1
|
Zhu C, Wu C, Jiang W, Yang J, Ma D. Regioselective [3 + 2]/[4 + 2] Annulations of α-Nitrosostyrenes with Triazines. J Org Chem 2025. [PMID: 40492685 DOI: 10.1021/acs.joc.5c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Reported herein are the regioselective [3 + 2]/[4 + 2] annulations of α-nitrosostyrenes with hexahydro-1,3,5-triazines, which provide five- and six-membered heterocycles in moderate yields under mild reaction conditions. Compared to previous reports, this unusual [3 + 2] annulation features the use of rhodium catalysts to control the regioselectivity of α-nitrosostyrenes, generated in situ from α-bromooximes 1. Meanwhile, the [4 + 2] annulation process was primarily regulated by 1,4-dioxane and temperature. In addition, DFT calculations reveal that the activation barrier of the [3 + 2] annulation is lower than the [4 + 2] process (1.7 kcal/mol) in the presence of a Rh catalyst. Finally, synthetic transformation of cyclic nitrones 3 and oxadiazines 4 was also demonstrated.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Changhao Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Wenbo Jiang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Da Ma
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| |
Collapse
|
2
|
Pospelov EV, Sukhorukov AY. Building Up a Piperazine Ring from a Primary Amino Group via Catalytic Reductive Cyclization of Dioximes. Int J Mol Sci 2023; 24:11794. [PMID: 37511552 PMCID: PMC10380651 DOI: 10.3390/ijms241411794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Piperazine is one of the most frequently found scaffolds in small-molecule FDA-approved drugs. In this study, a general approach to the synthesis of piperazines bearing substituents at carbon and nitrogen atoms utilizing primary amines and nitrosoalkenes as synthons was developed. The method relies on sequential double Michael addition of nitrosoalkenes to amines to give bis(oximinoalkyl)amines, followed by stereoselective catalytic reductive cyclization of the oxime groups. The method that we developed allows a straightforward structural modification of bioactive molecules (e.g., α-amino acids) by the conversion of a primary amino group into a piperazine ring.
Collapse
Affiliation(s)
- Evgeny V Pospelov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, Moscow 119991, Russia
| |
Collapse
|
3
|
Wang T, Liu C, Xu D, Xu J, Yang Z. Iridium-Catalyzed and pH-Dependent Reductions of Nitroalkenes to Ketones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227822. [PMID: 36431923 PMCID: PMC9696932 DOI: 10.3390/molecules27227822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
A highly chemoselective conversion of α,β-disubstituted nitroalkenes to ketones is developed. An acid-compatible iridium catalyst serves as the key to the conversion. At a 2500 S/C ratio, nitroalkenes were readily converted to ketones in up to 72% isolated yields. A new mechanistic mode involving the reduction of nitroalkene to nitrosoalkene and N-alkenyl hydroxylamine is proposed. This conversion is ready to amplify to a gram-scale synthesis. The pH value plays an indispensable role in controlling the chemoselectivity.
Collapse
|
4
|
Schuppe AW, Liu Y, Gonzalez-Hurtado E, Zhao Y, Jiang X, Ibarraran S, Huang D, Wang E, Lee J, Loria JP, Dixit VD, Li X, Newhouse TR. Unified Total Synthesis of the Limonoid Alkaloids: Strategies for the De Novo Synthesis of Highly Substituted Pyridine Scaffolds. Chem 2022; 8:2856-2887. [PMID: 37396824 PMCID: PMC10311986 DOI: 10.1016/j.chempr.2022.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Highly substituted pyridine scaffolds are found in many biologically active natural products and therapeutics. Accordingly, numerous complementary de novo approaches to obtain differentially substituted pyridines have been disclosed. This article delineates the evolution of the synthetic strategies designed to assemble the demanding tetrasubstituted pyridine core present in the limonoid alkaloids isolated from Xylocarpus granatum, including xylogranatopyridine B, granatumine A and related congeners. In addition, NMR calculations suggested structural misassignment of several limonoid alkaloids, and predicted their C3-epimers as the correct structures, which was further validated unequivocally through chemical synthesis. The materials produced in this study were evaluated for cytotoxicity, anti-oxidant effects, anti-inflammatory action, PTP1B and Nlrp3 inflammasome inhibition, which led to compelling anti-inflammatory activity and anti-oxidant effects being discovered.
