1
|
Gordon AT, Hosten EC, van Vuuren S, Ogunlaja AS. Copper(II)-photocatalyzed Hydrocarboxylation of Schiff bases with CO 2: antimicrobial evaluation and in silico studies of Schiff bases and unnatural α-amino acids. J Biomol Struct Dyn 2025; 43:4201-4214. [PMID: 38192072 DOI: 10.1080/07391102.2024.2301765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
We synthesized and characterized two copper(II) complexes: [CuL2Cl]Cl and [CuL'2Cl]Cl, where L = 2,2'-bipyridine and L' = 4,4'-dimethyl-2,2'-bipyridine. We evaluated their photocatalytic hydrocarboxylation properties on a series of synthesized Schiff bases (SBs): (E)-1-(4-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone (SB1), (E)-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (SB2), (E)-4-Bromo-2-((thiazol-2-ylimino)methyl)phenol (SB3), and (E)-4-((5-bromo-2-hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (SB4). Under mild photocatalytic reaction conditions (room temperature, 1 atm CO2, 30-watt Blue LED light), the derivatives of α-amino acids UAA1-4 were obtained with yields ranging from 5% to 44%. Experimental results demonstrated that [CuL2Cl]Cl exhibited superior photocatalytic efficiency compared to [CuL'2Cl]Cl, attributed to favourable electronic properties. In silico studies revealed strong binding strengths with E. faecalis DHFR (4M7U) for docked Schiff bases (SB) and unnatural α-amino acids (UAAs). In vitro studies further demonstrated significant antimicrobial and antifungal activity for SB2, SB3, and SB4, while none of the synthesized UAAs exhibited such properties, primarily due to the electronic and binding properties of these molecules.
Collapse
Affiliation(s)
- Allen T Gordon
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Eric C Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Adeniyi S Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
2
|
Sarkar P, Dash S, Krause JA, Sinha S, Panetier JA, Jiang JJ. Ambient Electroreductive Carboxylation of Unactivated Alkyl Chlorides and Polyvinyl Chloride (PVC) Upgrading. CHEMSUSCHEM 2024; 17:e202400517. [PMID: 38890556 DOI: 10.1002/cssc.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Electrosynthesis of alkyl carboxylic acids upon activating stronger alkyl chlorides at low-energy cost is desired in producing carbon-rich feedstock. Carbon dioxide (CO2), a greenhouse gas, has been recognized as an ideal primary carbon source for those syntheses, and such events also mitigate the atmospheric CO2 level, which is already alarming. On the other hand, the promising upcycling of polyvinyl chloride to polyacrylate is a high energy-demanding carbon-chloride (C-Cl) bond activation process. Molecular catalysts that can efficiently perform such transformation under ambient reaction conditions are rarely known. Herein, we reveal a nickel (Ni)-pincer complex that catalyzes the electrochemical upgrading of polyvinyl chloride to polyacrylate in 95 % yield. The activities of such a Ni electrocatalyst bearing a redox-active ligand were also tested to convert diverse examples of unactivated alkyl chlorides to their corresponding carboxylic acid derivatives. Furthermore, electronic structure calculations revealed that CO2 binding occurs in a resting state to yield an η2-CO2 adduct and that the C-Cl bond activation step is the rate-determining transition state, which has an activation energy of 19.3 kcal/mol. A combination of electroanalytical methods, control experiments, and computational studies were also carried out to propose the mechanism of the electrochemical C-Cl activation process with the subsequent carboxylation step.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Sandeep Dash
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Julien A Panetier
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | | |
Collapse
|
3
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
4
|
