties leading to the formation of a pure inorganic biomineral. The XRD analyses showed that the obtained material was nanocrystalline HAp (nano-HAp) with an average grain diameter of 25 nm, while their rod-shaped particles with their tightly agglomerated morphology were confirmed by the SEM analysis. Besides Calcium (Ca), Phosphorous (P), and Oxygen (O), trace amounts of Aluminum (Al), Magnesium (Mg), Copper (Cu), Zirconium (Zr) and Carbon (C) were also found by EDX analysis. Antibacterial activity of nano-HAp against six standard isolates was investigated by the agar well diffusion method and found to be more susceptible to Acinetobacter baumannii while other standard strains such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus showed lesser susceptibility and no antibacterial activity was noticed against Salmonella typhi and Methicillin resistant Staphylococcus aureus (MRSA) with the analysed concentration of nano-HAp suggesting its potential application in biomedical fields.
Collapse
|
15
|
Balu SK, Sampath V, Andra S, Alagar S, Manisha Vidyavathy S. Fabrication of carbon and silver nanomaterials incorporated hydroxyapatite nanocomposites: Enhanced biological and mechanical performances for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112296. [PMID: 34474847 DOI: 10.1016/j.msec.2021.112296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Hydroxyapatite is widely utilized for different biomedical applications because of its outstanding biocompatibility and bioactivity. Cuttlefish bones, which are available aplenty, are both inexpensive and eco-friendly sources for calcium carbonate. In the present study, cuttlefish bones-derived HAp nanorods have been utilized to fabricate HAp nanocomposites incorporating 1, 3 and 5 wt% each of GO, MWCNTs, GONRs and Ag NPs. Characterization using such techniques as XRD, FTIR, HRSEM and EDS was performed to analyze the physicochemical properties of nanocomposites, and MTT assay, hemolysis, bioactivity and drug release to evaluate the biological properties. The XRD and HRSEM results reveal that crystallite and particle size increase with increasing wt% of carbon nanomaterials and Ag NPs. However, the addition of nanomaterials did not modify the shape of HAp. The MTT assay and hemolysis results suggest GONRs possess better biocompatibility than GO and CNTs due to their smooth edge structure. While adding carbon materials up to 3 wt% caused an increase in the hardness, adding up to 5 wt% of them caused a decrease in the hardness due to the agglomeration of the particles. Biocompatibility and Vicker's hardness studies show that adding carbon nanomaterials up to 3 wt% caused significant improvement in biocompatibility and mechanical properties. Antibacterial activity test was performed to analyze the ability to preclude the formation of biofilms. The results showed better activity for silver-incorporated nanocomposites in the presence of E. coli and S. aureus bacteria. Drug release studies were performed using lidocaine drug and the results showed nearly similar drug release profile for all the samples except HAg3. Finally, nanocomposite HRA3 could be a suitable candidate for biomedical applications since it shows better biological and mechanical properties than GO and MWCNTs nanocomposites.
Collapse
Affiliation(s)
- Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu 600025, India
| | - V Sampath
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Swetha Andra
- Center for Nanoscience and Technology, Chennai Institute of Technology, Chennai, Tamil Nadu 600069, India
| | - Srinivasan Alagar
- Institute of Nanoscience and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - S Manisha Vidyavathy
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu 600025, India.
| |
Collapse
|
16
|
Balu SK, Andra S, Jeevanandam J, S MV, V S. Emerging marine derived nanohydroxyapatite and their composites for implant and biomedical applications. J Mech Behav Biomed Mater 2021; 119:104523. [PMID: 33940538 DOI: 10.1016/j.jmbbm.2021.104523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 01/30/2023]
Abstract
Implant materials must mimic natural human bones with biocompatibility, osteoconductivity and mechanical stability to successfully replace damaged or disease-affected bones. Synthetic hydroxyapatite was incorporated with bioglass to mimic natural bones for replacing conventional implant materials which has led to certain toxicity issues. Hence, hydroxyapatite (HAp) are recently gaining applicational importance as they are resembling the structure and function of natural bones. Further, nanosized HAp is under extensive research to utilize them as a potential replacement for traditional implants with several exclusive properties. However, chemical synthesis of nano-HAp exhibited toxicity towards normal and healthy cells. Recently, biogenic Hap synthesis from marine and animal sources are introduced as a next generation implant materials, due to their mineral ion and significant porous architecture mediated biocompatibility and bone bonding ability, compared to synthetic HAp. Thus, the purpose of the paper is to give a bird's eye view into the conventional approaches for fabricating nano-HAp, its limitations and the significance of using marine organisms and marine food wastes as a precursor for biogenic nano-Hap production. Moreover, in vivo and in vitro analyses of marine source derived nano-HAp and their potential biomedical applications were also discussed.