Collapse
Affiliation(s)
- Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yannan Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Elsie Gonzalez-Hurtado
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Yizhou Zhao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Xuefeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Sebastian Ibarraran
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - David Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Emma Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Jaehoo Lee
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Vishwa Deep Dixit
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
- Lead contact
| |
Collapse
|
5
|
Pospelov E, Boyko Y, Ioffe SL, Sukhorukov A. Synthesis of Bis(β‐oximinoalkyl)malonates and Their Catalytic Reductive Cyclization to Piperidines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Evgeny Pospelov
- N. D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| | | | | | | |
Collapse
|
6
|
Shen LW, Wang ZH, You Y, Zhao JQ, Zhou MQ, Yuan WC. α-Nitrosostyrenes as Three-Atom Units for the (3+1) Cyclization Reaction: Facile Access to 2,3-Dihydrodiazete N-Oxides and Their Diversified Synthetic Conversions. Org Lett 2022; 24:1094-1099. [PMID: 35077186 DOI: 10.1021/acs.orglett.2c00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented (3+1) cyclization of α-nitrosostyrenes, generated in situ from α-bromooximes, and N-tosyloxycarbamates was developed, which enables the synthesis of a range of structurally unique and hitherto unexplored 2,3-dihydrodiazete N-oxides in moderate to high yields. The products possess a highly strained four-membered ring structure containing two nitrogen atoms. The synthetic applicability of the products was also demonstrated by many important conversions to diverse nitrogen-containing compounds.
Collapse
Affiliation(s)
- Li-Wen Shen
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
7
|
Akhmirov RT, Ioffe SL, Yu. Sukhorukov A. Stereoselective approach to conjugated enone oximes from aliphatic nitro compounds and sulfur ylides. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Mild synthesis of isoxazoline derivatives via an efficient [4 + 1] annulation reaction of transient nitrosoalkenes and sulfur ylides. Sci Rep 2021; 11:2078. [PMID: 33483530 PMCID: PMC7822858 DOI: 10.1038/s41598-021-81370-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
An efficient [4 + 1] annulation between α-bromooximes and sulfur ylides via in situ generation of nitrosoalkenes under mild basic reaction conditions has been developed, providing an expeditious and scalable approach to synthesize biologically interesting isoxazoline derivatives with good to excellent yields.
Collapse
|
9
|
Ling T, Hadi V, Bollinger J, Rivas F. Identification of rapid access to polycyclic systems via a base-catalyzed cascade cyclization reaction and their biological evaluation. Bioorg Chem 2020; 99:103846. [PMID: 32334195 PMCID: PMC7329093 DOI: 10.1016/j.bioorg.2020.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/23/2022]
Abstract
A base-mediated cascade reaction between malonate esters and acrolein was developed to access complex polycyclic systems. This novel tandem reaction enables the simultaneous generation of up to seven new bonds and at least three new stereogenic centers. Mechanistic studies indicate a series of nucleophilic 1,4 and 1,6 Michael addition reactions occur, followed by an aldol condensation reaction, culminating in the formation of three fused rings. The compounds were characterized by NMR studies and the stereochemistry was confirmed by X-ray analysis. The ability to generate multigram quantities of such complex molecular scaffolds renders the method promising for medicinal chemistry campaigns. Herein, we also demonstrate that the lead compounds display promising anti-proliferative activities against human cancer cell models.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Victor Hadi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - John Bollinger
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
10
|
Jadhav PD, Chen JX, Liu RS. Gold(I)-Catalyzed Highly Enantioselective [4 + 2]-Annulations of Cyclopentadienes with Nitrosoarenes via Nitroso-Povarov versus Oxidative Nitroso-Povarov Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Prakash D. Jadhav
- Frontier Research Center for Matter Science and Technology, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC
| | - Jia-Xuan Chen
- Frontier Research Center for Matter Science and Technology, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC
| | - Rai-Shung Liu
- Frontier Research Center for Matter Science and Technology, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC
| |
Collapse
|
11
|
Curti C, Battistini L, Sartori A, Zanardi F. New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chem Rev 2020; 120:2448-2612. [PMID: 32040305 PMCID: PMC7993750 DOI: 10.1021/acs.chemrev.9b00481] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
The principle of vinylogy states that the electronic effects of a functional group in a molecule are possibly transmitted to a distal position through interposed conjugated multiple bonds. As an emblematic case, the nucleophilic character of a π-extended enolate-type chain system may be relayed from the legitimate α-site to the vinylogous γ, ε, ..., ω remote carbon sites along the chain, provided that suitable HOMO-raising strategies are adopted to transform the unsaturated pronucleophilic precursors into the reactive polyenolate species. On the other hand, when "unnatural" carbonyl ipso-sites are activated as nucleophiles (umpolung), vinylogation extends the nucleophilic character to "unnatural" β, δ, ... remote sites. Merging the principle of vinylogy with activation modalities and concepts such as iminium ion/enamine organocatalysis, NHC-organocatalysis, cooperative organo/metal catalysis, bifunctional organocatalysis, dicyanoalkylidene activation, and organocascade reactions represents an impressive step forward for all vinylogous transformations. This review article celebrates this evolutionary progress, by collecting, comparing, and critically describing the achievements made over the nine year period 2010-2018, in the generation of vinylogous enolate-type donor substrates and their use in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Franca Zanardi