Tang S, Zhao X, Yang L, Li B, Wang B. Copper‐Catalyzed Carboxylation of Aryl Thianthrenium Salts with CO
2. Angew Chem Int Ed Engl 2022; 61:e202212975. [DOI: 10.1002/anie.202212975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Xiaobo Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Lidong Yang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
5
|
Yu R, Cai S, Li C, Fang X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022; 61:e202200733. [DOI: 10.1002/anie.202200733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Song‐Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
6
|
Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Shigeno M, Tohara I, Sasaki K, Nozawa-Kumada K, Kondo Y. Combined Brønsted Base-Promoted CO 2 Fixation into Benzylic C-H Bonds of Alkylarenes. Org Lett 2022; 24:4825-4830. [PMID: 35763616 DOI: 10.1021/acs.orglett.2c01986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in developing methods for direct CO2 fixation into readily available unfunctionalized C-H bonds in organic substances has recently surged. In contrast to the well-studied carboxylations of alkynyl C(sp)-H and aromatic C(sp2)-H bonds, carboxylation of benzylic C(sp3)-H bonds to produce 2-arylacetic acids is limited to photoirradiation reactions and continues to be a challenging issue because of the low chemical reactivity. We herein describe that a combined Brønsted base (i.e., LiO-t-Bu/CsF and LiOCEt3/CsF) achieves benzylic carboxylation of electron-deficient, -neutral, and -rich alkylarenes and enables various functionalities, including fragile ones such as bromide, alkene, alkyne, and carbonyl moieties. Dicarboxylation at the benzylic position is also established. Cs-alkoxide generated in situ acts as a reactive base, as demonstrated in experiments with independently prepared CsO-t-Bu and by 133Cs nuclear magnetic resonance studies.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Keita Sasaki
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Shigeno M, Hanasaka K, Tohara I, Izumi K, Yamakoshi H, Kwon E, Nozawa-Kumada K, Kondo Y. Direct C-H Carboxylation Forming Polyfunctionalized Aromatic Carboxylic Acids by Combined Brønsted Bases. Org Lett 2022; 24:809-814. [PMID: 35048709 DOI: 10.1021/acs.orglett.1c03866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CO2 fixation into electron-deficient aromatic C-H bonds proceeds with the combined Brønsted bases LiO-t-Bu and LiO-t-Am/CsF/18-crown-6 (t-Am = CEtMe2) under a CO2 atmosphere to afford a variety of polyfunctionalized aromatic carboxylic acids.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kazuya Hanasaka
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Koki Izumi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Hiroyuki Yamakoshi
- Central Analytical Center, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Mao B, Wei JS, Shi M. Recent advancements in visible-light-driven carboxylation with carbon dioxide. Chem Commun (Camb) 2022; 58:9312-9327. [DOI: 10.1039/d2cc03380a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide as a classic C1 source has long been investigated in organic synthetic chemistry. Diverse catalytic methods for CO2 activation were reported in the past several decades. In this...
Collapse
|
10
|
Davies J, Janssen-Müller D, Zimin DP, Day CS, Yanagi T, Elfert J, Martin R. Ni-Catalyzed Carboxylation of Aziridines en Route to β-Amino Acids. J Am Chem Soc 2021; 143:4949-4954. [PMID: 33724815 DOI: 10.1021/jacs.1c01916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Ni-catalyzed reductive carboxylation of N-substituted aziridines with CO2 at atmospheric pressure is disclosed. The protocol is characterized by its mild conditions, experimental ease, and exquisite chemo- and regioselectivity pattern, thus unlocking a new catalytic blueprint to access β-amino acids, important building blocks with considerable potential as peptidomimetics.
