1
|
Pootaeng-On Y, Sirirak J, Yodsin N, Kuntiyong P, Charoensuksai P, Wongprayoon P, Jiajaroen S, Chainok K, Rayanil KO. Miliseol A-D: new lanostane triterpenoids from Miliusa sessilis and their wound-healing activity. Nat Prod Res 2025:1-10. [PMID: 40221442 DOI: 10.1080/14786419.2025.2491834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Investigation of the Miliusa sessilis hexane extract led to four novel lanostane triterpenoids, miliseol A-D (1-4) and five known compounds (5-9). Through extensive spectroscopic analyses, the new compounds were identified as (3β,23S)-23-methoxy-24-methylene-29-nor-5α-lanost-9(11)-en-3-ol (1), (3β,23S)-23-methoxy-24-methylene-5α-lanost-9(11)-en-3-ol (2), (3β,16β)-24-methylene-5α-lanost-9(11)-ene-3,16-diol (3), and (3β,24S)-24,241-epoxy-5α-lanost-9(11)-en-3-ol (4). The density functional theory (DFT) computations combined with a statistical procedure (DP4+) were used to identify the stereochemistry of compound 4. The X-ray crystallographic data was utilised to confirm the absolute configurations of compounds 1 and 3. The known compounds were isolated and elucidated as (+)-spathulenol (5), phytol (6), T-muurolol (7), β-sitosterol (8), and β-sitosterol-3-O-β-d-glucopyranoside (9) through spectroscopic analyses and comparison with the literature. Biological activity screening indicated that compound 1 promoted cell migration in the HaCaT cell line, with minimal cytotoxicity at the tested concentrations. This finding suggests its potential as an enhancing agent for skin wound healing.
Collapse
Affiliation(s)
- Yupa Pootaeng-On
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Phetchaburi Information Technology Campus, Phetchaburi, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Nuttapon Yodsin
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Punlop Kuntiyong
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Purin Charoensuksai
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Pawaris Wongprayoon
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Suwadee Jiajaroen
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Sriracha, Chonburi, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Jung Y, Mitsuhashi T, Kikuchi T, Fujita M. Functional Plasticity of a Viral Terpene Synthase, OILTS, that Shows Non-Specific Metal Cofactor Binding and Metal-Dependent Biosynthesis. Chemistry 2024; 30:e202304317. [PMID: 38527951 DOI: 10.1002/chem.202304317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
OILTS is a viral class I terpene synthase found from the giant virus Orpheovirus IHUMI-LCC2. It exhibits a unique structure and demonstrates high plasticity to metal cofactors, allowing it to biosynthesize different cyclic terpene frameworks. Notably, while OILTS produces only (+)-germacrene D-4-ol with the most common cofactor, Mg2+, it also biosynthesizes a different cyclic terpene, (+)-cubebol, with Mn2+, Co2+, or Ni2+, presenting a rare instance of cofactor-dependent enzyme catalysis. This is the first report of (+)-cubebol biosynthesis, to our knowledge. In addition, OILTS can uptake Zn2+ as a cofactor, which is uncommon among ordinary terpene synthases. These findings suggest that OILTS's functional plasticity may benefit the virus in diverse host environments, highlighting potential evolutionary implications.
Collapse
Affiliation(s)
- Youngcheol Jung
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Takaaki Mitsuhashi
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubaracho, Akishima, Tokyo, 196-8666, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Tokyo College, Institutes for Advanced Study, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
3
|
Schwartz R, Zev S, Major DT. Differential Substrate Sensing in Terpene Synthases from Plants and Microorganisms: Insight from Structural, Bioinformatic, and EnzyDock Analyses. Angew Chem Int Ed Engl 2024; 63:e202400743. [PMID: 38556463 DOI: 10.1002/anie.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme-controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate-(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this enigma. We bring initial data suggesting that this difference is rooted in evolutionary differences between TPSs. We hypothesize that this alteration in binding, and subsequent chemistry, is due to TPSs originating from plants or microorganisms. We further suggest that this difference can cast light on the frequent observation that the chiral products or intermediates of plant and bacterial terpene synthases represent opposite enantiomers.
Collapse
Affiliation(s)
- Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
4
|
Xing B, Lei Z, Bai Z, Zang G, Wang Y, Zhang C, Chen M, Zhou Y, Ding J, Yang D, Ma M. Structural biology of terpene synthases. Methods Enzymol 2024; 699:59-87. [PMID: 38942516 DOI: 10.1016/bs.mie.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Structural biology research of terpene synthases (TSs) has provided a useful basis to understand their catalytic mechanisms in producing diverse terpene products with polycyclic ring systems and multiple chiral centers. However, compared to the large numbers of>95,000 terpenoids discovered to date, few structures of TSs have been solved and the understanding of their catalytic mechanisms is lagging. We here (i) introduce the basic catalytic logic, the structural architectures, and the metal-binding conserved motifs of TSs; (ii) provide detailed experimental procedures, in gene cloning and plasmid construction, protein purification, crystallization, X-ray diffraction data collection and structural elucidation, for structural biology research of TSs; and (iii) discuss the prospects of structure-based engineering and de novo design of TSs in generating valuable terpene molecules, which cannot be easily achieved by chemical synthesis.
Collapse
Affiliation(s)
- Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhaoye Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Guowei Zang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yuxian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Chenyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Minren Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yucheng Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Jiahao Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| |
Collapse
|
5
|
Jung Y, Mitsuhashi T, Sato S, Senda M, Senda T, Fujita M. Function and Structure of a Terpene Synthase Encoded in a Giant Virus Genome. J Am Chem Soc 2023; 145:25966-25970. [PMID: 38010834 DOI: 10.1021/jacs.3c10603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Giant viruses are nonstandard viruses with large particles and genomes. While previous studies have shown that their genomes contain various sequences of interest, their genes related specifically to natural product biosynthesis remain unexplored. Here we analyze the function and structure of a terpene synthase encoded by the gene of a giant virus. The enzyme is phylogenetically separated from the terpene synthases of cellular organisms; however, heterologous gene expression revealed that it still functions as a terpene synthase and produces a cyclic terpene from a farnesyl diphosphate precursor. Crystallographic analysis revealed its protein structure, which is relatively compact but retains essential motifs of the terpene synthases. We thus suggest that like cellular organisms, giant viruses produce and utilize natural products for their ecological strategies.
