1
|
Yu A, He X, Shen T, Yu X, Mao W, Chi W, Liu X, Wu H. Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging. Chem Soc Rev 2025; 54:2984-3016. [PMID: 39936362 DOI: 10.1039/d3cs00520h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Aiwen Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Sminia TJ, Aalvink S, de Jong H, Tempelaars MH, Zuilhof H, Abee T, de Vos WM, Tytgat HLP, Wennekes T. Probing Peptidoglycan Synthesis in the Gut Commensal Akkermansia Muciniphila with Bioorthogonal Chemical Reporters. Chembiochem 2024; 25:e202400037. [PMID: 38688858 DOI: 10.1002/cbic.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored. To directly study peptidoglycan in gut commensals and obtain the molecular insight required to understand their functional activities we need effective techniques like chemical probes to label peptidoglycan in live bacteria. Here we report a chemically guided approach to study peptidoglycan in a key mucin-degrading gut microbiota member of the Verrucomicrobia phylum, Akkermansia muciniphila. Two novel non-toxic tetrazine click-compatible peptidoglycan probes with either a cyclopropene or isonitrile handle allowed for the detection and imaging of peptidoglycan synthesis in this intestinal species.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| | - Marcel H Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Current address: Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| |
Collapse
|
3
|
Kufleitner M, Haiber LM, Li S, Surendran H, Mayer TU, Zumbusch A, Wittmann V. Next-Generation Metabolic Glycosylation Reporters Enable Detection of Protein O-GlcNAcylation in Living Cells without S-Glyco Modification. Angew Chem Int Ed Engl 2024; 63:e202320247. [PMID: 38501674 DOI: 10.1002/anie.202320247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Protein O-GlcNAcylation is a ubiquitous posttranslational modification of cytosolic and nuclear proteins involved in numerous fundamental regulation processes. Investigation of O-GlcNAcylation by metabolic glycoengineering (MGE) has been carried out for two decades with peracetylated N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine derivatives modified with varying reporter groups. Recently, it has been shown that these derivatives can result in non-specific protein labeling termed S-glyco modification. Here, we report norbornene-modified GlcNAc derivatives with a protected phosphate at the anomeric position and their application in MGE. These derivatives overcome two limitations of previously used O-GlcNAc reporters. They do not lead to detectable S-glyco modification, and they efficiently react in the inverse-electron-demand Diels-Alder (IEDDA) reaction, which can be carried out even within living cells. Using a derivative with an S-acetyl-2-thioethyl-protected phosphate, we demonstrate the protein-specific detection of O-GlcNAcylation of several proteins and the protein-specific imaging of O-GlcNAcylation inside living cells by Förster resonance energy transfer (FRET) visualized by confocal fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Lisa Maria Haiber
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Shuang Li
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Harsha Surendran
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
4
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
5
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
6
|
Parle D, Bulat F, Fouad S, Zecchini H, Brindle KM, Neves AA, Leeper FJ. Metabolic Glycan Labeling of Cancer Cells Using Variably Acetylated Monosaccharides. Bioconjug Chem 2022; 33:1467-1473. [PMID: 35876696 PMCID: PMC9389531 DOI: 10.1021/acs.bioconjchem.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Methylcyclopropene (Cyoc)-tagged tetra-acetylated monosaccharides, and in particular mannosamine derivatives, are promising tools for medical imaging of cancer using metabolic oligosaccharide engineering and the extremely fast inverse electron-demand Diels-Alder bioorthogonal reaction. However, the in vivo potential of these monosaccharide derivatives has yet to be fully explored due to their low aqueous solubility. To address this issue, we sought to vary the extent of acetylation of Cyoc-tagged monosaccharides and probe its effect on the extent of glycan labeling in various cancer cell lines. We demonstrate that, in the case of AcxManNCyoc, tri- and diacetylated derivatives generated significantly enhanced cell labeling compared to the tetra-acetylated monosaccharide. In contrast, for the more readily soluble azide-tagged sugars, a decrease in acetylation led to decreased glycan labeling. Ac3ManNCyoc gave better labeling than the azido-tagged Ac4ManNAz and has significant potential for in vitro and in vivo imaging of glycosylated cancer biomarkers.