Collapse
Affiliation(s)
- Jacob Davies
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Daniel Janssen-Müller
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Dmitry P Zimin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Craig S Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Tomoyuki Yanagi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jonas Elfert
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
11
|
Zhong J, Yu Y, Zhang D, Ye K. Merging cobalt catalysis and electrochemistry in organic synthesis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Xu Y, Shao Y, Ahlquist MSG, Yu H, Fu Y. Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. J Org Chem 2021; 86:1540-1548. [PMID: 33353304 DOI: 10.1021/acs.joc.0c02393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocarboxylation of alkyne with carbon dioxide represents a highly attractive strategy to prepare functionalized alkenes with high efficiency and atomic economy. However, the reaction mechanism, especially the sequence of elementary steps (leading to different reaction pathways), reaction modes of the H-transfer step and carboxylation step, spin and charge states of the cobalt catalyst, etc., is still an open question. Herein, density functional theory calculations are carried out to probe the mechanism of the Ir/Co-catalyzed photocarboxylation of alkynes. The overall catalytic cycle mainly consists of four steps: reductive-quenching of the Ir catalyst, hydrogen transfer (rate-determining step), outer sphere carboxylation, and the final catalyst regeneration step. Importantly, the cobalt catalyst can facilitate the H-transfer by an uncommon hydride coupled electron transfer (HCET) process. The pivotal electron delivery effect of the Co center enables a facile H-transfer to the α-C(alkyne) of the aryl group, resulting in the high regioselectivity for β-carboxylation.
Collapse
Affiliation(s)
- Yuantai Xu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China.,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yifan Shao
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Haizhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
13
|
Shigeno M, Kondo Y, Sasaki K, Hanasaka K, Tohara I, Nozawa-Kumada K. Combined Brønsted-Base-Mediated Direct C-H Carboxylation of Heteroarenes with CO2. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Wang Y, Jiang X, Wang B. Cobalt-catalyzed carboxylation of aryl and vinyl chlorides with CO 2. Chem Commun (Camb) 2020; 56:14416-14419. [PMID: 33146176 DOI: 10.1039/d0cc06451c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transition-metal-catalyzed carboxylation of aryl and vinyl chlorides with CO2 is rarely studied, and has been achieved only with a Ni catalyst or combination of palladium and photoredox. In this work, the cobalt-catalyzed carboxylation of aryl and vinyl chlorides and bromides with CO2 has been developed. These transformations proceed under mild conditions and exhibit a broad substrate scope, affording the corresponding carboxylic acids in good to high yields.
Collapse
Affiliation(s)
- Yanwei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | |
Collapse
|
15
|
Börjesson M, Janssen-Müller D, Sahoo B, Duan Y, Wang X, Martin R. Remote sp2 C–H Carboxylation via Catalytic 1,4-Ni Migration with CO2. J Am Chem Soc 2020; 142:16234-16239. [DOI: 10.1021/jacs.0c08810] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Marino Börjesson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Daniel Janssen-Müller
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Basudev Sahoo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Xueqiang Wang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Ang NWJ, Oliveira JCA, Ackermann L. Electroreductive Cobalt-Catalyzed Carboxylation: Cross-Electrophile Electrocoupling with Atmospheric CO 2. Angew Chem Int Ed Engl 2020; 59:12842-12847. [PMID: 32329560 PMCID: PMC7496797 DOI: 10.1002/anie.202003218] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Indexed: 11/11/2022]
Abstract
The chemical use of CO2 as an inexpensive, nontoxic C1 synthon is of utmost topical interest in the context of carbon capture and utilization (CCU). We present the merger of cobalt catalysis and electrochemical synthesis for mild catalytic carboxylations of allylic chlorides with CO2 . Styrylacetic acid derivatives were obtained with moderate to good yields and good functional group tolerance. The thus-obtained products are useful as versatile synthons of γ-arylbutyrolactones. Cyclic voltammetry and in operando kinetic analysis were performed to provide mechanistic insights into the electrocatalytic carboxylation with CO2 .