Collapse
Affiliation(s)
- Youngcheol Jung
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab, Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Takaaki Mitsuhashi
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab, Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab, Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
- Tokyo College, Institutes for Advanced Study, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
6
|
Dickschat JS, Quan Z, Schnakenburg G. A Case of Convergent Evolution: The Bacterial Sesquiterpene Synthase for 1-epi-Cubenol from Nonomuraea coxensis. Chembiochem 2023; 24:e202300581. [PMID: 37748088 DOI: 10.1002/cbic.202300581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
A terpene synthase from Nonomuraea coxensis was identified as (+)-1-epi-cubenol synthase. The enzyme is phylogenetically unrelated to the known enzyme of the same function that is widespread in streptomycetes. Isotopic labelling experiments were performed to unambiguously assign the NMR data and to investigate hydrogen migrations during terpene cyclisations. Epoxidations of (+)-1-epi-cubenol and of the plant derived compounds (-)-cubenol and (-)-1-epi-cubenol confirmed the structure of a natural product isolated from the brown alga Dictyopteris divaricata and allowed to conclude on its absolute configuration. The crystal structures of the epoxides from (+)- and (-)-1-epi-cubenol and the acid catalysed conversion into an isomeric ketone are reported.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Chhalodia AK, Xu H, Tabekoueng GB, Gu B, Taizoumbe KA, Lauterbach L, Dickschat JS. Functional characterisation of twelve terpene synthases from actinobacteria. Beilstein J Org Chem 2023; 19:1386-1398. [PMID: 37736393 PMCID: PMC10509563 DOI: 10.3762/bjoc.19.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Fifteen type I terpene synthase homologs from diverse actinobacteria that were selected based on a phylogenetic analysis of more than 4000 amino acid sequences were investigated for their products. For four enzymes with functions not previously reported from bacterial terpene synthases the products were isolated and their structures were elucidated by NMR spectroscopy, resulting in the discovery of the first terpene synthases for (+)-δ-cadinol and (+)-α-cadinene, besides the first two bacterial (-)-amorpha-4,11-diene synthases. For other terpene synthases with functions reported from bacteria before the products were identified by GC-MS. The characterised enzymes include a new epi-isozizaene synthase with monoterpene synthase side activity, a 7-epi-α-eudesmol synthase that also produces hedycaryol and germacrene A, and four more sesquiterpene synthases that produce mixtures of hedycaryol and germacrene A. Three phylogenetically related enzymes were in one case not expressed and in two cases inactive, suggesting pseudogenisation in the respective branch of the phylogenetic tree. Furthermore, a diterpene synthase for allokutznerene and a sesterterpene synthase for sesterviolene were identified.
Collapse
Affiliation(s)
- Anuj K Chhalodia
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Georges B Tabekoueng
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Binbin Gu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Kizerbo A Taizoumbe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
8
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
9
|
Rautela A, Kumar S. Engineering plant family TPS into cyanobacterial host for terpenoids production. PLANT CELL REPORTS 2022; 41:1791-1803. [PMID: 35789422 PMCID: PMC9253243 DOI: 10.1007/s00299-022-02892-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/05/2022] [Indexed: 05/03/2023]
Abstract
Terpenoids are synthesized naturally by plants as secondary metabolites, and are diverse and complex in structure with multiple applications in bioenergy, food, cosmetics, and medicine. This makes the production of terpenoids such as isoprene, β-phellandrene, farnesene, amorphadiene, and squalene valuable, owing to which their industrial demand cannot be fulfilled exclusively by plant sources. They are synthesized via the Methylerythritol phosphate pathway (MEP) and the Mevalonate pathway (MVA), both existing in plants. The advent of genetic engineering and the latest accomplishments in synthetic biology and metabolic engineering allow microbial synthesis of terpenoids. Cyanobacteria manifest to be the promising hosts for this, utilizing sunlight and CO2. Cyanobacteria possess MEP pathway to generate precursors for terpenoid synthesis. The terpenoid synthesis can be amplified by overexpressing the MEP pathway and engineering MVA pathway genes. According to the desired terpenoid, terpene synthases unique to the plant kingdom must be incorporated in cyanobacteria. Engineering an organism to be used as a cell factory comes with drawbacks such as hampered cell growth and disturbance in metabolic flux. This review set forth a comparison between MEP and MVA pathways, strategies to overexpress these pathways with their challenges.
Collapse
Affiliation(s)
- Akhil Rautela
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Xu H, Dickschat JS. Hedycaryol - Central Intermediates in Sesquiterpene Biosynthesis, Part II. Chemistry 2022; 28:e202200405. [PMID: 35239190 PMCID: PMC9310801 DOI: 10.1002/chem.202200405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/16/2022]
Abstract
The known sesquiterpenes that arise biosynthetically from hedycaryol are summarised. Reasonings for the assignments of their absolute configurations are discussed. The analysis provided here suggests that reprotonations at the C1=C10 double bond of hedycaryol are directed toward C1 and generally lead to 6-6 bicyclic compounds, while reprotonations at the C4=C5 double bond occur at C4 and result in 5-7 bicyclic compounds. Read more in the Review by H. Xu and J. S. Dickschat (DOI: 10.1002/chem.202200405).