Collapse
Affiliation(s)
- Daniel
R. Parle
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flaviu Bulat
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Shahd Fouad
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Heather Zecchini
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Kevin M. Brindle
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - André A. Neves
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
8
|
Nellinger S, Rapp MA, Southan A, Wittmann V, Kluger PJ. An Advanced 'clickECM' That Can be Modified by the Inverse-Electron-Demand Diels-Alder Reaction. Chembiochem 2021; 23:e202100266. [PMID: 34343379 PMCID: PMC9291553 DOI: 10.1002/cbic.202100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017, 52, 159-170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.
Collapse
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Mareike A Rapp
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Petra J Kluger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| |
Collapse
|
9
|
Kim EJ. Advances in Strategies and Tools Available for Interrogation of Protein O-GlcNAcylation. Chembiochem 2021; 22:3010-3026. [PMID: 34101962 DOI: 10.1002/cbic.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
The attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues of numerous proteins in the nucleus, cytoplasm, and mitochondria is a reversible post-translational modification (PTM) and plays an important role as a regulator of various cellular processes in both healthy and disease states. Advances in strategies and tools that allow for the detection of dynamic O-GlcNAcylation on cellular proteins have helped to enhance our initial and ongoing understanding of its dynamic effects on cellular stimuli and given insights into its link to the pathogenesis of several chronic diseases. Furthermore, chemical genetic strategies and related tools have been successfully applied to a myriad of biological systems with a new level of spatiotemporal and molecular precision. These strategies have started to be used in studying and controlling O-GlcNAcylation both in vivo and in vitro. In this minireview, overviews of recent advances in molecular tools being applied to the detection and identification of O-GlcNAcylation on cellular proteins as well as on individual proteins are provided. In addition, chemical genetic strategies that have already been applied or are potentially usable in O-GlcNAc functional are also discussed.
Collapse
Affiliation(s)
- Eun Ju Kim
- Daegu University, Gyeongsan-Si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
10
|
Haiber LM, Kufleitner M, Wittmann V. Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering. Front Chem 2021; 9:654932. [PMID: 33928067 PMCID: PMC8076787 DOI: 10.3389/fchem.2021.654932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The inverse electron-demand Diels-Alder (IEDDA or DAinv) reaction is an emerging bioorthogonal ligation reaction that finds application in all areas of chemistry and chemical biology. In this review we highlight its application in metabolic glycoengineering (MGE). MGE is a versatile tool to introduce unnatural sugar derivatives that are modified with a chemical reporter group into cellular glycans. The IEDDA reaction can then be used to modify the chemical reporter group allowing, for instance, the visualization or isolation of glycoconjugates. During the last years, many different sugar derivatives as well as reporter groups have been published. These probes are summarized, and their chemical and biological properties are discussed. Furthermore, we discuss examples of MGE and subsequent IEDDA reaction that highlight its suitability for application within living systems.
Collapse
Affiliation(s)
| | | | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
11
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Dold JEGA, Wittmann V. Metabolic Glycoengineering with Azide- and Alkene-Modified Hexosamines: Quantification of Sialic Acid Levels. Chembiochem 2020; 22:1243-1251. [PMID: 33180370 PMCID: PMC8048827 DOI: 10.1002/cbic.202000715] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Metabolic glycoengineering (MGE) is an established method to incorporate chemical reporter groups into cellular glycans for subsequent bioorthogonal labeling. The method has found broad application for the visualization and isolation of glycans allowing their biological roles to be probed. Furthermore, targeting of drugs to cancer cells that present high concentrations of sialic acids on their surface is an attractive approach. We report the application of a labeling reaction using 1,2‐diamino‐4,5‐methylenedioxybenzene for the quantification of sialic acid derivates after MGE with various azide‐ and alkene‐modified ManNAc, GlcNAc, and GalNAc derivatives. We followed the time course of sialic acid production and were able to detect sialic acids modified with the chemical reporter group – not only after addition of ManNAc derivatives to the cell culture. A cyclopropane‐modified ManNAc derivative, being a model for the corresponding cyclopropene analog, which undergoes fast inverse‐electron‐demand Diels‐Alder reactions with 1,2,4,5‐tetrazines, resulted in the highest incorporation efficiency. Furthermore, we investigated whether feeding the cells with natural and unnatural ManNAc derivative results in increased levels of sialic acids and found that this is strongly dependent on the investigated cell type and cell fraction. For HEK 293T cells, a strong increase in free sialic acids in the cell interior was found, whereas cell‐surface sialic acid levels are only moderately increased.
