1
|
Chandraiahgari CR, Gottardi G, Speranza G, Muzzi B, Dalessandro D, Pedrielli A, Micheli V, Bartali R, Laidani NB, Testi M. RF Sputtering of Gold Nanoparticles in Liquid and Direct Transfer to Nafion Membrane for PEM Water Electrolysis. MEMBRANES 2025; 15:115. [PMID: 40277985 PMCID: PMC12028722 DOI: 10.3390/membranes15040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency (RF) magnetron sputtering and by subsequently transferring them to Nafion ionomer, fabricating a catalyst-coated membrane (CCM), an essential component of the proton exchange membrane water electrolyzer (PEMWE). The samples were systematically characterized at different stages of process development. The innovative transfer process resulted in a monodispersed homogeneous distribution of catalyst particles inside CCM while retaining their nascent nanoscale topography. The chemical analysis confirmed the complete removal of the trapped PEG through the process optimization. The electrochemical catalytic activity of the optimized CCM was verified, and the hydrogen evolution reaction (HER) in acidic media appeared outstanding, a vital step in water electrolysis toward H2 production. Therefore, this first study highlights the advantages of RF sputtering in liquid for nanoparticle synthesis and its direct application in preparing CCM, paving the way for the development of innovative membrane preparation techniques for water electrolysis.
Collapse
Affiliation(s)
- Chandrakanth Reddy Chandraiahgari
- Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.G.); (D.D.); (V.M.); (R.B.); (N.B.L.); (M.T.)
| | - Gloria Gottardi
- Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.G.); (D.D.); (V.M.); (R.B.); (N.B.L.); (M.T.)
| | - Giorgio Speranza
- Center for Sensors and Devices, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.S.); (A.P.)
| | - Beatrice Muzzi
- ICCOM, National Research Council (CNR), Sesto Fiorentino, 50019 Florence, Italy;
| | - Domenico Dalessandro
- Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.G.); (D.D.); (V.M.); (R.B.); (N.B.L.); (M.T.)
| | - Andrea Pedrielli
- Center for Sensors and Devices, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.S.); (A.P.)
| | - Victor Micheli
- Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.G.); (D.D.); (V.M.); (R.B.); (N.B.L.); (M.T.)
| | - Ruben Bartali
- Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.G.); (D.D.); (V.M.); (R.B.); (N.B.L.); (M.T.)
| | - Nadhira Bensaada Laidani
- Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.G.); (D.D.); (V.M.); (R.B.); (N.B.L.); (M.T.)
| | - Matteo Testi
- Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy; (G.G.); (D.D.); (V.M.); (R.B.); (N.B.L.); (M.T.)
| |
Collapse
|
2
|
Nguyenova HY, Hubalek Kalbacova M, Dendisova M, Sikorova M, Jarolimkova J, Kolska Z, Ulrychova L, Weber J, Reznickova A. Stability and biological response of PEGylated gold nanoparticles. Heliyon 2024; 10:e30601. [PMID: 38742054 PMCID: PMC11089375 DOI: 10.1016/j.heliyon.2024.e30601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.
Collapse
Affiliation(s)
- Hoang Yen Nguyenova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Marcela Dendisova
- Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Miriama Sikorova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
| | - Jaroslava Jarolimkova
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Zdenka Kolska
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Lucie Ulrychova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Alena Reznickova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| |
Collapse
|
3
|
Dhanapal A, Thiruvengadam M, Vairavanathan J, Venkidasamy B, Easwaran M, Ghorbanpour M. Nanotechnology Approaches for the Remediation of Agricultural Polluted Soils. ACS OMEGA 2024; 9:13522-13533. [PMID: 38559935 PMCID: PMC10975622 DOI: 10.1021/acsomega.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.
Collapse
Affiliation(s)
- Anand
Raj Dhanapal
- Chemistry
and Bioprospecting Division, Institute of Forest Genetics and Tree
Breeding (IFGTB), Forest Campus, Indian
Council of Forestry Research and Education (ICFRE), Coimbatore 641 002, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department
of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic
of Korea
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Jayavarshini Vairavanathan
- Department
of Biotechnology, Karpagam Academy of Higher
Education, Coimbatore 641 021, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department
of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals,
Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil
Nadu, India
| | - Maheswaran Easwaran
- Department
of Research Analytics, Saveetha Dental College and Hospitals, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Mansour Ghorbanpour
- Department
of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
- Institute
of Nanoscience and Nanotechnology, Arak
University, Arak 38156-8-8349, Iran
| |
Collapse
|
4
|
Kashin AS, Prima DO, Arkhipova DM, Ananikov VP. An Unusual Microdomain Factor Controls Interaction of Organic Halides with the Palladium Phase and Influences Catalytic Activity in the Mizoroki-Heck Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302999. [PMID: 37381097 DOI: 10.1002/smll.202302999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
In this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase). Previously, it is assumed that molecular level factors, namely, carbon-halogen bond strength and the ease of bond breakage, are the sole factors determining the reactivity of aryl halides in catalytic transformations. The present work reports a new factor connected with the nature of the organic substrates used and their ability to form a microdomain structure and concentrate metallic species, highlighting the importance of considering both the molecular and microscale properties of the reaction mixtures.