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
11
|
Zhang J, Wang X, Zhang X, Zhang Y, Wang F, Li X. Sesquiterpene Synthase Engineering and Targeted Engineering of α-Santalene Overproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5377-5385. [PMID: 35465671 DOI: 10.1021/acs.jafc.2c00754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a natural sesquiterpene compound with numerous biological activities, α-santalene has extensive applications in the cosmetic and pharmaceutical industries. Although several α-santalene-producing microbial strains have been constructed, low productivity still hampers large-scale fermentation. Herein, we present a case of engineered sesquiterpene biosynthesis where the insufficient downstream pathway capacity limited high-level α-santalene production in Escherichia coli. The initial strain was constructed, and it produced 6.4 mg/L α-santalene. To increase α-santalene biosynthesis, we amplified the flux toward farnesyl diphosphate (FPP) precursor by screening and choosing the right FPP synthase and reprogrammed the rate-limiting downstream pathway by generating mutations in santalene synthase (Clausena lansium; ClSS). Santalene synthase was engineered by site-directed mutagenesis, resulting in the improved soluble expression of ClSS and an α-santalene titer of 887.5 mg/L; the α-santalene titer reached 1078.8 mg/L after adding a fusion tag to ClSS. The most productive pathway, which included combining precursor flux amplification and mutant synthases, conferred an approximate 169-fold increase in α-santalene levels. Maximum titers of 1272 and 2916 mg/L were achieved under shake flask and fed-batch fermentation, respectively, and were among the highest levels reported using E. coli as the host.
Collapse
Affiliation(s)
- Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Wang T, Yang Y, He M, Liu M, Huang JW, Min J, Chen CC, Liu Y, Zhang L, Guo RT. Structural insights into the cyclization of unusual brasilane-type sesquiterpenes. Int J Biol Macromol 2022; 209:1784-1791. [PMID: 35504416 DOI: 10.1016/j.ijbiomac.2022.04.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
The biosynthesis of brasilane-type sesquiterpenoids (BTSs) attracts much attention owing to their unique skeleton of 5/6 bicyclic structure that contains five Me groups. Here, the crystal structures of a BTS cyclase TaTC6 from Trichoderma atroviride FKI-3849 and its complexes with farnesyl pyrophosphate (FPP) and analogue were reported. These structural information reveal that TaTC6 exploits a hydrophobic pocket to constrain the hydrocarbon region of FPP in a "U-shape" to facilitate the initial C1-C11 bond formation after pyrophosphate ionization. Following, four carbocations of reaction intermediates were molecularly docked into the hydrophobic pocket to reveal critical residues involved in the cyclization cascade. Finally, an S239-stabilized water molecule that is 3.9 Å away from the C8 of the last allyl cation may conduct hydration to quench the reaction cascade. Mutating S239 to alanine led to ca. 40% reduction in activity compared with the wild-type enzyme. The conservation of the residues that constitute the hydrophobic pocket is also discussed. Overall, this study will give an insight into the mechanism of how the active site of STCs constrain the conformation of the flexible FPP and series allylic carbocations for the complicated-ring formation and unusual carbon rearrangement in the biosynthesis of BTSs.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Min He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China..
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China..
| |
Collapse
|
13
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
14
|
Xu H, Lackus ND, Köllner TG, Dickschat JS. Isotopic Labeling Experiments Solve the Hedycaryol Problem. Org Lett 2022; 24:587-591. [PMID: 34985289 DOI: 10.1021/acs.orglett.1c04021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hedycaryol is a widespread sesquiterpene alcohol and important biosynthetic intermediate toward eudesmols and guaiols. A full NMR assignment for this compound has been hampered because of the unique molecular mechanics of its conformers in complex mixtures. This problem was solved through the enzymatic synthesis of isotopically labeled materials using a mutated plant and a bacterial enzyme for access to both enantiomers of hedycaryol, which also allowed us to follow the stereochemical course of its Cope rearrangement.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Nathalie D Lackus
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Jeroen S Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
15
|
Abstract
Hundreds of terpenoids have been isolated from Basidiomycota, among them are volatile mono- and sesquiterpenes with amazing sensory qualities, representing a promising alternative to essential oils from endangered plant species. Sesquiterpene synthases (STS) appear to be an abundant class of enzymes in these fungi. The basidiomycete Cerrena unicolor, a known sesquiterpene producer, was in silico screened for sesquiterpene cyclases via homology Basic Local Alignment Search Tool searches. Cyclase genes identified were cloned and heterologously expressed in Escherichia coli Bl21 using pCOLD I as the expression vector. Ten cyclases were successfully produced and purified, and their identity was confirmed using amino acid sequencing of tryptic peptides by nano-liquid chromatography-high resolution-electrospray ionization-tandem mass spectrometry. Gas chromatography/mass spectrometry analysis was applied to characterize these cyclases according to the formation of sesquiterpene hydrocarbons and oxidized terpenoids. Bioinformatic characterization and phylogenetic determination allowed for the classification of these diverse fungal enzymes. A representative single and a multi-product STS, respectively, were further analyzed for their dependency from divalent metal cations as a cofactor for the catalytic activity.
Collapse
|
16
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10‐Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baofu Xu
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Dean J. Tantillo
- Department of Chemistry University of California-Davis Davis CA 95616 USA
| | - Jeffrey D. Rudolf
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
17
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10-Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021; 60:23159-23163. [PMID: 34378291 PMCID: PMC8511055 DOI: 10.1002/anie.202109641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/05/2022]
Abstract
The eunicellane diterpenoids are a unique family of natural products seen in marine organisms, plants, and bacteria. We used a series of biochemical, bioinformatics, and theoretical experiments to investigate the mechanism of the first diterpene synthase known to form the eunicellane skeleton. Deuterium labeling studies and quantum chemical calculations support that Bnd4, from Streptomyces sp. (CL12-4), forms the 6,10-bicyclic skeleton through a 1,10-cyclization, 1,3-hydride shift, and 1,14-cyclization cascade. Bnd4 also demonstrated sesquiterpene cyclase activity and the ability to prenylate small molecules. Bnd4 possesses a unique D94 NxxxD motif and mutation experiments confirmed an absolute requirement for D94 as well as E169.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA, 95616, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Xu H, Schotte C, Cox RJ, Dickschat JS. Stereochemical characterisation of the non-canonical α-humulene synthase from Acremonium strictum. Org Biomol Chem 2021; 19:8482-8486. [PMID: 34533184 DOI: 10.1039/d1ob01769a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The non-canonical fungal α-humulene synthase was investigated through isotopic labelling experiments for its stereochemical course regarding inversion or retention at C-1, the face selectivity at C-11, and the stereoselectivity of the final deprotonation. A new and convenient desymmetrisation strategy was developed to enable a full stereochemical analysis of the catalysed steps to the achiral α-humulene product from stereoselectively labelled farnesyl diphosphate.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany.