Collapse
Affiliation(s)
- Jeremias E. G. A. Dold
- University of KonstanzDepartment of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)78457KonstanzGermany
| | - Valentin Wittmann
- University of KonstanzDepartment of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)78457KonstanzGermany
| |
Collapse
|
13
|
Debets MF, Tastan OY, Wisnovsky SP, Malaker SA, Angelis N, Moeckl LKR, Choi J, Flynn H, Wagner LJS, Bineva-Todd G, Antonopoulos A, Cioce A, Browne WM, Li Z, Briggs DC, Douglas HL, Hess GT, Agbay AJ, Roustan C, Kjaer S, Haslam SM, Snijders AP, Bassik MC, Moerner WE, Li VSW, Bertozzi CR, Schumann B. Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation. Proc Natl Acad Sci U S A 2020; 117:25293-25301. [PMID: 32989128 DOI: 10.1101/2020.04.23.057208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.
Collapse
Affiliation(s)
- Marjoke F Debets
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Omur Y Tastan
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | | | - Stacy A Malaker
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | | | - Junwon Choi
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Lauren J S Wagner
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Ganka Bineva-Todd
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Peptide Chemistry Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | | | - Anna Cioce
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - William M Browne
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Zhen Li
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Holly L Douglas
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, CA 94305
- Program in Cancer Biology, Stanford University, Stanford, CA 94305
| | - Anthony J Agbay
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Stuart M Haslam
- Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305
- Program in Cancer Biology, Stanford University, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| | - Benjamin Schumann
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom;
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
14
|
Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation. Proc Natl Acad Sci U S A 2020; 117:25293-25301. [PMID: 32989128 PMCID: PMC7568240 DOI: 10.1073/pnas.2007297117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.
Collapse
|
15
|
Hassenrück J, Wittmann V. Cyclopropene derivatives of aminosugars for metabolic glycoengineering. Beilstein J Org Chem 2019; 15:584-601. [PMID: 30931000 PMCID: PMC6423581 DOI: 10.3762/bjoc.15.54] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/19/2019] [Indexed: 12/25/2022] Open
Abstract
Cyclopropenes have been proven valuable chemical reporter groups for metabolic glycoengineering (MGE). They readily react with tetrazines in an inverse electron-demand Diels-Alder (DAinv) reaction, a prime example of a bioorthogonal ligation reaction, allowing their visualization in biological systems. Here, we present a comparative study of six cyclopropene-modified hexosamine derivatives and their suitability for MGE. Three mannosamine derivatives in which the cyclopropene moiety is attached to the sugar by either an amide or a carbamate linkage and that differ by the presence or absence of a stabilizing methyl group at the double bond have been examined. We determined their DAinv reaction kinetics and their labeling intensities after metabolic incorporation. To determine the efficiencies by which the derivatives are metabolized to sialic acids, we synthesized and investigated the corresponding cyclopropane derivatives because cyclopropenes are not stable under the analysis conditions. From these experiments, it became obvious that N-(cycloprop-2-en-1-ylcarbonyl)-modified (Cp-modified) mannosamine has the highest metabolic acceptance. However, carbamate-linked N-(2-methylcycloprop-2-en-1-ylmethyloxycarbonyl)-modified (Cyoc-modified) mannosamine despite its lower metabolic acceptance results in the same cell-surface labeling intensity due to its superior reactivity in the DAinv reaction. Based on the high incorporation efficiency of the Cp derivative we synthesized and investigated two new Cp-modified glucosamine and galactosamine derivatives. Both compounds lead to comparable, distinct cell-surface staining after MGE. We further found that the amide-linked Cp-modified glucosamine derivative but not the Cyoc-modified glucosamine is metabolically converted to the corresponding sialic acid.
