1
|
Chaurasia U, Parvin T. 2-Amino-1,4-naphthoquinone as a key precursor for naphthoquinone-fused N-heterocycles: synthetic approaches and mechanistic perspectives. Mol Divers 2025:10.1007/s11030-025-11201-x. [PMID: 40366551 DOI: 10.1007/s11030-025-11201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
2-Amino-1,4-naphthoquinone has gained significant attention as a key precursor for constructing naphthoquinone-fused N-heterocycles, a class of compounds with broad applications in medicinal chemistry, materials science, and organic synthesis. Its unique structure, characterized by a reactive C-3 position and an amino group, facilitates a wide range of reactions and synthetic strategies. This review provides a comprehensive overview of recent advancements (2012-2024) in utilizing 2-amino-1,4-naphthoquinone for the development of N-heterocyclic frameworks integrating synthetic approaches with mechanistic insights. It is organized based on the type of heterocyclic rings formed, leveraging the C,N-binucleophilic properties of 2-amino-1,4-naphthoquinone.
Collapse
Affiliation(s)
- Ujjain Chaurasia
- Department of Chemical Science and Technology, National Institute of Technology Patna, Patna, Bihar, 800005, India
| | - Tasneem Parvin
- Department of Chemical Science and Technology, National Institute of Technology Patna, Patna, Bihar, 800005, India.
| |
Collapse
|
2
|
Rong L, Ma J, Lai C, Han S, Liao J, Liu C, Li X, Huang J. Additive-Free Construction of Tetrahydropyrimidine Skeleton by using 1,3,5-Triazinane as Four-Atom Synthon. J Org Chem 2024; 89:9496-9501. [PMID: 38965934 DOI: 10.1021/acs.joc.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Herein, an unprecedented [4 + 2] cycloaddition of enaminone with 1,3,5-triazinane has been developed. The representative semihydrogenated aromatic heterocycle 1,2,3,4-tetrahydropyrimidines have been synthesized with a broad substrate scope, demonstrating potential antitumor activity. This approach has been smoothly conducted under additive-free and environmentally friendly conditions that are compatible with various functional groups. Furthermore, the condition optimization process reveals that the tetrahydropyrimidine product is regulated via the reaction temperature.
Collapse
Affiliation(s)
- Lanlan Rong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jingwen Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Chenru Lai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Shihong Han
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Junzhao Liao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Chenwu Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xiaoning Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education and School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
3
|
Van Hoof M, Bynens L, Daelemans B, González MCR, Van Meervelt L, De Feyter S, Dehaen W. Octahydropyrimido[4,5- g]quinazoline-5,10-diones: their multicomponent synthesis, self-assembly on graphite and electrochemistry. Chem Commun (Camb) 2022; 58:7686-7689. [PMID: 35730551 DOI: 10.1039/d2cc02070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green multicomponent synthesis of previously unreported octahydropyrimido[4,5-g]quinazoline-5,6-diones was developed from simple building blocks. These highly symmetrical compounds show strong propensity to self-assembled molecular network (SAMN) formation on highly oriented pyrolytic graphite. The SAMN type is easily tunable by changing molecular characteristics. The redox behavior was studied by cyclic voltammetery.
Collapse
Affiliation(s)
- Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Lize Bynens
- Hasselt University, Institute for Materials Research (IMO), Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Brent Daelemans
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
4
|
Liu L, Shi Z, Zhang X, Zhan F, Lin JS, Jiang Y. Synthesis of α-Amino Tertiary Alkylperoxides by Lewis Acid-Catalyzed Peroxidation of 1,3,5-Triazines. Chem Asian J 2021; 16:3487-3491. [PMID: 34478220 DOI: 10.1002/asia.202100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Indexed: 11/06/2022]
Abstract
α-Substituted peroxides have been found in natural products and are widely used as anti-malarial agents. Zn(OTf)2 -catalyzed peroxidation of 1,3,5-triazines has been developed, accessing diversely substituted α-amino tertiary alkylperoxides with high efficiency. Mechanistic investigations and useful synthetic application of the products have also been presented.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.,The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhichao Shi
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, P. R. China.,College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xun Zhang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Feng Zhan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jin-Shun Lin
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuyang Jiang
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Bae SM, Kang SY, Song JH. Synthesis and Cytotoxic Activity of Hexahydro‐1,3,5‐triazine Derivatives through Ring Condensation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Song Mi Bae
- Department of Chemistry Dong‐A University Busan 604‐714 South Korea
| | - Sung Young Kang
- Department of Chemistry Dong‐A University Busan 604‐714 South Korea
| | - Ju Hyun Song
- Department of Chemistry Dong‐A University Busan 604‐714 South Korea
| |
Collapse
|
6
|
Zhang J, Zhou P, Xiao D, Liu W. Research Progress of 1,3,5-Triazinanes in the Synthesis of Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Chen JR, Liang D, Xiao WJ. Recent Advances of 1,3,5-Triazinanes in Aminomethylation and Cycloaddition Reactions. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707160] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1,3,5-Trisubstituted 1,3,5-triazinanes (hexahydro-1,3,5-triazines), as stable and readily available surrogates for formaldimines, have found extensive applications for the construction of various nitrogen-containing compounds. The formaldimines, formed in situ from this reagent class, can participate in various aminomethylation and cycloaddition reactions. This short review presents recent advances in this field with emphasis on the conceptual ideas behind the developed methodologies and the reaction mechanisms.1 Introduction2 Aminomethylations with 1,3,5-Triazinanes3 Cycloadditions with 1,3,5-Triazinanes3.1 Use of 1,3,5-Triazinanes as Two-Atom Synthons3.2 Use of 1,3,5-Triazinanes as Three-Atom Synthons3.3 Use of 1,3,5-Triazinanes as Four-Atom Synthons3.4 Use of 1,3,5-Triazinanes as Six-Atom Synthons4 Conclusions
Collapse
|
8
|
|
9
|
Chen SW, Hong FE. Palladium-Catalyzed C-H Functionalization of Amido-Substitued 1,4-Napthoquinone in the Presence of Amines toward the Formation of Pyrroles and Imidazoles. ChemistrySelect 2017. [DOI: 10.1002/slct.201702173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Szu-Wei Chen
- Department of Chemistry; National Chung Hsing University; 250 Kuo-Kuang Road Taichung 40227 Taiwan
| | - Fung-E Hong
- Department of Chemistry; National Chung Hsing University; 250 Kuo-Kuang Road Taichung 40227 Taiwan
| |
Collapse
|