1
|
Kim SO, Kim SG, Ahn H, Yoo J, Jang J, Park TH. Ni-rGO Sensor Combined with Human Olfactory Receptor-Embedded Nanodiscs for Detecting Gas-Phase DMMP as a Simulant of Nerve Agents. ACS Sens 2023; 8:3095-3103. [PMID: 37555584 DOI: 10.1021/acssensors.3c00744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Nerve agents are organophosphorus toxic chemicals that can inhibit acetylcholinesterase, leading to paralysis of the nervous system and death. Early detection of nerve agents is important for safety issues. Dimethyl methylphosphonate (DMMP) is widely used as a simulant of nerve agents, and many studies have been conducted using DMMP as a substitute for detecting nerve agents. Despite many studies on sensors for detecting DMMP, they have limitations in sensitivity and selectivity. To overcome these limitations, a nickel-decorated reduced graphene oxide (Ni-rGO) sensor with human olfactory receptor hOR2T7 nanodiscs was utilized to create a bioelectronic nose platform for DMMP gas detection. hOR2T7 was produced and reconstituted into nanodiscs for enhancing the sensor's stability, especially for detection in a gas phase. It could detect DMMP gas selectively and repeatedly at a concentration of 1 ppb. This sensitive and selective bioelectronic nose can be applied as a practical tool for the detection of gaseous chemical warfare agents in military and safety fields.
Collapse
Affiliation(s)
- So-Ong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Gun Kim
- Samsung Electronics, San #16 Banwol-Dong, Hwasung, Gyeonggi-do 18448, Republic of Korea
| | - Hyenjin Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Liu F, Song H, Wu L, Zhao J, Yao X, Fu K, Jin Z, Liu J, Wang F, Wang Z. Excellent NO2 gas sensor based on the oxygen inhibiting effect of Ni3+-doped WO3. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Rohman YM, Sukowati R, Priyanto A, Hapidin DA, Edikresnha D, Khairurrijal K. Quartz Crystal Microbalance Coated with Polyacrylonitrile/Nickel Nanofibers for High-Performance Methanol Gas Detection. ACS OMEGA 2023; 8:13342-13351. [PMID: 37065082 PMCID: PMC10099416 DOI: 10.1021/acsomega.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
This study describes a sensor based on quartz crystal microbalance (QCM) coated by polyacrylonitrile (PAN) nanofibers containing nickel nanoparticles for methanol gas detection. The PAN/nickel nanofibers composites were made via electrospinning and electrospray methods. The QCM sensors coated with the PAN/nickel nanofiber composite were evaluated for their sensitivities, selectivities, and stabilities. The morphologies and elemental compositions of the sensors were examined using a scanning electron microscope-energy dispersive X-ray. A Fourier Transform Infrared spectrometer was used to investigate the elemental bonds within the nanofiber composites. The QCM sensors coated with PAN/nickel nanofibers offered a high specific surface area to enhance the QCM sensing performance. They exhibited excellent sensing characteristics, including a high sensitivity of 389.8 ± 3.8 Hz/SCCM, response and recovery times of 288 and 251 s, respectively, high selectivity for methanol compared to other gases, a limit of detection (LOD) of about 1.347 SCCM, and good long-term stability. The mechanism of methanol gas adsorption by the PAN/nickel nanofibers can be attributed to intermolecular interactions, such as the Lewis acid-base reaction by PAN nanofibers and hydrogen bonding by nickel nanoparticles. The results suggest that QCM-coated PAN/nickel nanofiber composites show great potential for the design of highly sensitive and selective methanol gas sensors.
Collapse
Affiliation(s)
- Yadi Mulyadi Rohman
- Department
of Physics, Faculty of Mathematics and Naturals Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, West Java 40132, Indonesia
| | - Riris Sukowati
- Department
of Physics, Faculty of Mathematics and Naturals Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, West Java 40132, Indonesia
| | - Aan Priyanto
- Department
of Physics, Faculty of Mathematics and Naturals Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, West Java 40132, Indonesia
- Doctoral
Program of Physics, Faculty of Mathematics and Naturals Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, West Java 40132, Indonesia
| | - Dian Ahmad Hapidin
- Department
of Physics, Faculty of Mathematics and Naturals Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, West Java 40132, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Naturals Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, West Java 40132, Indonesia
- Research
Center for Biosciences and Biotechnology, University Center of Excellence-Nutraceutical, Institut Teknologi
Bandung, Jalan Ganesa
10, Bandung, West Java 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Naturals Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, West Java 40132, Indonesia
- Research
Center for Biosciences and Biotechnology, University Center of Excellence-Nutraceutical, Institut Teknologi
Bandung, Jalan Ganesa
10, Bandung, West Java 40132, Indonesia
- Department
of Physics, Faculty of Science, Institut
Teknologi Sumatera, Jalan
Terusan Ryacudu, Way Huwi, Lampung 35365, Indonesia
| |
Collapse
|
4
|
Kamathe V, Nagar R. Morphology-driven gas sensing by fabricated fractals: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1187-1208. [PMID: 34858773 PMCID: PMC8593696 DOI: 10.3762/bjnano.12.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Fractals are intriguing structures that repeat themselves at various length scales. Interestingly, fractals can also be fabricated artificially in labs under controlled growth environments and be explored for various applications. Such fractals have a repeating unit that spans in length from nano- to millimeter range. Fractals thus can be regarded as connectors that structurally bridge the gap between the nano- and the macroscopic worlds and have a hybrid structure of pores and repeating units. This article presents a comprehensive review on inorganic fabricated fractals (fab-fracs) synthesized in labs and employed as gas sensors across materials, morphologies, and gas analytes. The focus is to investigate the morphology-driven gas response of these fab-fracs and identify key parameters of fractal geometry in influencing gas response. Fab-fracs with roughened microstructure, pore-network connectivity, and fractal dimension (D) less than 2 are projected to be possessing better gas sensing capabilities. Fab-fracs with these salient features will help in designing the commercial gas sensors with better performance.
Collapse
Affiliation(s)
- Vishal Kamathe
- Nanomaterials for Energy Applications Lab, Applied Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, Maharashtra, India
| | - Rupali Nagar
- Nanomaterials for Energy Applications Lab, Applied Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, Maharashtra, India
| |
Collapse
|