Collapse
Affiliation(s)
- Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Swetha Andra
- Center for Nanoscience and Technology, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
| | - Jaison Jeevanandam
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Manisha Vidyavathy S
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sampath V
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
17
|
Zhao Z, Li Q, Gong J, Li Z, Zhang J. A poly(allylamine hydrochloride)/poly(styrene sulfonate) microcapsule-coated cotton fabric for stimulus-responsive textiles. RSC Adv 2020; 10:17731-17738. [PMID: 35515608 PMCID: PMC9053607 DOI: 10.1039/d0ra02474k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022] Open
Abstract
This study reports the design of a stimulus-responsive fabric incorporating a combination of microcapsules, containing polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) sodium salt (PSS), formed via a layer-by-layer (LBL) approach. The use of PAH and PSS ensured that the microcapsule structure was robust and pH-sensitive. SEM and TEM studies showed that the composite microcapsule (PAH/PSS) n PAH had a spherical morphology with a hollow structure. FTIR demonstrated the presence of PAH and PSS, confirming the composition of the microcapsule shell. DSC showed that the microcapsules were thermally stable. The size of the microcapsules ranged from 4 μm to 6 μm. The hollow microcapsules can be used as a carrier for loading and releasing chemicals under different pH conditions. The release rate of Rhodamine-B from (PAH/PSS) n PAH microcapsules was higher at pH 5.8 than that at 7.4, confirming the pH sensitivity. The hollow structure of (PAH/PSS) n PAH microcapsules is expected to act as a carrier and medium to introduce functional chemicals into the fabric with long-lasting property and pH stimulus responsivity. Furthermore, a positively charged compound with ethylene oxide groups was added during the coating process as a crosslinker binding (PAH/PSS)2PAH for the microcapsules with the cotton fabric more efficiently. Using this method, numerous substances, e.g., drugs, dyes, natural herbs, or perfumes, could be stored into the LBL microcapsules for a relatively long time, constantly releasing them from the coated textiles. Since LBL microcapsules were easy to combine with fabrics, this study provided a feasible approach for the preparation of functional stimulus-responsive textiles.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province Qingdao 266071 Shandong China
| |
Collapse
|
18
|
Qi ML, Yao S, Liu XC, Wang X, Cui F. Nanosheet-assembled carbonated hydroxyapatite microspheres prepared by an EDTA-assisted hydrothermal homogeneous precipitation route. CrystEngComm 2020. [DOI: 10.1039/d0ce00305k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined carbonated hydroxyapatite microspheres assembled from nanosheets were synthesized by a Na2EDTA-assisted hydrothermal homogeneous precipitation route.
Collapse
Affiliation(s)
- Mei-li Qi
- School of Transportation Civil Engineering
- Shandong Jiaotong University
- Ji'nan 250357
- China
- School of Materials Science and Engineering
| | - Shengkun Yao
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device
- School of Physics and Electronics
- Shandong Normal University
- Ji'nan 250358
- China
| | - Xiao-Cun Liu
- School of Transportation Civil Engineering
- Shandong Jiaotong University
- Ji'nan 250357
- China
| | - Xiaoning Wang
- School of Transportation Civil Engineering
- Shandong Jiaotong University
- Ji'nan 250357
- China
| | - Fengkun Cui
- School of Transportation Civil Engineering
- Shandong Jiaotong University
- Ji'nan 250357
- China
| |
Collapse
|