| | - Carsten Schotte
- Institute of Organic Chemistry, University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Russell J Cox
- Institute of Organic Chemistry, University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
19
|
Schotte C, Lukat P, Deuschmann A, Blankenfeldt W, Cox RJ. Understanding and Engineering the Stereoselectivity of Humulene Synthase. Angew Chem Int Ed Engl 2021; 60:20308-20312. [PMID: 34180566 PMCID: PMC8457177 DOI: 10.1002/anie.202106718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Indexed: 11/09/2022]
Abstract
The non-canonical terpene cyclase AsR6 is responsible for the formation of 2E,6E,9E-humulene during the biosynthesis of the tropolone sesquiterpenoid (TS) xenovulene A. The structures of unliganded AsR6 and of AsR6 in complex with an in crystallo cyclized reaction product and thiolodiphosphate reveal a new farnesyl diphosphate binding motif that comprises a unique binuclear Mg2+ -cluster and an essential K289 residue that is conserved in all humulene synthases involved in TS formation. Structure-based site-directed mutagenesis of AsR6 and its homologue EupR3 identify a single residue, L285/M261, that controls the production of either 2E,6E,9E- or 2Z,6E,9E-humulene. A possible mechanism for the observed stereoselectivity was investigated using different isoprenoid precursors and results demonstrate that M261 has gatekeeping control over product formation.
Collapse
Affiliation(s)
- Carsten Schotte
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Peer Lukat
- Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstr. 738124BraunschweigGermany
| | - Adrian Deuschmann
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Wulf Blankenfeldt
- Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstr. 738124BraunschweigGermany
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität BraunschweigSpielmannstr. 738106BraunschweigGermany
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
20
|
Schotte C, Lukat P, Deuschmann A, Blankenfeldt W, Cox RJ. Untersuchungen zum Verständnis und zur Kontrolle der Stereoselektivität der Humulen‐Synthase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Carsten Schotte
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| | - Peer Lukat
- Structure and Function of Proteins Helmholtz Zentrum für Infektionsforschung Inhoffenstr. 7 38124 Braunschweig Deutschland
| | - Adrian Deuschmann
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| | - Wulf Blankenfeldt
- Structure and Function of Proteins Helmholtz Zentrum für Infektionsforschung Inhoffenstr. 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik Technische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Deutschland
| | - Russell J. Cox
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| |
Collapse
|
21
|
Ding L, Görls H, Hertweck C. Plant-like cadinane sesquiterpenes from an actinobacterial mangrove endophyte. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:34-42. [PMID: 32598052 DOI: 10.1002/mrc.5070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Cadinanes are typical plant sesquiterpenes with a broad range of biological functions. We report the isolation of three cadinanes (1-3) from a bacterial endophyte (Streptomyces sp.) of the mangrove plant Bruguiera gymnorrhiza. The structures of two new cadinenes, (+)-11-hydroxy-epicubenol (1) and (+)-12-hydroxy-epicubenol (2) were elucidated by nuclear magnetic resonance (NMR) and mass spectrometry. The bacterial product (+)-11-hydroxy-epicubenol was elucidated to be an enantiomer of the plant product pubinernoid C. (+)-12-Hydroxy-epicubenol was established as a diastereomer of the basidiomycete product trichapargin A. In addition, a crystal structure analysis corroborated the structure and configuration of 5,11-epoxy-10-cadinanol (3), a cadinane cycloether initially described as a natural product from liverwort. The discovery of oxygenated cadinanes from a bacterial endophyte may set the basis for the production of cadinanes by bacterial fermentation.
Collapse
Affiliation(s)
- Ling Ding
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
22
|
Abstract
The product of a terpene synthase from Streptomyces lincolnensis has been identified as the new natural product isoishwarane. The enzyme mechanism was studied by isotopic labelling experiments and site-directed mutagenesis.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
23
|
Mou SB, Xiao W, Wang HQ, Chen KY, Xiang Z. Syntheses of the Carotane-type Terpenoids (+)-Schisanwilsonene A and (+)-Tormesol via a Two-Stage Approach. Org Lett 2020; 23:400-404. [DOI: 10.1021/acs.orglett.0c03894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hua-Qi Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
24
|
Xu H, Dickschat JS. Germacrene A-A Central Intermediate in Sesquiterpene Biosynthesis. Chemistry 2020; 26:17318-17341. [PMID: 32442350 PMCID: PMC7821278 DOI: 10.1002/chem.202002163] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Indexed: 01/17/2023]
Abstract
This review summarises known sesquiterpenes whose biosyntheses proceed through the intermediate germacrene A. First, the occurrence and biosynthesis of germacrene A in Nature and its peculiar chemistry will be highlighted, followed by a discussion of 6-6 and 5-7 bicyclic compounds and their more complex derivatives. For each compound the absolute configuration, if it is known, and the reasoning for its assignment is presented.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
25
|
Zhang Y, Bai J, Yan D, Liu B, Zhang L, Zhang C, Chen M, Mou Y, Hu Y. Highly Oxygenated Caryophyllene-Type Sesquiterpenes from a Plant-Associated Fungus, Pestalotiopsis hainanensis, and Their Biosynthetic Gene Cluster. JOURNAL OF NATURAL PRODUCTS 2020; 83:3262-3269. [PMID: 33064488 DOI: 10.1021/acs.jnatprod.0c00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven new β-caryophyllene derivatives, pestalotiphains A-G (1-7), along with six known analogues (8-13), were isolated from the plant-associated Pestalotiopsis hainanensis. Compound 1 represents the first example of a caryophyllene-adenine hybrid, and 2 contains a novel oxatricyclo[4.3.1.0] system. Their structures and absolute configurations were assigned by interpretation of a combination of spectroscopic data and electronic circular dichroism calculations. Compound 8 exhibited moderate inhibition of HL-60 and THP-1 cell lines (IC50, 6.2 and 2.0 μM, respectively). A candidate biosynthetic gene cluster responsible for these compounds was uncovered by bioinformatics analyses and confirmed by a biochemical approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yanhua Mou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 117004, People's Republic of China
| | | |
Collapse
|
26
|
Bhaskar P, Sareen D. Bioinformatics approach to understand nature's unified mechanism of stereo-divergent synthesis of isoprenoid skeletons. World J Microbiol Biotechnol 2020; 36:142. [PMID: 32851438 DOI: 10.1007/s11274-020-02918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 11/27/2022]
Abstract
In isoprenoid metabolism, cyclisation is the important gateway to chemical diversity. Terpene synthase is responsible for the cyclisation of a few universal substrates forming hundreds of often stereo-chemically complex mono- and poly-cyclic terpene hydrocarbons with a broad spectrum of functions in pharmaceuticals, flavours and fragrance industry. Although they are discovered and characterised mainly from plants and fungi, yet only a small share of bacterial terpenes has been investigated so far owing to their low level of expression in wild-type microorganisms. Extensive bacterial genome mining has revealed a treasure trove of terpene synthase genes and their regulated heterologous overexpression has pitched-in to describe the biochemical function of putative genes and sequester new terpene metabolites. This review deals with the modern genome mining techniques and molecular methods, providing more experimental tools for studying the structure and functions of terpenoid metabolites and strongly supports the idea that genome mining is a utile approach in deciphering the terpenoid diversity in bacteria.