Collapse
Affiliation(s)
- Alexey S Kashin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Darya O Prima
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Daria M Arkhipova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
5
|
Eneren P, Sergievskaya A, Aksoy YT, Umek P, Konstantinidis S, Vetrano MR. Time-resolved in situ nanoparticle size evolution during magnetron sputtering onto liquids. NANOSCALE ADVANCES 2023; 5:4809-4818. [PMID: 37705790 PMCID: PMC10496901 DOI: 10.1039/d3na00312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
Despite extensive research since 1996, there are still open questions regarding the primary location of the nucleation process, the growth mechanism of the nanoparticles (NPs), and the influence of the liquid properties on the ultimate size of the NPs for the magnetron sputtering of metals onto liquids. Hence, for the first time to the authors' knowledge, the particle size evolution is in situ and in real-time examined during and after the sputtering of the silver atoms onto silicone oil, i.e., Sputtering onto Liquids (SoL) process. The particle size distribution (PSD) is measured via the Light Extinction Spectroscopy (LES) technique, and the deposition rate and stirring speed effects on the PSDs are analyzed. Based on De Brouckere mean diameters, the size evolution of silver nanoparticles (Ag NPs) over time is monitored. Ag NPs bigger than 20 nm are detected, and the PSDs are shown to be poly-disperse, which is also supported by the ex situ TEM measurements and in situ time-resolved absorption spectra. Moreover, it is shown that aggregation and growth of Ag NPs occur both at the plasma-liquid interface and inside the silicone oil during and after the magnetron sputtering. Despite the same amount of deposited silver, the growth kinetics of Ag NPs in silicone oil vary at different deposition rates. In particular, at higher deposition rates, larger NPs are formed. Stirring is seen to help disaggregate the particle lumps. Faster stirring does not substantially influence the final size but promotes the formation of smaller NPs (<20 nm). Also, low colloidal stability of Ag NPs in silicone oil is observed.
Collapse
Affiliation(s)
- Pinar Eneren
- KU Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion (TME) B-3001 Leuven Belgium
| | - Anastasiya Sergievskaya
- University of Mons, Plasma-Surface Interaction Chemistry (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering B-7000 Mons Belgium
| | - Yunus Tansu Aksoy
- KU Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion (TME) B-3001 Leuven Belgium
| | - Polona Umek
- Jožef Stefan Institute, Department of Condensed Matter Physics Ljubljana Slovenia
| | - Stephanos Konstantinidis
- University of Mons, Plasma-Surface Interaction Chemistry (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering B-7000 Mons Belgium
| | - Maria Rosaria Vetrano
- KU Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion (TME) B-3001 Leuven Belgium
| |
Collapse
|
6
|
Sergievskaya A, Alem H, Konstantinidis S. Magnetron sputtering onto nonionic surfactant for 1-step preparation of metal nanoparticles without additional chemical reagents. NANOTECHNOLOGY 2023; 34:265601. [PMID: 36972569 DOI: 10.1088/1361-6528/acc7a9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Plasma-based sputtering onto liquids (SoL) is a straightforward approach for synthesizing small metal nanoparticles (NPs) without additional stabilizing reagents. In this work, nonionic surfactant Triton X-100 was used for the first time as a host liquid for the SoL process and the production of colloidal solutions of gold, silver and copper NPs was demonstrated. The average diameter of spherical Au NPs lies in the range from 2.6 to 5.5 nm depending on the conditions. The approach presented here opens the pathway to the production of concentrated dispersions of metal NPs of high purity that can be dispersed in water for future usage, therefore extending further the reach of this synthesis pathway.