Collapse
Affiliation(s)
- Jessica Hassenrück
- University of Konstanz, Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstr. 10, 78457 Konstanz, Germany
| | - Valentin Wittmann
- University of Konstanz, Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Pagel M. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry. J Pept Sci 2019; 25:e3141. [PMID: 30585397 DOI: 10.1002/psc.3141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Click chemistry is applied to selectively modify, lable and ligate peptides for their use as therapeutics, in biomaterials or analytical investigations. The inverse electron demand Diels-Alder (IEDDA) reaction is a catalyst-free click reaction with pronounced chemoselectivity and fast reaction rates. Applications and achievements of the IEDDA reaction in peptide chemistry since 2008 are described in this review.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Kim EJ. Chemical Reporters and Their Bioorthogonal Reactions for Labeling Protein O-GlcNAcylation. Molecules 2018; 23:molecules23102411. [PMID: 30241321 PMCID: PMC6222402 DOI: 10.3390/molecules23102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Protein O-GlcNAcylation is a non-canonical glycosylation of nuclear, mitochondrial, and cytoplasmic proteins with the attachment of a single O-linked β-N-acetyl-glucosamine (O-GlcNAc) moiety. Advances in labeling and identifying O-GlcNAcylated proteins have helped improve the understanding of O-GlcNAcylation at levels that range from basic molecular biology to cell signaling and gene regulation to physiology and disease. This review describes these advances in chemistry involving chemical reporters and their bioorthogonal reactions utilized for detection and construction of O-GlcNAc proteomes in a molecular mechanistic view. This detailed view will help better understand the principles of the chemistries utilized for biology discovery and promote continued efforts in developing new molecular tools and new strategies to further explore protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongsan-si 712-714, Gyeongsangbuk-do, Korea.
| |
Collapse
|
18
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018; 57:10118-10122. [PMID: 29542846 PMCID: PMC6099469 DOI: 10.1002/anie.201800937] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 02/06/2023]
Abstract
Novel click reactions are of continued interest in fields as diverse as bio-conjugation, polymer science and surface chemistry. Qualification as a proper "click" reaction requires stringent criteria, including fast kinetics and high conversion, to be met. Herein, we report a novel strain-promoted cycloaddition between cyclopropenes and o-quinones in solution and on a surface. We demonstrate the "click character" of the reaction in solution and on surfaces for both monolayer and polymer brush functionalization.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Rickdeb Sen
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Jorge Escorihuela
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad de ValenciaAvda. Vicente Andrés Estellés s.n.46100-BurjassotValenciaSpain
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
- School of Pharmaceutical Sciences and TechnologyTianjin University92 Weijin RoadTianjinP.R. China
- Department of Chemical and Materials EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
19
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o
-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jorge Escorihuela
- Departamento de Química Orgánica; Facultad de Química; Universidad de Valencia; Avda. Vicente Andrés Estellés s.n. 46100-Burjassot Valencia Spain
| | - Han Zuilhof
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
- School of Pharmaceutical Sciences and Technology; Tianjin University; 92 Weijin Road Tianjin P.R. China
- Department of Chemical and Materials Engineering; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
20
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 727] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
21
|
Abstract
Posttranslational protein glycosylation is conserved in all kingdoms of life and implicated in the regulation of protein structure, function, and localization. The visualization of glycosylation states of designated proteins within living cells is of great importance for unraveling the biological roles of intracellular protein glycosylation. Our generally applicable approach is based on the incorporation of a glucosamine analog, Ac4GlcNCyoc, into the cellular glycome via metabolic engineering. Ac4GlcNCyoc can be labeled in a second step via inverse-electron-demand Diels-Alder chemistry with fluorophores inside living cells. Additionally, target proteins can be expressed as enhanced green fluorescent protein (EGFP)-fusion proteins. To assess the proximity of the donor EGFP and the glycan-anchored acceptor fluorophore, Förster resonance energy transfer (FRET) is employed and read out with high contrast by fluorescence lifetime imaging (FLIM) microscopy. In this chapter, we present a detailed description of methods required to perform protein-specific imaging of glycosylation inside living cells. These include the complete synthesis of Ac4GlcNCyoc, immunoprecipitation of EGFP-fusion proteins to examine the Ac4GlcNCyoc modification state, and a complete section on basics, performance, as well as data analysis for FLIM-FRET microscopy. We also provide useful notes necessary for reproducibility and point out strengths and limitations of the approach.