Collapse
Affiliation(s)
- Nate W. J. Ang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
17
|
Ang NWJ, Oliveira JCA, Ackermann L. Elektro‐reduktive Cobalt‐katalysierte Carboxylierung: Kreuzelektrophile Elektrokupplung mit atmosphärischem CO
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nate W. J. Ang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
18
|
Hang W, Yi Y, Xi C. Cobalt‐Catalyzed Reductive Carboxylation of Aryl Bromides with Carbon Dioxide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Hang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of ChemistryTsinghua University Beijing 100084 People's Republic of China
| | - Yaping Yi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of ChemistryTsinghua University Beijing 100084 People's Republic of China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of ChemistryTsinghua University Beijing 100084 People's Republic of China
- State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
19
|
Shigeno M, Tohara I, Nozawa-Kumada K, Kondo Y. Direct C-2 Carboxylation of 3-Substituted Indoles Using a Combined Brønsted Base Consisting of LiO- t
Bu/CsF/18-crown-6. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry; Graduate School of Pharmaceutical Science; Tohoku University; 6-3 Aoba 980-8578 Sendai Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry; Graduate School of Pharmaceutical Science; Tohoku University; 6-3 Aoba 980-8578 Sendai Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry; Graduate School of Pharmaceutical Science; Tohoku University; 6-3 Aoba 980-8578 Sendai Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry; Graduate School of Pharmaceutical Science; Tohoku University; 6-3 Aoba 980-8578 Sendai Japan
| |
Collapse
|
20
|
Niwa T, Hosoya T. Molecular Renovation Strategy for Expeditious Synthesis of Molecular Probes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
21
|
Zhang P, Zhou Z, Zhang R, Zhao Q, Zhang C. Cu-Catalyzed highly regioselective 1,2-hydrocarboxylation of 1,3-dienes with CO 2. Chem Commun (Camb) 2020; 56:11469-11472. [PMID: 32856640 DOI: 10.1039/d0cc05056c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical copper-catalyzed highly regioselective 1,2-hydrocarboxylation of terminal 1,3-diene with carbon dioxide has been developed. Under mild reaction conditions, this chemistry afforded 2-benzyl-β,γ-unsaturated acid derivatives as products, which are a kind of important unit for bio-active molecules and versatile precursors for organic synthesis, with good functional group tolerance. The key intermediate in this transformation is illustrated by control experiments.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | | | | | | | | |
Collapse
|
22
|
Bhunia SK, Das P, Nandi S, Jana R. Carboxylation of Aryl Triflates with CO 2 Merging Palladium and Visible-Light-Photoredox Catalysts. Org Lett 2019; 21:4632-4637. [PMID: 31188621 DOI: 10.1021/acs.orglett.9b01532] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report herein a visible-light-promoted, highly practical carboxylation of readily accessible aryl triflates at ambient temperature and a balloon pressure of CO2 by the combined use of palladium and photoredox Ir(III) catalysts. Strikingly, the stoichiometric metallic reductant is replaced by a nonmetallic amine reductant providing an environmentally benign carboxylation process. In addition, one-pot synthesis of a carboxylic acid directly from phenol and modification of estrone and concise synthesis of pharmaceutical drugs adapalene and bexarotene have been accomplished via late-stage carboxylation reaction. Furthermore, a parallel decarboxylation-carboxylation reaction has been demonstrated in an H-type closed vessel that is an interesting concept for the strategic sector. Spectroscopic and spectroelectrochemical studies indicated electron transfer from the Ir(III)/DIPEA combination to generate aryl carboxylate and Pd(0) for catalytic turnover.
Collapse
Affiliation(s)
- Samir Kumar Bhunia
- Organic and Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , Kolkata 700032 , West Bengal , India
| | - Pritha Das
- Organic and Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , West Bengal , India
| | - Shantanu Nandi
- Organic and Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , West Bengal , India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , Kolkata 700032 , West Bengal , India
| |
Collapse
|
23
|
Shigeno M, Sasaki K, Nozawa-Kumada K, Kondo Y. Double-Carboxylation of Two C–H Bonds in 2-Alkylheteroarenes Using LiO-t-Bu/CsF. Org Lett 2019; 21:4515-4519. [DOI: 10.1021/acs.orglett.9b01386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Keita Sasaki
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|