- Dipartimento di Scienze degli
Alimenti e del Farmaco, Università
di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
12
|
Affiliation(s)
- Alexey Yu. Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prospect 47 Moscow Russia 119991
- D. Mendeleev University of Chemical Technology of Russia Miusskaya sq. 9 Moscow Russia 125047
- Plekhanov Russian University of Economics Stremyanny per. 36 Moscow Russia 117997
| |
Collapse
|
13
|
Chen C, Liu R. Gold‐catalyzed [4+2] Annulations of Dienes with Nitrosoarenes as 4 π Donors: Nitroso‐Povarov Reactions. Angew Chem Int Ed Engl 2019; 58:9831-9835. [DOI: 10.1002/anie.201903615] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ching‐Nung Chen
- Frontier Research Centers on Fundamental and Applied Science of Matters and Department of ChemistryNational Tsing-Hua University Hsinchu Taiwan
| | - Rai‐Shung Liu
- Frontier Research Centers on Fundamental and Applied Science of Matters and Department of ChemistryNational Tsing-Hua University Hsinchu Taiwan
| |
Collapse
|
14
|
Chen C, Liu R. Gold‐catalyzed [4+2] Annulations of Dienes with Nitrosoarenes as 4 π Donors: Nitroso‐Povarov Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ching‐Nung Chen
- Frontier Research Centers on Fundamental and Applied Science of Matters and Department of ChemistryNational Tsing-Hua University Hsinchu Taiwan
| | - Rai‐Shung Liu
- Frontier Research Centers on Fundamental and Applied Science of Matters and Department of ChemistryNational Tsing-Hua University Hsinchu Taiwan
| |
Collapse
|
15
|
Naumovich YA, Ioffe SL, Sukhorukov AY. Michael Addition of P-Nucleophiles to Conjugated Nitrosoalkenes. J Org Chem 2019; 84:7244-7254. [PMID: 31063688 DOI: 10.1021/acs.joc.9b00924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A general approach to various α-phosphorus-substituted oximes (β-oximinoalkyl-substituted phosphonates, phosphine oxides, phosphine-borane complexes, and phosphonium salts) was developed. The strategy exploits hitherto unknown Michael addition of PH-containing compounds (diphenylphosphine oxide, diisopropyl phosphite, phosphine-borane complexes, and triphenylphosphonium bromide) to unstable conjugated nitrosoalkenes, which are generated in situ from corresponding nitrosoacetals. The resulting α-phosphorus-substituted oximes can be considered as useful P-, N-, and O-ligands for catalysis and precursors to valuable β-aminophosphonates.
Collapse
Affiliation(s)
- Yana A Naumovich
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky Prospect, 47 , Moscow 119991 , Russia
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky Prospect, 47 , Moscow 119991 , Russia
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky Prospect, 47 , Moscow 119991 , Russia.,Higher Chemical College , D. Mendeleev University of Chemical Technology of Russia , Miusskaya sq., 9 , Moscow 125047 , Russia.,Plekhanov Russian University of Economics , Stremyanny per. 36 , Moscow 117997 , Russia
| |
Collapse
|
16
|
Ushakov PY, Tabolin AA, Ioffe SL, Sukhorukov AY. In Situ Generated Magnesium Cyanide as an Efficient Reagent for Nucleophilic Cyanation of Nitrosoalkenes and Parent Nitronates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pavel Yu. Ushakov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
- Department of Chemistry; M. V. Lomonosov Moscow State University; 119991 Moscow Russian Federation
| | - Andrey A. Tabolin
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Sema L. Ioffe
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Alexey Yu. Sukhorukov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
- Plekhanov Russian University of Economics; Stremyanny per. 36 117997 Moscow Russia
| |
Collapse
|
17
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Lopes SMM, Cardoso AL, Lemos A, Pinho E Melo TMVD. Recent Advances in the Chemistry of Conjugated Nitrosoalkenes and Azoalkenes. Chem Rev 2018; 118:11324-11352. [PMID: 30495939 DOI: 10.1021/acs.chemrev.8b00375] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review aims to present the most recent contributions in the chemistry of nitrosoalkenes and azoalkenes, highlighting the chemical behavior that makes them important and versatile building blocks in organic synthesis. These are heterodienes used in the assembly of a variety of heterocyclic systems, spanning from five- to seven-membered heterocycles, as well as for the functionalization of heterocycles.
Collapse
Affiliation(s)
- Susana M M Lopes
- CQC and Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Ana L Cardoso
- CQC and Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Américo Lemos
- Centro de Investigação em Química do Algarve, Faculdade de Ciências e Tecnologia , University of Algarve , Campus de Gambelas, 8005-139 Faro , Portugal
| | | |
Collapse
|
19
|
Tanimoto H, Ueda S, Morimoto T, Kakiuchi K. Nitrosoallene-Mediated endo-Cyclizations for the Synthesis of (Hetero)cyclic α-Substituted exo-Unsaturated Oximes. J Org Chem 2018; 83:1614-1626. [DOI: 10.1021/acs.joc.7b02936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroki Tanimoto
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Sho Ueda
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Graduate School of Materials
Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|