Collapse
Affiliation(s)
- Pranav Bhaskar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
27
|
Mitschke N, Christoffers J, Wilkes H. A Straightforward Synthesis of Trideuterated α‐Terpinene for Mechanistic Studies. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nico Mitschke
- Institut für Chemie und Biologie des Meeres (ICBM) Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Heinz Wilkes
- Institut für Chemie und Biologie des Meeres (ICBM) Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
28
|
Reddy GK, Leferink NGH, Umemura M, Ahmed ST, Breitling R, Scrutton NS, Takano E. Exploring novel bacterial terpene synthases. PLoS One 2020; 15:e0232220. [PMID: 32353014 PMCID: PMC7192455 DOI: 10.1371/journal.pone.0232220] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Terpenes are the largest class of natural products with extensive structural diversity and are widely used as pharmaceuticals, herbicides, flavourings, fragrances, and biofuels. While they have mostly been isolated from plants and fungi, the availability and analysis of bacterial genome sequence data indicates that bacteria also possess many putative terpene synthase genes. In this study, we further explore this potential for terpene synthase activity in bacteria. Twenty two potential class I terpene synthase genes (TSs) were selected to represent the full sequence diversity of bacterial synthase candidates and recombinantly expressed in E. coli. Terpene synthase activity was detected for 15 of these enzymes, and included mono-, sesqui- and diterpene synthase activities. A number of confirmed sesquiterpene synthases also exhibited promiscuous monoterpene synthase activity, suggesting that bacteria are potentially a richer source of monoterpene synthase activity then previously assumed. Several terpenoid products not previously detected in bacteria were identified, including aromandendrene, acora-3,7(14)-diene and longiborneol. Overall, we have identified promiscuous terpene synthases in bacteria and demonstrated that terpene synthases with substrate promiscuity are widely distributed in nature, forming a rich resource for engineering terpene biosynthetic pathways for biotechnology.
Collapse
Affiliation(s)
- Gajendar Komati Reddy
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tsukuba, Ibaraki, Japan
| | - Syed T. Ahmed
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Hou A, Lauterbach L, Dickschat JS. Enzymatic Synthesis of Methylated Terpene Analogues Using the Plasticity of Bacterial Terpene Synthases. Chemistry 2020; 26:2178-2182. [PMID: 31898827 PMCID: PMC7065205 DOI: 10.1002/chem.201905827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 12/04/2022]
Abstract
Methylated analogues of isopentenyl diphosphate were synthesised and enzymatically incorporated into methylated terpenes. A detailed stereochemical analysis of the obtained products is presented. The methylated terpene precursors were also used in conjunction with various isotopic labellings to gain insights into the mechanisms of their enzymatic formation.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
30
|
Harms V, Kirschning A, Dickschat JS. Nature-driven approaches to non-natural terpene analogues. Nat Prod Rep 2020; 37:1080-1097. [DOI: 10.1039/c9np00055k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reactions catalysed by terpene synthases belong to the most complex and fascinating cascade-type transformations in Nature.
Collapse
Affiliation(s)
- Vanessa Harms
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
31
|
Armenta-Salinas C, Guzmán-Mejía R, García-Gutiérrez HA, Román-Marín LU, Hernández-Hernández JD, Cerda-García-Rojas CM, Joseph-Nathan P. Novel Sesquiterpene Skeletons by Multiple Wagner-Meerwein Rearrangements of a Longipinane-1,9-diol Derivative. JOURNAL OF NATURAL PRODUCTS 2019; 82:3410-3420. [PMID: 31773961 DOI: 10.1021/acs.jnatprod.9b00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tricyclic sesquiterpene (1R,3R,4S,5S,7S,8S,9S,10R,11R)-7,8-diangeloyloxylongipinan-1,9-diol, or rasteviol (7), underwent multiple Wagner-Meerwein molecular rearrangements and several hydride shifts when treated with Et2O-BF3 to generate the six new compounds (1R,3R,4S,5R,7S,8S,9S,10R,11S)-7,8-diangeloyloxy-1,9-epoxyjiquilpane (8), (1R,3R,4S,5R,7R,8S,9S,11S)-8-angeloyloxy-1,7-epoxyzamor-10(14)-ene (11), (2S,3R,4R,5R,6R,7R,8S,9S,10S)-7,8-diangeloyloxy-6,9-epoxyjanitziane (14), (4R,5R,7S,8S,9S,10S,11S)-7,8-diangeloyloxy-9-hydroxyjiquilp-3(15)-ene (16), (2S,3S,5R,7S,8R,10S,11R)-7,8-diangeloyloxyiratzian-9-one (18), and (2S,3S,5R,10S,11R)-8-angeloyloxyiratzi-7-en-9-one (22), of which 8, 11, 14, and 18 possess new hydrocarbon skeletons. Their structures were determined by 1D and 2D NMR in combination with single-crystal X-ray diffraction analyses of derivatives 10, 15, 20, and 21, which allowed confirmation of their absolute configurations by means of the Flack and Hooft parameters. In addition, some reaction mechanism information was gained from deuterium labeling experiments.