Collapse
|
22
|
Dold JEGA, Pfotzer J, Späte AK, Wittmann V. Dienophile-Modified Mannosamine Derivatives for Metabolic Labeling of Sialic Acids: A Comparative Study. Chembiochem 2017; 18:1242-1250. [DOI: 10.1002/cbic.201700002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Jeremias E. G. A. Dold
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| | - Jessica Pfotzer
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| | - Anne-Katrin Späte
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| | - Valentin Wittmann
- University of Konstanz; Department of Chemistry and; Konstanz Research School Chemical Biology; KoRS-CB); 78457 Konstanz Germany
| |
Collapse
|
23
|
Kozma E, Demeter O, Kele P. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions. Chembiochem 2017; 18:486-501. [PMID: 28070925 PMCID: PMC5363342 DOI: 10.1002/cbic.201600607] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Orsolya Demeter
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| |
Collapse
|
24
|
Abstract
O-GlcNAcylation is the modification of serine and threonine residues with β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. This dynamic modification is attached by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) and is a critical regulator of various cellular processes. Furthermore, O-GlcNAcylation is dysregulated in many diseases, such as diabetes, cancer, and Alzheimer's disease. However, the precise role of this modification and its cycling enzymes (OGT and OGA) in normal and disease states remains elusive. This is partially due to the difficulty in studying O-GlcNAcylation with traditional genetic and biochemical techniques. In this review, we will summarize recent progress in chemical approaches to overcome these obstacles. We will cover new inhibitors of OGT and OGA, advances in metabolic labeling and cellular imaging, synthetic approaches to access homogeneous O-GlcNAcylated proteins, and cross-linking methods to identify O-GlcNAc-protein interactions. We will also discuss remaining gaps in our toolbox for studying O-GlcNAcylation and questions of high interest that are yet to be answered.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
25
|
Ravasco JMJM, Monteiro CM, Trindade AF. Cyclopropenes: a new tool for the study of biological systems. Org Chem Front 2017. [DOI: 10.1039/c7qo00054e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclopropenes have become an important mini-tag tool in chemical biology, participating in fast inverse electron demand Diels–Alder and photoclick reactions in biological settings.
Collapse
Affiliation(s)
- João M. J. M. Ravasco
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Carlos M. Monteiro
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Alexandre F. Trindade
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
26
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
27
|
Dauner M, Batroff E, Bachmann V, Hauck CR, Wittmann V. Synthetic Glycosphingolipids for Live-Cell Labeling. Bioconjug Chem 2016; 27:1624-37. [PMID: 27253729 DOI: 10.1021/acs.bioconjchem.6b00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosphingolipids are an important component of cell membranes that are involved in many biological processes. Fluorescently labeled glycosphingolipids are frequently used to gain insight into their localization. However, the attachment of a fluorophore to the glycan part or-more commonly-to the lipid part of glycosphingolipids is known to alter the biophysical properties and can perturb the biological function of the probe. Presented here is the synthesis of novel glycosphingolipid probes with mono- and disaccharide head groups and ceramide moieties containing fatty acids of varying chain length (C4 to C20). These glycosphingolipids bear an azide or an alkyne group as chemical reporter to which a fluorophore can be attached through a bioorthogonal ligation reaction. The fluorescent tag and any linker connected to it can be chosen in a flexible manner. We demonstrate the suitability of the probes by selective visualization of the plasma membrane of living cells by confocal microscopy techniques. Whereas the derivatives with the shorter fatty acids can be directly applied to HEK 293T cells, the hydrophobic glycosphingolipids with longer fatty acids can be delivered to cells using fusogenic liposomes.
Collapse
Affiliation(s)
- Martin Dauner
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Ellen Batroff
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Verena Bachmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Christof R Hauck
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
28
|
Späte AK, Dold JEGA, Batroff E, Schart VF, Wieland DE, Baudendistel OR, Wittmann V. Exploring the Potential of Norbornene-Modified Mannosamine Derivatives for Metabolic Glycoengineering. Chembiochem 2016; 17:1374-83. [DOI: 10.1002/cbic.201600197] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Anne-Katrin Späte
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Jeremias E. G. A. Dold
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Ellen Batroff
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Verena F. Schart
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Daniel E. Wieland
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Oliver R. Baudendistel
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| | - Valentin Wittmann
- University of Konstanz; Department of Chemistry; and Konstanz Research School Chemical Biology (KoRS-CB); 78457 Konstanz Germany
| |
Collapse
|
29
|
Nischan N, Kohler JJ. Advances in cell surface glycoengineering reveal biological function. Glycobiology 2016; 26:789-96. [PMID: 27066802 DOI: 10.1093/glycob/cww045] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.
