1
|
Yang L, Nie CY, Han Y, Ye JM, Liu W, Yan CG. Construction and crystal structures of pillar[5]arene-based bis-[1]rotaxanes via quadruple hydrogen bonding of ureidopyrimidinone. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cui-Yin Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Mei Ye
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenlong Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Construction of unique pseudo[1]rotaxanes and [1]rotaxanes based on mono-functionalized pillar[5]arene Schiff bases. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
4
|
Nazarova A, Padnya P, Cragg PJ, Stoikov I. [1]Rotaxanes based on phosphorylated pillar[5]arenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj05461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[1]Rotaxanes based on monosubstituted phosphorus-containing pillar[5]arenes have been synthesized by the Kabachnik–Fields reaction for the first time in good yields.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Pavel Padnya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Peter J. Cragg
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Ivan Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| |
Collapse
|
5
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Li D, Han Y, Sun J, Liu WL, Yan CG. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Chao S, Shen Z, Pei Y, Pei Z. Covalently bridged pillararene-based oligomers: from construction to applications. Chem Commun (Camb) 2021; 57:10983-10997. [PMID: 34604891 DOI: 10.1039/d1cc04547d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalently bridged pillararene-based oligomers (CBPOs) are formed by covalent bonding of pillararene monomers, and they play a critical role in expanding the multi-disciplinary application of pillararenes due to their excellent molecular complexing ability, specially designed geometry and multifunctional linking groups. This article provides a comprehensive review of the synthesis and applications of CBPOs. The design and synthetic strategies of a series of CBPOs (dimers, trimers, tetramers and others) are first introduced. Many CBPOs with multi-cavities and unique geometry are very attractive and efficient building blocks for constructing novel smart supramolecular polymers (SPs) with different topological structures through host-guest interactions. We describe the methods of constructing various SPs based on CBPOs in detail. Furthermore, the extensive applications of CBPOs and CBPO-based SPs in recognition and detection of ions and organic small molecules, selective adsorption and separation, artificial light-harvesting systems, catalysis, drug delivery systems, and others are systematically introduced. Finally, the future challenges and perspectives for CBPOs are also highlighted.
Collapse
Affiliation(s)
- Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
8
|
Yang L, Nie CY, Han Y, Sun J, Yan CG. Self-assembly of bis-[1]rotaxanes based on diverse thiourea-bridged mono-functionalized dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01103-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Gurram SR, Afzal Azam M. Design, Synthesis, Antibacterial Evaluation and Molecular Docking Studies of Some Newer Baenzothiazole Containing Aryl and Alkaryl Hydrazides. Chem Biodivers 2021; 18. [PMID: 34050601 DOI: 10.1002/cbdv.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022]
Abstract
The alarming rise of bacterial resistance is occurring worldwide and endangering the efficacy of antibiotics. Therefore, development of new and efficient antibacterial agents remains paramount. In the present work, we designed and synthesized a series of N'-(1,3-benzothiazol-2-yl)-substituted aryl/aralkyl hydrazides C1-C27 and evaluated them in vitro for their antibacterial activity. Among all tested compounds, C10, C15, and C24 showed potent activity against Staphylococcus aureus ATCC 43300 (MRSA). Minimum bactericidal concentration studies of synthesized compounds are performed against selected bacterial strains. Time kill kinetics showed that the compounds C10 and C15 possess bactericidal activity against MRSA ATCC 43300, while compound C24 possess bactericidal activity against S. aureus NCIM 5022. In the extra-precision docking, compounds C1-C27 exhibited interactions mainly with the N-terminal and central domains of S. aureus GyrB catalytic pocket. Binding free energy (ΔGbind ) of compounds C1-C27/3U2K complexes were computed by MM-GBSA approach. Free energy components indicated Coulomb energy term as favorable for binding, while van der Waals and electrostatic solvation energy terms strongly disfavored the binding. ADMET properties of synthesized compounds C1-C27 are also computed.
Collapse
Affiliation(s)
- Swarupa Rani Gurram
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research), Ooty-643001, Nilgiris, Tamil Nadu, India
| | - Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research), Ooty-643001, Nilgiris, Tamil Nadu, India
| |
Collapse
|
10
|
Yan X, Huang Y, Cen M, Wang J, Shi J, Lu B, Wang Y, Yao Y. Pillar[6]arene-based supramolecular polymeric materials constructed via electrostatic interactions for rapid and efficient organic dye removal from water. NANOSCALE ADVANCES 2021; 3:1906-1909. [PMID: 36133081 PMCID: PMC9417795 DOI: 10.1039/d0na00938e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/14/2021] [Indexed: 05/16/2023]
Abstract
The first pillar[6]arene-based supramolecular polymeric material constructed from electrostatic interactions was designed and prepared successfully. Importantly, it can adsorb and remove organic dye from water efficiently.
Collapse
Affiliation(s)
- Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Youyou Huang
- School of Chemistry and Chemical Engineering, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jian Shi
- Nantong University Analysis & Testing Center Nantong Jiangsu 226019 P. R. China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University Nantong Jiangsu 226019 P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University Nantong Jiangsu 226019 P. R. China
| |
Collapse
|
11
|
Synthesis and characterization of bis-[1]rotaxanes via salen-bridged bis-pillar[5]arenes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Zhao LL, Han Y, Yan CG. Construction of [1]rotaxanes with pillar[5]arene as the wheel and terpyridine as the stopper. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|