Collapse
Affiliation(s)
- Concepción Armenta-Salinas
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Ramón Guzmán-Mejía
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Hugo A García-Gutiérrez
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Luisa U Román-Marín
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Juan D Hernández-Hernández
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Carlos M Cerda-García-Rojas
- Departamento de Química , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Apartado 14-740 , Mexico City , 07000 Mexico
| | - Pedro Joseph-Nathan
- Departamento de Química , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Apartado 14-740 , Mexico City , 07000 Mexico
| |
Collapse
|
32
|
Driller R, Garbe D, Mehlmer N, Fuchs M, Raz K, Major DT, Brück T, Loll B. Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein J Org Chem 2019; 15:2355-2368. [PMID: 31666870 PMCID: PMC6808215 DOI: 10.3762/bjoc.15.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
CotB2 catalyzes the first committed step in cyclooctatin biosynthesis of the soil bacterium Streptomyces melanosporofaciens. To date, CotB2 represents the best studied bacterial diterpene synthase. Its reaction mechanism has been addressed by isoptope labeling, targeted mutagenesis and theoretical computations in the gas phase, as well as full enzyme molecular dynamic simulations. By X-ray crystallography different snapshots of CotB2 from the open, inactive, to the closed, active conformation have been obtained in great detail, allowing us to draw detailed conclusions regarding the catalytic mechanism at the molecular level. Moreover, numerous alternative geranylgeranyl diphosphate cyclization products obtained by CotB2 mutagenesis have exciting applications for the sustainable production of high value bioactive substances.
Collapse
Affiliation(s)
- Ronja Driller
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- present address: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
- present address: Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
33
|
Martín-Sánchez L, Singh KS, Avalos M, van Wezel GP, Dickschat JS, Garbeva P. Phylogenomic analyses and distribution of terpene synthases among Streptomyces. Beilstein J Org Chem 2019; 15:1181-1193. [PMID: 31293665 PMCID: PMC6604706 DOI: 10.3762/bjoc.15.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
Terpene synthases are widely distributed among microorganisms and have been mainly studied in members of the genus Streptomyces. However, little is known about the distribution and evolution of the genes for terpene synthases. Here, we performed whole-genome based phylogenetic analysis of Streptomyces species, and compared the distribution of terpene synthase genes among them. Overall, our study revealed that ten major types of terpene synthases are present within the genus Streptomyces, namely those for geosmin, 2-methylisoborneol, epi-isozizaene, 7-epi-α-eudesmol, epi-cubenol, caryolan-1-ol, cyclooctat-9-en-7-ol, isoafricanol, pentalenene and α-amorphene. The Streptomyces species divide in three phylogenetic groups based on their whole genomes for which the distribution of the ten terpene synthases was analysed. Geosmin synthases were the most widely distributed and were found to be evolutionary positively selected. Other terpene synthases were found to be specific for one of the three clades or a subclade within the genus Streptomyces. A phylogenetic analysis of the most widely distributed classes of Streptomyces terpene synthases in comparison to the phylogenomic analysis of this genus is discussed.
Collapse
Affiliation(s)
- Lara Martín-Sánchez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Mariana Avalos
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
34
|
Discovery of three novel sesquiterpene synthases from Streptomyces chartreusis NRRL 3882 and crystal structure of an α-eudesmol synthase. J Biotechnol 2019; 297:71-77. [PMID: 30928538 DOI: 10.1016/j.jbiotec.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
With more than 50,000 members, terpenoids are one of the most important classes of natural products and show an enormous diversity. Due to their unique odors and specific bioactivities they already find wide application in the flavor, fragrance and pharma industries. Since most terpenoids can only be obtained by natural product extraction, the discovery of biosynthetic genes for the generation of terpene diversity becomes increasingly important. This study describes the discovery of three novel sesquiterpene synthases from Streptomyces chartreusis with preference for the formation of germacradiene-11-ol, α-eudesmol and α-amorphene respectively. The α-eudesmol synthase showed formation of 10-epi-δ-eudesmol and elemol as side products. Eudesmol-isomers are known to have repellent activity, which makes this enzyme a potential catalyst for products for the prevention of mosquito-related disease. The determination of the structure of the apo-enzyme of α-eudesmol synthase from S. chartreusis provides the first structural insights into an eudesmol-forming enzyme.
Collapse
|
35
|
Chen X, Luck K, Rabe P, Dinh CQ, Shaulsky G, Nelson DR, Gershenzon J, Dickschat JS, Köllner TG, Chen F. A terpene synthase-cytochrome P450 cluster in Dictyostelium discoideum produces a novel trisnorsesquiterpene. eLife 2019; 8:44352. [PMID: 31063135 PMCID: PMC6524965 DOI: 10.7554/elife.44352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Terpenoids are enormously diverse, but our knowledge of their biosynthesis and functions is limited. Here we report on a terpene synthase (DdTPS8)-cytochrome P450 (CYP521A1) gene cluster that produces a novel C12 trisnorsesquiterpene and affects the development of Dictyostelium discoideum. DdTPS8 catalyzes the formation of a sesquiterpene discoidol, which is undetectable from the volatile bouquet of wild type D. discoideum. Interestingly, a DdTPS8 knockout mutant lacks not only discoidol, but also a putative trisnorsesquiterpene. This compound was hypothesized to be derived from discoidol via cytochrome P450 (CYP)-catalyzed oxidative cleavage. CYP521A1, which is clustered with DdTPS8, was identified as a top candidate. Biochemical assays demonstrated that CYP521A1 catalyzes the conversion of discoidol to a novel trisnorsesquiterpene named discodiene. The DdTPS8 knockout mutant exhibited slow progression in development. This study points to the untapped diversity of natural products made by D. discoideum, which may have diverse roles in its development and chemical ecology.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, United States
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Christopher Qd Dinh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - David R Nelson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, United States
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, United States
| |
Collapse
|
36
|
Burkhardt I, Kreuzenbeck NB, Beemelmanns C, Dickschat JS. Mechanistic characterization of three sesquiterpene synthases from the termite-associated fungus Termitomyces. Org Biomol Chem 2019; 17:3348-3355. [DOI: 10.1039/c8ob02744g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three terpene synthases from the termite associated fungus Termitomyces were studied by isotopic labelling experiments and site-directed mutagenesis.