Collapse
Affiliation(s)
| | - Halima Alem
- Université de Lorraine, CNRS, IJL, Nancy, France
| | | |
Collapse
|
7
|
Alves ACPM, Santos LMNBF, Bastos M, Costa JCS. Confined Silver Nanoparticles in Ionic Liquid Films. Molecules 2023; 28:molecules28073029. [PMID: 37049791 PMCID: PMC10095659 DOI: 10.3390/molecules28073029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
This work reports the formation of silver nanoparticles (AgNPs) by sputter deposition in thin films of three different ionic liquids (ILs) with the same anion (bis(trifluoromethylsulfonyl)imide) and cation (imidazolium), but with different alkyl chain lengths and symmetries in the cationic moiety ([C4C1im][NTf2], [C2C2im][NTf2], and [C5C5im][NTf2]). Ionic liquid (IL) films in the form of microdroplets with different thicknesses (200 to 800 monolayers) were obtained through vacuum thermal evaporation onto glass substrates coated with indium tin oxide (ITO). The sputtering process of the Ag onto the ILs when conducted simultaneously with argon plasma promoted the coalescence of the ILs’ droplets and the formation, incorporation, and stabilization of the metallic nanoparticles in the coalesced IL films. The formation/stabilization of the AgNPs in the IL films was confirmed using high-resolution scanning electron microscopy (SEM) and UV-Vis spectroscopy. It was found that the IL films with larger thicknesses (600 and 800 monolayers) were better media for the formation of AgNPs. Among the ILs used, [C5C5im][NTf2] was found to be particularly promising for the stabilization of AgNPs. The use of larger IL droplets as capture media was found to promote a better stabilization of the AgNPs, thereby reducing their tendency to aggregate.
Collapse
|
8
|
Ibrahim S, Ntomprougkidis V, Goutte M, Monier G, Traïkia M, Andanson JM, Bonnet P, Bousquet A. Reactive sputtering onto an ionic liquid, a new synthesis route for bismuth-based nanoparticles. NANOSCALE 2023; 15:5499-5509. [PMID: 36853235 DOI: 10.1039/d2nr07028f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metallic bismuth and Bi-oxyfluoride nanoparticles (NPs) are successfully synthesized by non-reactive and reactive sputtering of a Bi target onto 1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide ([BMIM][TFSI]) ionic liquid (IL). Non-reactive sputtering is realized in pure Ar plasma, where isotropic, well crystallized and dispersed Bi NPs of 3-7 nm are obtained. The diameter and the size distribution of these NPs do not significantly vary with the power, gas pressure, and sputtering time; but these sputtering parameters seem to influence the NP concentration. Then, the introduction of O2 and CF4 gases in addition to Ar enables the reaction of radicals from plasma with Bi clusters at the liquid's top surface to form Bi-oxyfluoride NPs of 3-12 nm in diameter with photocatalytic activity. Hence, the reactive sputtering onto an IL is an efficient, original and promising method for synthesizing Bi-based compound NPs. Finally, we propose a mechanism based on reactions of species from plasma at the IL surface to explain the formation of Bi-compounds by reactive sputtering.
Collapse
Affiliation(s)
- Sara Ibrahim
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Vitalios Ntomprougkidis
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Mathias Goutte
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Guillaume Monier
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Jean-Michel Andanson
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Pierre Bonnet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Angelique Bousquet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
9
|
Sergievskaya A, Absil R, Chauvin A, Yusenko KV, Veselý J, Godfroid T, Konstantinidis S. Sputtering onto liquids: how does the liquid viscosity affect the formation of nanoparticles and metal films? Phys Chem Chem Phys 2023; 25:2803-2809. [PMID: 36412107 DOI: 10.1039/d2cp03038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper reports on the effect of the solvent viscosity on the formation of gold nanoparticles (Au NPs) during the sputtering onto liquid (SoL) process. All other parameters related to the plasma and the host liquid are kept constant. SoL is a simple highly reproducible approach for the preparation of colloidal dispersions of small naked NPs. The properties of the final product are determined by both the sputtering parameters and the host liquid characteristics. As a model system we chose to sputter a gold target by a direct-current magnetron discharge onto a line of polymerized rapeseed oils having similar surface tension (32.6-33.1 mJ m-2 at RT). It was found that well-dispersed Au NPs grow in the bulk solution of oils with low viscosities (below 630 cP at 25 °C), while a gold film forms onto the surface of high viscosity liquids (more than 1000 cP at 25 °C). The mean diameter of the individual Au NPs is in the range of about 2.1-2.5 nm according to transmission electron microscopy.
Collapse
Affiliation(s)
- Anastasiya Sergievskaya
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium.