Collapse
Affiliation(s)
- Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Hauser MA, Kindinger I, Laufer JM, Späte AK, Bucher D, Vanes SL, Krueger WA, Wittmann V, Legler DF. Distinct CCR7 glycosylation pattern shapes receptor signaling and endocytosis to modulate chemotactic responses. J Leukoc Biol 2016; 99:993-1007. [PMID: 26819318 DOI: 10.1189/jlb.2vma0915-432rr] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
The homeostatic chemokines CCL19 and CCL21 and their common cognate chemokine receptor CCR7 orchestrate immune cell trafficking by eliciting distinct signaling pathways. Here, we demonstrate that human CCR7 is N-glycosylated on 2 specific residues in the N terminus and the third extracellular loop. Conceptually, CCR7 glycosylation adds steric hindrance to the receptor N terminus and extracellular loop 3, acting as a "swinging door" to regulate receptor sensitivity and cell migration. We found that freshly isolated human B cells, as well as expanded T cells, but not naïve T cells, express highly sialylated CCR7. Moreover, we identified that human dendritic cells imprint T cell migration toward CCR7 ligands by secreting enzymes that deglycosylate CCR7, thereby boosting CCR7 signaling on T cells, permitting enhanced T cell locomotion, while simultaneously decreasing receptor endocytosis. In addition, dendritic cells proteolytically convert immobilized CCL21 to a soluble form that is more potent in triggering chemotactic movement and does not desensitize the receptor. Furthermore, we demonstrate that soluble CCL21 functionally resembles neither the CCL19 nor the CCL21 phenotype but acts as a chemokine with unique features. Thus, we advance the concept of dendritic cell-dependent generation of micromilieus and lymph node conditioning by demonstrating a novel layer of CCR7 regulation through CCR7 sialylation. In summary, we demonstrate that leukocyte subsets express distinct patterns of CCR7 sialylation that contribute to receptor signaling and fine-tuning chemotactic responses.
Collapse
Affiliation(s)
- Mark A Hauser
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Ilona Kindinger
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Julia M Laufer
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Anne-Katrin Späte
- Department of Chemistry, Chair of Organic Chemistry/Bioorganic Chemistry, University of Konstanz, Konstanz, Germany; and
| | - Delia Bucher
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Sarah L Vanes
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | | | - Valentin Wittmann
- Department of Chemistry, Chair of Organic Chemistry/Bioorganic Chemistry, University of Konstanz, Konstanz, Germany; and
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany;
| |
Collapse
|
31
|
Doll F, Buntz A, Späte AK, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V. Visualisierung proteinspezifischer Glycosylierung in lebenden Zellen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201503183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Franziska Doll
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Annette Buntz
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Anne-Katrin Späte
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Verena F. Schart
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Alexander Timper
- Fachbereich Biologie und Graduate School Biological Science; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Waldemar Schrimpf
- Department Chemie und Munich Center for Integrated Protein Science and Center for Nanoscience; Ludwig-Maximilians-Universität München; Butenandtstraße 11 81377 München Deutschland
| | - Christof R. Hauck
- Fachbereich Biologie und Graduate School Biological Science; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Zumbusch
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Valentin Wittmann
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
32
|
Doll F, Buntz A, Späte AK, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V. Visualization of Protein-Specific Glycosylation inside Living Cells. Angew Chem Int Ed Engl 2016; 55:2262-6. [DOI: 10.1002/anie.201503183] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Franziska Doll
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Annette Buntz
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Anne-Katrin Späte
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Verena F. Schart
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Alexander Timper
- Department of Biology and Graduate School Biological Science; University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Waldemar Schrimpf
- Department of Chemistry and Munich Center for Integrated Protein Science and Center for Nanoscience; Ludwig-Maximilians-Universität München; Butenandtstraße 11 81377 Munich Germany
| | - Christof R. Hauck
- Department of Biology and Graduate School Biological Science; University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Zumbusch
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
33
|
Xiong DC, Zhu J, Han MJ, Luo HX, Wang C, Yu Y, Ye Y, Tai G, Ye XS. Rapid probing of sialylated glycoproteins in vitro and in vivo via metabolic oligosaccharide engineering of a minimal cyclopropene reporter. Org Biomol Chem 2015; 13:3911-7. [PMID: 25735895 DOI: 10.1039/c5ob00069f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ManNAc analogues are important chemical tools for probing sialylation dynamically via metabolic oligosaccharide engineering (MOE). The size of N-acyl and the nature of the chemical handle are two determinants of metabolic incorporation efficiency. We demonstrated a minimal, stable, bioorthogonal, and reactive N-Cp (N-(cycloprop-2-ene-1-ylcarbonyl)) group and the imaging of sialylated glycans using Ac4ManNCp in vitro and in vivo. The results revealed that the Cp group can efficiently be incorporated into the cellular sialic acid and detected rapidly by the reaction with FITC-Tz in different cells. The metabolic incorporation efficiency of non-cytotoxic Ac4ManNCp is not only superior to Ac4ManNMCp, but also superior to the widely-used Ac4ManNAz in some cell lines. Moreover, when Ac4ManNCp was administered to mice, a rapid and intense labelling of splenocytes as well as glycoproteins of sera and organs was observed. This is the first reported metabolic labelling of cyclopropene-modified sugars in vivo. Therefore, Ac4ManNCp is a powerful probe for efficient and rapid MOE and it may find wide applications in the labelling of glycans.