Collapse
Affiliation(s)
- Immo Burkhardt
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- 53121 Bonn
- Germany
| | - Nina B. Kreuzenbeck
- Leibnitz Institute for Natural Product Research and Infection Biology
- Hans-Knöll-Institute
- 07745 Jena
- Germany
| | - Christine Beemelmanns
- Leibnitz Institute for Natural Product Research and Infection Biology
- Hans-Knöll-Institute
- 07745 Jena
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
37
|
Blerot B, Martinelli L, Prunier C, Saint-Marcoux D, Legrand S, Bony A, Sarrabère L, Gros F, Boyer N, Caissard JC, Baudino S, Jullien F. Functional Analysis of Four Terpene Synthases in Rose-Scented Pelargonium Cultivars ( Pelargonium × hybridum) and Evolution of Scent in the Pelargonium Genus. FRONTIERS IN PLANT SCIENCE 2018; 9:1435. [PMID: 30483274 PMCID: PMC6240891 DOI: 10.3389/fpls.2018.01435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 05/26/2023]
Abstract
Pelargonium genus contains about 280 species among which at least 30 species are odorant. Aromas produced by scented species are remarkably diverse such as rose, mint, lemon, nutmeg, ginger and many others scents. Amongst odorant species, rose-scented pelargoniums, also named pelargonium rosat, are the most famous hybrids for their production of essential oil (EO), widely used by perfume and cosmetic industries. Although EO composition has been extensively studied, the underlying biosynthetic pathways and their regulation, most notably of terpenes, are largely unknown. To gain a better understanding of the terpene metabolic pathways in pelargonium rosat, we generated a transcriptome dataset of pelargonium leaf and used a candidate gene approach to functionally characterise four terpene synthases (TPSs), including a geraniol synthase, a key enzyme responsible for the biosynthesis of the main rose-scented terpenes. We also report for the first time the characterisation of a novel sesquiterpene synthase catalysing the biosynthesis of 10-epi-γ-eudesmol. We found a strong correlation between expression of the four genes encoding the respective TPSs and accumulation of the corresponding products in several pelargonium cultivars and species. Finally, using publically available RNA-Seq data and de novo transcriptome assemblies, we inferred a maximum likelihood phylogeny from 270 pelargonium TPSs, including the four newly discovered enzymes, providing clues about TPS evolution in the Pelargonium genus. Notably, we show that, by contrast to other TPSs, geraniol synthases from the TPS-g subfamily conserved their molecular function throughout evolution.
Collapse
Affiliation(s)
- Bernard Blerot
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
- IFF-LMR Naturals, Grasse, France
| | - Laure Martinelli
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Cécile Prunier
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Denis Saint-Marcoux
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | | | - Aurélie Bony
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Loïc Sarrabère
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Florence Gros
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Nicolas Boyer
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Frédéric Jullien
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| |
Collapse
|
38
|
Mischko W, Hirte M, Fuchs M, Mehlmer N, Brück TB. Identification of sesquiterpene synthases from the Basidiomycota Coniophora puteana for the efficient and highly selective β-copaene and cubebol production in E. coli. Microb Cell Fact 2018; 17:164. [PMID: 30348159 PMCID: PMC6198442 DOI: 10.1186/s12934-018-1010-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Background Terpenes are an important and extremely versatile class of secondary metabolites that are commercially used in the pharmaceutical, food and cosmetics sectors. Genome mining of different fungal collections has revealed the genetic basis for a steadily increasing number of putative terpene synthases without any detailed knowledge about their biochemical properties. The analysis and research of this rich genetic source provides a precious basis for the advancing biotechnological production of an almost endless number of valuable natural metabolites. Results Three annotated terpene synthases from the little investigated Basidiomycota Coniophora puteana were studied in this work. For biochemical characterization, the heterologous expression in E. coli was conducted leading to the identification of two sesquiterpene synthases capable of the highly selective generation of β-copaene and cubebol. These compounds are commercially used as food and flavor additives. The new enzymes show the highest reported product selectivity for their main compounds and therefore represent the first exclusive synthases for β-copaene (62% product selectivity) and cubebol (75% product selectivity) generation. In combination with an optimized heterologous microbial production system, we obtained product titers of 215 mg/L β-copaene and 497 mg/L cubebol. Conclusion The reported product selectivity and our generated terpene titers exceed all published biotechnological data regarding the production of β-copaene and cubebol. This represents a promising and economic alternative to extraction from natural plant sources and the associated complex product purification. Electronic supplementary material The online version of this article (10.1186/s12934-018-1010-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wolfgang Mischko
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Max Hirte
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Thomas B Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
39
|
Driller R, Janke S, Fuchs M, Warner E, Mhashal AR, Major DT, Christmann M, Brück T, Loll B. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nat Commun 2018; 9:3971. [PMID: 30266969 PMCID: PMC6162201 DOI: 10.1038/s41467-018-06325-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022] Open
Abstract
Terpenes constitute the largest and structurally most diverse natural product family. Most terpenoids exhibit a stereochemically complex macrocyclic core, which is generated by C–C bond forming of aliphatic oligo-prenyl precursors. This reaction is catalysed by terpene synthases (TPSs), which are capable of chaperoning highly reactive carbocation intermediates through an enzyme-specific reaction. Due to the instability of carbocation intermediates, the proteins’ structural dynamics and enzyme:substrate interactions during TPS catalysis remain elusive. Here, we present the structure of the diterpene synthase CotB2, in complex with an in crystallo cyclised abrupt reaction product and a substrate-derived diphosphate. We captured additional snapshots of the reaction to gain an overview of CotB2’s catalytic mechanism. To enhance insights into catalysis, structural information is augmented with multiscale molecular dynamic simulations. Our data represent fundamental TPS structure dynamics during catalysis, which ultimately enable rational engineering towards tailored terpene macrocycles that are inaccessible by conventional chemical synthesis. The bacterial diterpene synthase CotB2 catalyses the cyclisation of geranylgeranyl diphosphate to cyclooctat-9-en7-ol. Here the authors present various CotB2 structures including a trapped abrupt reaction product that were used for molecular dynamic simulations and allowed them to model all intermediates along the reaction cascade.