| | - Rémi Absil
- Green Frix S.A., Rue de la forêt 2, 7522 Blandain, Belgium
| | - Adrien Chauvin
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium. .,Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
| | - Kirill V Yusenko
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, D-12489 Berlin, Germany
| | - Jozef Veselý
- Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
| | - Thomas Godfroid
- Materia Nova Research Center, 3 Avenue Nicolas Copernic, Parc Initialis, 7000 Mons, Belgium
| | - Stephanos Konstantinidis
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|
10
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. BIOSENSORS 2022; 12:892. [PMID: 36291028 PMCID: PMC9599941 DOI: 10.3390/bios12100892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/30/2023]
Abstract
In recent years, there has been immense advancement in the development of nanobiosensors as these are a fundamental need of the hour that act as a potential candidate integrated with point-of-care-testing for several applications, such as healthcare, the environment, energy harvesting, electronics, and the food industry. Nanomaterials have an important part in efficiently sensing bioreceptors such as cells, enzymes, and antibodies to develop biosensors with high selectivity, peculiarity, and sensibility. It is virtually impossible in science and technology to perform any application without nanomaterials. Nanomaterials are distinguished from fine particles used for numerous applications as a result of being unique in properties such as electrical, thermal, chemical, optical, mechanical, and physical. The combination of nanostructured materials and biosensors is generally known as nanobiosensor technology. These miniaturized nanobiosensors are revolutionizing the healthcare domain for sensing, monitoring, and diagnosing pathogens, viruses, and bacteria. However, the conventional approach is time-consuming, expensive, laborious, and requires sophisticated instruments with skilled operators. Further, automating and integrating is quite a challenging process. Thus, there is a considerable demand for the development of nanobiosensors that can be used along with the POCT module for testing real samples. Additionally, with the advent of nano/biotechnology and the impact on designing portable ultrasensitive devices, it can be stated that it is probably one of the most capable ways of overcoming the aforementioned problems concerning the cumulative requirement for the development of a rapid, economical, and highly sensible device for analyzing applications within biomedical diagnostics, energy harvesting, the environment, food and water, agriculture, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Department of Research & Development, Renalyx Health Systems (P) Limited, Bengaluru 560004, Karnataka, India
| | - Narasimha H. Ayachit
- Department of Physics, Visvesvaraya Technological University (VTU), Belagavi 590018, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
11
|
Akiyoshi K, Watanabe Y, Kameyama T, Kawawaki T, Negishi Y, Kuwabata S, Torimoto T. Composition control of alloy nanoparticles consisting of bulk-immiscible Au and Rh metals via an ionic liquid/metal sputtering technique for improving their electrocatalytic activity. Phys Chem Chem Phys 2022; 24:24335-24344. [PMID: 36177988 DOI: 10.1039/d2cp01461k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuRh bimetallic alloy nanoparticles (NPs) were successfully prepared by simultaneous sputtering of Au and Rh in a room-temperature ionic liquid (RTIL) of N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4). Bimetallic AuRh alloy NPs of 1-2 nm in size were formed in the RTIL. The alloy composition was controllable by changing the surface areas of Au and Rh plates used as sputtering targets. Loading thus-obtained AuRh NPs on carbon black (CB) powders increased the size of AuRh NPs to ca. 2-8 nm, depending on the Au/Rh ratio. The electrocatalytic activity for oxygen reduction reaction (ORR) of AuRh NP-loaded CB catalysts showed a volcano-type dependence on their composition, in which AuRh NPs with Au surface coverage of 62% exhibited the optimal ORR activity, the specific activity being ca. 5 times higher than that of pure Rh NPs.
Collapse
Affiliation(s)
- Kazutaka Akiyoshi
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Yumezo Watanabe
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Susumu Kuwabata
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
12
|
Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173066. [PMID: 36080103 PMCID: PMC9459703 DOI: 10.3390/nano12173066] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.
Collapse
Affiliation(s)
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Felix Tettey
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aakash Gupta
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Shankar Jaisi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Devi Prasad Bhandari
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Ajay Kumar Shah
- Faculty of Health Sciences, School of Health and Allied Sciences, Pokhara University, Lekhnath 33700, Nepal
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence: (N.B.); (N.P.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
- Correspondence: (N.B.); (N.P.)
| |
Collapse
|
13
|
Bělinová T, Javorová P, Nguyenová HY, Řezníčková A, Humlová Z, Hubálek Kalbáčová M. Ultra-Small Gold Nanoparticles with Mild Immunomodulatory Activity as a Potential Tool for Bio-Applications. Folia Biol (Praha) 2022; 68:142-152. [PMID: 36871170 DOI: 10.14712/fb2022068040142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Recently, more and more efforts are directed towards developing new imaging and drug-delivery options based on various nanoparticles, exploiting their unique properties. Here, ultra-small gold nanoparticles functionalized with widely used polyethylene glycol and its amine-terminated form were tested in respect of their potential interactions with human immune cells (cell line and primary cells). The results showed that differently terminated ultrasmall gold nanoparticles represent an interesting theranostic platform as they are harmless to immune cells (not inducing cytotoxicity and severe immune response) and on the other hand, they can serve as imaging and/or drug delivery agents using e.g. monocytes/ macrophages as "Trojan horses" to deliver these nanoparticles across the blood-brain barrier and diagnose or treat pathologies of the central nervous system.
Collapse
Affiliation(s)
- T Bělinová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - P Javorová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Czech Republic
| | - H Y Nguyenová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - A Řezníčková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Z Humlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - M Hubálek Kalbáčová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|