Collapse
Affiliation(s)
- De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Center for Molecular and Translational Medicine, Peking University, Xue Yuan Road No. 38, Beijing 100191, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Büll C, Heise T, Beurskens DMH, Riemersma M, Ashikov A, Rutjes FPJT, van Kuppevelt TH, Lefeber DJ, den Brok MH, Adema GJ, Boltje TJ. Sialic Acid Glycoengineering Using an Unnatural Sialic Acid for the Detection of Sialoglycan Biosynthesis Defects and On-Cell Synthesis of Siglec Ligands. ACS Chem Biol 2015; 10:2353-63. [PMID: 26258433 DOI: 10.1021/acschembio.5b00501] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sialoglycans play a vital role in physiology, and aberrant sialoglycan expression is associated with a broad spectrum of diseases. Since biosynthesis of sialoglycans is only partially regulated at the genetic level, chemical tools are crucial to study their function. Here, we report the development of propargyloxycarbonyl sialic acid (Ac5NeuNPoc) as a powerful tool for sialic acid glycoengineering. Ac5NeuNPoc showed strongly increased labeling efficiency and exhibited less toxicity compared to those of widely used mannosamine analogues in vitro and was also more efficiently incorporated into sialoglycans in vivo. Unlike mannosamine analogues, Ac5NeuNPoc was exclusively utilized in the sialoglycan biosynthesis pathway, allowing a genetic defect in sialic acid biosynthesis to be specifically detected. Furthermore, Ac5NeuNPoc-based sialic acid glycoengineering enabled the on-cell synthesis of high-affinity Siglec-7 ligands and the identification of a novel Siglec-2 ligand. Thus, Ac5NeuNPoc glycoengineering is a highly efficient, nontoxic, and selective approach to study and modulate sialoglycan interactions on living cells.
Collapse
Affiliation(s)
| | - Torben Heise
- Cluster
for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | - Floris P. J. T. Rutjes
- Cluster
for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | - Thomas J. Boltje
- Cluster
for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
35
|
Best M, Degen A, Baalmann M, Schmidt TT, Wombacher R. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction. Chembiochem 2015; 16:1158-62. [PMID: 25900689 DOI: 10.1002/cbic.201500042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/24/2022]
Abstract
Inverse-electron-demand Diels-Alder cycloaddition (DAinv ) between strained alkenes and tetrazines is a highly bio-orthogonal reaction that has been applied in the specific labeling of biomolecules. In this work we present a two-step labeling protocol for the site-specific labeling of proteins based on attachment of a highly stable norbornene derivative to a specific peptide sequence by using a mutant of the enzyme lipoic acid ligase A (LplA(W37V) ), followed by the covalent attachment of tetrazine-modified fluorophores to the norbornene moiety through the bio-orthogonal DAinv . We investigated 15 different norbornene derivatives for their selective enzymatic attachment to a 13-residue lipoic acid acceptor peptide (LAP) by using a standardized HPLC protocol. Finally, we used this two-step labeling strategy to label proteins in cell lysates in a site-specific manner and performed cell-surface labeling on living cells.
Collapse
Affiliation(s)
- Marcel Best
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - Anna Degen
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - Mathis Baalmann
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - Tobias T Schmidt
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - Richard Wombacher
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany).
| |
Collapse
|