Collapse
Affiliation(s)
- Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Sophie Janke
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Evelyn Warner
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anil R Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Mathias Christmann
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| |
Collapse
|
40
|
Oberhauser C, Harms V, Seidel K, Schröder B, Ekramzadeh K, Beutel S, Winkler S, Lauterbach L, Dickschat JS, Kirschning A. Exploiting the Synthetic Potential of Sesquiterpene Cyclases for Generating Unnatural Terpenoids. Angew Chem Int Ed Engl 2018; 57:11802-11806. [DOI: 10.1002/anie.201805526] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Clara Oberhauser
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Vanessa Harms
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Katja Seidel
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Benjamin Schröder
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Kimia Ekramzadeh
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Callinstr. 5 30167 Hannover Germany
| | - Sascha Beutel
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Callinstr. 5 30167 Hannover Germany
| | - Sven Winkler
- Symrise AG Mühlenfeldstrasse 1 37603 Holzminden Germany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
41
|
Oberhauser C, Harms V, Seidel K, Schröder B, Ekramzadeh K, Beutel S, Winkler S, Lauterbach L, Dickschat JS, Kirschning A. Erweiterung des synthetischen Potenzials von Sesquiterpencyclasen zur Erzeugung von nichtnatürlichen Terpenoiden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Clara Oberhauser
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Vanessa Harms
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Katja Seidel
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Benjamin Schröder
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| | - Kimia Ekramzadeh
- Institut für Technische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Callinstr. 5 30167 Hannover Deutschland
| | - Sascha Beutel
- Institut für Technische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Callinstr. 5 30167 Hannover Deutschland
| | - Sven Winkler
- Symrise AG; Mühlenfeldstraße 1 37603 Holzminden Deutschland
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ); Leibniz Universität Hannover; Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
42
|
Rinkel J, Litzenburger M, Bernhardt R, Dickschat JS. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes. Chembiochem 2018; 19:1498-1501. [DOI: 10.1002/cbic.201800215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Martin Litzenburger
- Institute of BiochemistrySaarland University Campus Building B2.2 66123 Saarbrücken Germany
| | - Rita Bernhardt
- Institute of BiochemistrySaarland University Campus Building B2.2 66123 Saarbrücken Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
43
|
Rinkel J, Rabe P, Dickschat JS. The EI-MS Fragmentation Mechanisms of Bacterial Sesquiterpenes and Diterpenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
44
|
Rinkel J, Lauterbach L, Rabe P, Dickschat JS. Zwei Diterpensynthasen für Spiroalbaten und Cembren A aus Allokutzneria albata. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800385] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
45
|
Rinkel J, Lauterbach L, Rabe P, Dickschat JS. Two Diterpene Synthases for Spiroalbatene and Cembrene A from Allokutzneria albata. Angew Chem Int Ed Engl 2018; 57:3238-3241. [DOI: 10.1002/anie.201800385] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
46
|
Dickschat JS, Rinkel J, Rabe P, Beyraghdar Kashkooli A, Bouwmeester HJ. 18-Hydroxydolabella-3,7-diene synthase - a diterpene synthase from Chitinophaga pinensis. Beilstein J Org Chem 2017; 13:1770-1780. [PMID: 28904620 PMCID: PMC5588592 DOI: 10.3762/bjoc.13.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
The product obtained in vitro from a diterpene synthase encoded in the genome of the bacterium Chitinophaga pinensis, an enzyme previously reported to have germacrene A synthase activity during heterologous expression in Escherichia coli, was identified by extensive NMR-spectroscopic methods as 18-hydroxydolabella-3,7-diene. The absolute configuration of this diterpene alcohol and the stereochemical course of the terpene synthase reaction were addressed by isotopic labelling experiments. Heterologous expression of the diterpene synthase in Nicotiana benthamiana resulted in the production of 18-hydroxydolabella-3,7-diene also in planta, while the results from the heterologous expression in E. coli were shown to be reproducible, revealing that the expression of one and the same terpene synthase in different heterologous hosts may yield different terpene products.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
47
|
Rinkel J, Rabe P, Chen X, Köllner TG, Chen F, Dickschat JS. Mechanisms of the Diterpene Cyclases β-Pinacene Synthase fromDictyostelium discoideumand Hydropyrene Synthase fromStreptomyces clavuligerus. Chemistry 2017; 23:10501-10505. [DOI: 10.1002/chem.201702704] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Xinlu Chen
- Department of Plant Sciences; University of Tennessee; 2431 Joe Johnson Drive Knoxville TN 37996-4561 USA
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 07745 Jena Germany
| | - Feng Chen
- Department of Plant Sciences; University of Tennessee; 2431 Joe Johnson Drive Knoxville TN 37996-4561 USA
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
48
|
Mitsuhashi T, Rinkel J, Okada M, Abe I, Dickschat JS. Mechanistic Characterization of Two Chimeric Sesterterpene Synthases fromPenicillium. Chemistry 2017; 23:10053-10057. [DOI: 10.1002/chem.201702766] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Science; University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Masahiro Okada
- Graduate School of Pharmaceutical Science; University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Science; University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
49
|
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; Rheinische Friedrich Wilhelms University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
50
|
Rabe P, Rinkel J, Dolja E, Schmitz T, Nubbemeyer B, Luu TH, Dickschat JS. Mechanistische Studien an zwei bakteriellen Diterpencyclasen: Spiroviolen-Synthase und Tsukubadien-Synthase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612439] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Etilia Dolja
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Thomas Schmitz
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Britta Nubbemeyer
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - T. Hoang Luu
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|